山西省孝义市实验中学2017_2018学年高二数学上学期第一次月考试题20-含答案 师生通用
- 格式:doc
- 大小:830.00 KB
- 文档页数:10
孝义市一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥12. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1 C .x 2﹣=1 D .﹣=13. 某几何体的三视图如图所示,则该几何体的体积为( ) A .16163π-B .32163π-C .1683π-D .3283π-【命题意图】本题考查三视图、圆柱与棱锥的体积计算,意在考查识图能力、转化能力、空间想象能力. 4. 二项式(1)(N )nx n *+?的展开式中3x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力. 5. 下列关系正确的是( )A .1∉{0,1}B .1∈{0,1}C .1⊆{0,1}D .{1}∈{0,1}6. 已知集合A={0,1,2},则集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是( ) A .1B .3C .5D .97. (2015秋新乡校级期中)已知x+x ﹣1=3,则x 2+x ﹣2等于( )A .7B .9C .11D .138. 函数f (x )=3x +x ﹣3的零点所在的区间是( ) A .(0,1) B .(1,2) C .(2.3) D .(3,4)9. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力.10.在△ABC 中,AB 边上的中线CO=2,若动点P 满足=(sin 2θ)+(cos 2θ)(θ∈R ),则(+)•的最小值是( )A .1B .﹣1C .﹣2D .011.已知函数f (x )=3cos (2x ﹣),则下列结论正确的是( )A .导函数为B .函数f (x )的图象关于直线对称C .函数f (x )在区间(﹣,)上是增函数D .函数f (x )的图象可由函数y=3co s2x 的图象向右平移个单位长度得到12.设a ,b ∈R 且a+b=3,b >0,则当+取得最小值时,实数a 的值是( )A .B .C .或 D .3二、填空题13.在各项为正数的等比数列{a n }中,若a 6=a 5+2a 4,则公比q= . 14.设复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),则z 的模为 .15.已知三棱锥ABC D -的四个顶点均在球O 的球面上,ABC ∆和DBC ∆所在的平面互相垂直,3=AB ,3=AC ,32===BD CD BC ,则球O 的表面积为 .16.阅读如图所示的程序框图,运行相应的程序,若输入的X 的值为2,则输出的结果是 .17.设O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,若|AF|>|BF|,则=.18.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于.三、解答题19.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x 2 4 5 6 8y 30 40 60 50 70(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.20.已知数列{a n}的前n项和为S n,首项为b,若存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)问是否存在一组非零常数a,b,使得{S n}成等比数列?若存在,求出常数a,b的值,若不存在,请说明理由.21.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.22.如图所示的几何体中,EA⊥平面ABC,BD⊥平面ABC,AC=BC=BD=2AE=,M是AB的中点.(1)求证:CM⊥EM;(2)求MC与平面EAC所成的角.23.从某居民区随机抽取10个家庭,获得第i个家庭的月收入x i(单位:千元)与月储蓄y i(单位:千元)的数据资料,计算得x i=80,y i=20,x i y i=184,x i2=720.(1)求家庭的月储蓄对月收入的回归方程;(2)判断月收入与月储蓄之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.24.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了50名村民,按缴费在100:500元,600:1000元,以及年龄在20:39岁,4059(2)在缴费100:500元之间抽取的5人中,随机选取2人进行到户走访,求这2人的年龄都在40:59岁之间的概率.孝义市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】D【解析】解:命题是特称命题,则命题的否定是∀x ∈R ,都有x ≤﹣1或x ≥1,故选:D .【点评】本题主要考查含有量词的命题的否定,比较基础.2. 【答案】B【解析】解:已知抛物线y 2=4x 的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x ,则有a 2+b 2=c 2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y 2=1.故选B .【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.3. 【答案】D【解析】由三视图知几何体为一个底面半径为2高为4的半圆柱中挖去一个以轴截面为底面高为2的四棱锥,因此该几何体的体积为21132244428233V =π⨯⨯-⨯⨯⨯=π-,故选D . 4. 【答案】B【解析】因为(1)(N )nx n *+?的展开式中3x 项系数是3C n ,所以3C 10n =,解得5n =,故选A . 5. 【答案】B【解析】解:由于1∈{0,1},{1}⊆{0,1},故选:B【点评】本题考查的知识点是元素与集合关系的判断,其中正确理解集合元素与集合关系的实质,即元素满足集合中元素的性质,是解答本题的关键.6. 【答案】C【解析】解:∵A={0,1,2},B={x ﹣y|x ∈A ,y ∈A},∴当x=0,y 分别取0,1,2时,x ﹣y 的值分别为0,﹣1,﹣2; 当x=1,y 分别取0,1,2时,x ﹣y 的值分别为1,0,﹣1; 当x=2,y 分别取0,1,2时,x ﹣y 的值分别为2,1,0; ∴B={﹣2,﹣1,0,1,2},∴集合B={x ﹣y|x ∈A ,y ∈A}中元素的个数是5个. 故选C .7. 【答案】A【解析】解:∵x+x ﹣1=3,则x 2+x ﹣2=(x+x ﹣1)2﹣2=32﹣2=7.故选:A .【点评】本题考查了乘法公式,考查了推理能力与计算能力,属于中档题.8. 【答案】A【解析】解:∵f (0)=﹣2<0,f (1)=1>0,∴由零点存在性定理可知函数f (x )=3x +x ﹣3的零点所在的区间是(0,1). 故选A【点评】本题主要考查了函数的零点的判定定理,这种问题只要代入所给的区间的端点的值进行检验即可,属于基础题.9. 【答案】D 【解析】因为1()f x x a x'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,因为12x x+?,所以1a £,故选D . 10.【答案】 C【解析】解:∵ =(sin 2θ)+(cos 2θ)(θ∈R ),且sin 2θ+cos 2θ=1,∴=(1﹣cos 2θ)+(cos 2θ)=+cos 2θ•(﹣),即﹣=cos 2θ•(﹣),可得=cos 2θ•,又∵cos 2θ∈[0,1],∴P 在线段OC 上,由于AB 边上的中线CO=2,因此(+)•=2•,设||=t ,t ∈[0,2],可得(+)•=﹣2t(2﹣t)=2t2﹣4t=2(t﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C.【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.11.【答案】B【解析】解:对于A,函数f′(x)=﹣3sin(2x﹣)•2=﹣6sin(2x﹣),A错误;对于B,当x=时,f()=3cos(2×﹣)=﹣3取得最小值,所以函数f(x)的图象关于直线对称,B正确;对于C,当x∈(﹣,)时,2x﹣∈(﹣,),函数f(x)=3cos(2x﹣)不是单调函数,C错误;对于D,函数y=3co s2x的图象向右平移个单位长度,得到函数y=3co s2(x﹣)=3co s(2x﹣)的图象,这不是函数f(x)的图象,D错误.故选:B.【点评】本题考查了余弦函数的图象与性质的应用问题,是基础题目.12.【答案】C【解析】解:∵a+b=3,b>0,∴b=3﹣a>0,∴a<3,且a≠0.①当0<a<3时,+==+=f(a),f′(a)=+=,当时,f′(a)>0,此时函数f(a)单调递增;当时,f′(a)<0,此时函数f(a)单调递减.∴当a=时,+取得最小值.②当a<0时,+=﹣()=﹣(+)=f(a),f ′(a )=﹣=﹣,当时,f ′(a )>0,此时函数f (a)单调递增;当时,f ′(a )<0,此时函数f (a )单调递减.∴当a=﹣时,+取得最小值.综上可得:当a=或时,+取得最小值.故选:C .【点评】本题考查了导数研究函数的单调性极值与最值、分类讨论方法,考查了推理能力与计算能力,属于难题.二、填空题13.【答案】 2 .【解析】解:由a 6=a 5+2a 4得,a 4q 2=a 4q+2a 4, 即q 2﹣q ﹣2=0,解得q=2或q=﹣1,又各项为正数,则q=2, 故答案为:2.【点评】本题考查等比数列的通项公式,注意公比的符号,属于基础题.14.【答案】 2 .【解析】解:∵复数z 满足z (2﹣3i )=6+4i (i 为虚数单位),∴z=,∴|z|===2,故答案为:2.【点评】本题主要考查复数的模的定义,复数求模的方法,利用了两个复数商的模等于被除数的模除以除数的模,属于基础题.15.【答案】16π【解析】如图所示,∵222AB AC BC +=,∴CAB ∠为直角,即过△ABC 的小圆面的圆心为BC 的中点O ',ABC △和DBC △所在的平面互相垂直,则球心O 在过DBC △的圆面上,即DBC △的外接圆为球大圆,由等边三角形的重心和外心重合易得球半径为2R =,球的表面积为24π16πS R ==16.【答案】﹣3.【解析】解:分析如图执行框图,可知:该程序的作用是计算分段函数f(x)=的函数值.当x=2时,f(x)=1﹣2×2=﹣3故答案为:﹣3【点评】本题主要考查了选择结构、流程图等基础知识,算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.17.【答案】.【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,过F斜率为的直线与抛物线C相交于A,B两点,直线AO与l相交于D,∴直线AB的方程为y=(x﹣),l的方程为x=﹣,联立,解得A(﹣,P),B(,﹣)∴直线OA的方程为:y=,联立,解得D(﹣,﹣)∴|BD|==,∵|OF|=,∴==.故答案为:.【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.18.【答案】.【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,其中4个点构成平行四边形的选法有3个,∴4个点构成平行四边形的概率P==.故答案为:.【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.三、解答题19.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时,=6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.20.【答案】【解析】解:(Ⅰ)∵数列{a n}的前n项和为S n,首项为b,存在非零常数a,使得(1﹣a)S n=b﹣a n+1对一切n∈N*都成立,由题意得当n=1时,(1﹣a)b=b﹣a2,∴a2=ab=aa1,当n≥2时,(1﹣a)S n=b﹣a n+1,(1﹣a)S n+1=b﹣a n+1,两式作差,得:a n+2=a•a n+1,n≥2,∴{a n}是首项为b,公比为a的等比数列,∴.(Ⅱ)当a=1时,S n=na1=nb,不合题意,当a≠1时,,若,即,化简,得a=0,与题设矛盾,故不存在非零常数a,b,使得{S n}成等比数列.【点评】本题考查数列的通项公式的求法,考查使得数列成等比数列的非零常数是否存在的判断与求法,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.21.【答案】【解析】解:(1)∵f(1)=a+b+c=﹣,∴3a+2b+2c=0.又3a>2c>2b,故3a>0,2b<0,从而a>0,b<0,又2c=﹣3a﹣2b及3a>2c>2b知3a>﹣3a﹣2b>2b∵a>0,∴3>﹣3﹣>2,即﹣3<<﹣.(2)根据题意有f(0)=0,f(2)=4a+2b+c=(3a+2b+2c)+a﹣c=a﹣c.下面对c的正负情况进行讨论:①当c>0时,∵a>0,∴f(0)=c>0,f(1)=﹣<0所以函数f(x)在区间(0,1)内至少有一个零点;②当c≤0时,∵a>0,∴f(1)=﹣<0,f(2)=a﹣c>0所以函数f(x)在区间(1,2)内至少有一个零点;综合①②得函数f(x)在区间(0,2)内至少有一个零点;(3).∵x1,x2是函数f(x)的两个零点∴x1,x2是方程ax2+bx+c=0的两根.故x1+x2=﹣,x1x2===从而|x1﹣x2|===.∵﹣3<<﹣,∴|x1﹣x2|.【点评】本题考查了二次函数的性质,对于二次函数要注意数形结合的应用,注意抓住二次函数的开口方向,对称轴,以及判别式的考虑;同时考查了函数的零点与方程根的关系,函数的零点等价于对应方程的根,等价于函数的图象与x轴交点的横坐标,解题时要注意根据题意合理的选择转化.属于中档题.22.【答案】【解析】(1)证明:∵AC=BC=AB,∴△ABC为等腰直角三角形,∵M为AB的中点,∴AM=BM=CM,CM⊥AB,∵EA⊥平面ABC,∴EA⊥AC,设AM=BM=CM=1,则有AC=,AE=AC=,在Rt△AEC中,根据勾股定理得:EC==,在Rt△AEM中,根据勾股定理得:EM==,∴EM2+MC2=EC2,∴CM⊥EM;(2)解:过M作MN⊥AC,可得∠MCA为MC与平面EAC所成的角,则MC与平面EAC所成的角为45°.23.【答案】【解析】解:(1)由题意,n=10,=x=8,=y i=2,i∴b==0.3,a=2﹣0.3×8=﹣0.4,∴y=0.3x﹣0.4;(2)∵b=0.3>0,∴y与x之间是正相关;(3)x=7时,y=0.3×7﹣0.4=1.7(千元).24.【答案】【解析】解:(1)设抽取x人,则,解得x=2,即年龄在20:39岁之间应抽取2人.(2)设在缴费100:500元之间抽取的5人中,年龄在20:39岁年龄的两人为A,B,在40:59岁之间为a,b,c,随机选取2人的情况有(A,B),(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(a,b),(a,c),(b,c),共10种,年龄都在40:59岁之间的有(a,b),(a,c),(b,c),共3种,则对应的概率P=.【点评】本题主要考查分层抽样的应用,以及古典概型的计算,利用列举法是解决本题的关键.。
孝义市高级中学2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.2. 设a ,b 为实数,若复数,则a ﹣b=( )A .﹣2B .﹣1C .1D .23. 已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则( ) A .α∥β且l ∥α B .α⊥β且l ⊥β C .α与β相交,且交线垂直于l D .α与β相交,且交线平行于l4. 过点),2(a M -,)4,(a N 的直线的斜率为21-,则=||MN ( ) A .10 B .180 C .36 D .565. 已知P (x ,y )为区域内的任意一点,当该区域的面积为4时,z=2x ﹣y 的最大值是( )A .6B .0C .2D .26. 已知直线y=ax+1经过抛物线y 2=4x 的焦点,则该直线的倾斜角为( )A .0B .C .D .7. 下列计算正确的是( )A 、2133x x x ÷= B 、4554()x x = C 、4554x x x = D 、44550x x -=8. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(acosB+bcosA )=2csinC ,a+b=8,且△ABC 的面积的最大值为4,则此时△ABC 的形状为( )A .等腰三角形B .正三角形C .直角三角形D .钝角三角形9. 已知全集I={1,2,3,4,5,6},A={1,2,3,4},B={3,4,5,6},那么∁I (A ∩B )等于( ) A .{3,4} B .{1,2,5,6} C .{1,2,3,4,5,6} D .∅10.抛物线x=﹣4y 2的准线方程为( )A .y=1B .y= C .x=1 D .x=11.已知两条直线12:,:0L y x L ax y =-=,其中为实数,当这两条直线的夹角在0,12π⎛⎫⎪⎝⎭内变动 时,的取值范围是( ) A . ()0,1 B.⎝ C.()1,3⎫⎪⎪⎝⎭D .(12.已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列 C .公比为a 的等比数列 D .公比为的等比数列二、填空题13.已知θ是第四象限角,且sin (θ+)=,则tan (θ﹣)= .14.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为. 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力. 15.一个算法的程序框图如图,若该程序输出的结果为,则判断框中的条件i<m 中的整数m 的值是 .16.已知,x y 满足41y xx y x ≥⎧⎪+≤⎨⎪≥⎩,则22223y xy x x -+的取值范围为____________. 17.在ABC ∆中,90C ∠=,2BC =,M 为BC 的中点,1sin 3BAM ∠=,则AC 的长为_________. 18.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.三、解答题19.已知△ABC 的三边是连续的三个正整数,且最大角是最小角的2倍,求△ABC 的面积.20.已知等差数列{a n}满足a1+a2=3,a4﹣a3=1.设等比数列{b n}且b2=a4,b3=a8(Ⅰ)求数列{a n},{b n}的通项公式;(Ⅱ)设c n=a n+b n,求数列{c n}前n项的和S n.21.已知f()=﹣x﹣1.(1)求f(x);(2)求f(x)在区间[2,6]上的最大值和最小值.22.如图,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积.23.已知复数z=.(1)求z的共轭复数;(2)若az+b=1﹣i,求实数a,b的值.24.已知函数f(x)=a﹣,(1)若a=1,求f(0)的值;(2)探究f(x)的单调性,并证明你的结论;(3)若函数f(x)为奇函数,判断|f(ax)|与f(2)的大小.孝义市高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x . 2. 【答案】C【解析】解:,因此.a ﹣b=1.故选:C .3. 【答案】D【解析】解:由m ⊥平面α,直线l 满足l ⊥m ,且l ⊄α,所以l ∥α, 又n ⊥平面β,l ⊥n ,l ⊄β,所以l ∥β.由直线m ,n 为异面直线,且m ⊥平面α,n ⊥平面β,则α与β相交,否则,若α∥β则推出m ∥n , 与m ,n 异面矛盾.故α与β相交,且交线平行于l . 故选D .【点评】本题考查了平面与平面之间的位置关系,考查了平面的基本性质及推论,考查了线面平行、线面垂直的判定与性质,考查了学生的空间想象和思维能力,是中档题.4. 【答案】D 【解析】考点:1.斜率;2.两点间距离.5.【答案】A解析:解:由作出可行域如图,由图可得A(a,﹣a),B(a,a),由,得a=2.∴A(2,﹣2),化目标函数z=2x﹣y为y=2x﹣z,∴当y=2x﹣z过A点时,z最大,等于2×2﹣(﹣2)=6.故选:A.6.【答案】D【解析】解:抛物线y2=4x的焦点(1,0),直线y=ax+1经过抛物线y2=4x的焦点,可得0=a+1,解得a=﹣1,直线的斜率为﹣1,该直线的倾斜角为:.故选:D.【点评】本题考查直线的倾斜角以及直线的斜率的关系,抛物线的简单性质的应用,考查计算能力.7.【答案】B【解析】试题分析:根据()a aβααβ⋅=可知,B正确。
高二数学第一次月考试题高二数学第一次月考试题第一部分:选择题(每小题5分,共计50分)1.设函数f(x) = 2x + 3,g(x) = x^2 - 4x + 1,则f(g(2))的值为() A.-3 B. 3 C. 7 D. 112.已知函数f(x) = x^2 - 2x - 3,则方程f(x) = 0的根为() A. 1和-3B. 3和-1C. 1和3D. -1和33.若两个正整数x和y满足x^2 - y^2 = 48,则x - y的值为() A. 4 B.6 C. 8 D. 124.已知函数f(x) = 2x + 5,g(x) = 3x - 1,则f(g(x))的值为() A. 6x+ 14 B. 6x - 4 C. 6x + 4 D. 6x - 145.若函数f(x) = x^2 + kx + 8与函数g(x) = 2x^2 - 3x - 4相等,则k的值为() A. -4 B. -2 C. 2 D. 46.若两个正整数x和y满足x + y = 7,x - y = 3,则x的值为() A. 5B. 4C. 3D. 27.已知函数f(x) = x^2 - 2x - 3,g(x) = x + 1,则f(g(2))的值为() A.6 B. 3 C. 0 D. -38.若函数f(x) = x^2 - 5x + 6与函数g(x) = x - 2相等,则x的值为()A. 6B. 4C. 2D. 19.若两个正整数x和y满足x^2 + y^2 = 34,x - y = 2,则x + y的值为() A. 8 B. 9 C. 10 D. 1110.设函数f(x) = 2x + 3,g(x) = x^2 - 2x + 1,则f(g(1))的值为() A.-1 B. 1 C. 3 D. 5第二部分:填空题(每小题5分,共计50分)1.函数f(x) = x^2 - 4x - 3的图像开口向上,顶点的坐标为()。
孝义市高中2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知等差数列{a n}满足2a3﹣a+2a13=0,且数列{b n} 是等比数列,若b8=a8,则b4b12=()A.2 B.4 C.8 D.162.设函数,则有()A.f(x)是奇函数,B.f(x)是奇函数,y=b xC.f(x)是偶函数D.f(x)是偶函数,3.数列﹣1,4,﹣7,10,…,(﹣1)n(3n﹣2)的前n项和为S n,则S11+S20=()A.﹣16 B.14 C.28 D.304.已知函数f(x)=﹣log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2) C.(2,4) D.(4,+∞)5.=()A.2 B.4 C.πD.2π6.已知f(x)是R上的偶函数,且在(﹣∞,0)上是增函数,设,b=f(log43),c=f(0.4﹣1.2)则a,b,c的大小关系为()A.a<c<b B.b<a<c C.c<a<b D.c<b<a7.设数集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,如果把b ﹣a叫做集合{x|a≤x≤b}的“长度”,那么集合M∩N的“长度”的最小值是()A.B.C.D.8.已知函数f(2x+1)=3x+2,且f(a)=2,则a的值等于()A.8 B.1 C.5 D.﹣19. 函数f (x )=Asin (ωx+θ)(A >0,ω>0)的部分图象如图所示,则f ()的值为( )A .B .0C .D .10.线段AB 在平面α内,则直线AB 与平面α的位置关系是( )A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对11.棱长都是1的三棱锥的表面积为( )A .B .C .D .12.甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下: 甲校:乙校:则x ,y A 、12,7 B 、 10,7 C 、 10,8 D 、 11,9二、填空题13.在ABC ∆中,已知角C B A ,,的对边分别为c b a ,,,且B c C b a sin cos +=,则角B 为 .14.已知1sin cos 3αα+=,(0,)απ∈,则sin cos 7sin 12ααπ-的值为 .15.i是虚数单位,化简:= .16.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 . 17.已知向量(1,),(1,1),a x b x ==-若(2)a b a -⊥,则|2|a b -=( ) A .2 B .3 C .2 D【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.18.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧面11BCC B 内一点,若1AP 平行于平面AEF ,则线段1A P 长度的取值范围是_________.三、解答题19.在某班级举行的“元旦联欢会”有奖答题活动中,主持人准备了两个问题,规定:被抽签抽到的答题同学,答对问题可获得分,答对问题可获得200分,答题结果相互独立互不影响,先回答哪个问题由答题同学自主决定;但只有第一个问题答对才能答第二个问题,否则终止答题.答题终止后,获得的总分决定获奖的等次.若甲是被抽到的答题同学,且假设甲答对问题的概率分别为.(Ⅰ)记甲先回答问题再回答问题得分为随机变量,求的分布列和数学期望; (Ⅱ)你觉得应先回答哪个问题才能使甲的得分期望更高?请说明理由.20.已知函数()2ln f x x bx a x =+-.(1)当函数()f x 在点()()1,1f 处的切线方程为550y x +-=,求函数()f x 的解析式; (2)在(1)的条件下,若0x 是函数()f x 的零点,且()*0,1,x n n n N ∈+∈,求的值;(3)当1a =时,函数()f x 有两个零点()1212,x x x x <,且1202x x x +=,求证:()00f x '>.21.设f (x )=x 2﹣ax+2.当x ∈,使得关于x 的方程f (x )﹣tf (2a )=0有三个不相等的实数根,求实数t 的取值范围.22.如图,在Rt △ABC 中,∠EBC=30°,∠BEC=90°,CE=1,现在分别以BE ,CE 为边向Rt △BEC 外作正△EBA 和正△CED .(Ⅰ)求线段AD 的长;(Ⅱ)比较∠ADC 和∠ABC 的大小.23.如图,三棱柱ABC﹣A1B1C1中,AB=AC=AA1=BC1=2,∠AA1C1=60°,平面ABC1⊥平面AA1C1C,AC1与A1C相交于点D.(1)求证:BD⊥平面AA1C1C;(2)求二面角C1﹣AB﹣C的余弦值.24.化简:(1).(2)+.孝义市高中2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由等差数列的性质可得a3+a13=2a8,即有a82=4a8,解得a8=4(0舍去),即有b8=a8=4,由等比数列的性质可得b4b12=b82=16.故选:D.2.【答案】C【解析】解:函数f(x)的定义域为R,关于原点对称.又f(﹣x)===f(x),所以f(x)为偶函数.而f()===﹣=﹣f(x),故选C.【点评】本题考查函数的奇偶性,属基础题,定义是解决该类问题的基本方法.3.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.4.【答案】C【解析】解:∵f(x)=﹣log2x,∴f(2)=2>0,f(4)=﹣<0,满足f(2)f(4)<0,∴f(x)在区间(2,4)内必有零点,故选:C5.【答案】A【解析】解:∵(﹣cosx﹣sinx)′=sinx﹣cosx,∴==2.故选A.6.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C7.【答案】C【解析】解:∵集M={x|m≤x≤m+},N={x|n﹣≤x≤n},P={x|0≤x≤1},且M,N都是集合P的子集,∴根据题意,M的长度为,N的长度为,当集合M∩N的长度的最小值时,M 与N 应分别在区间[0,1]的左右两端,故M ∩N 的长度的最小值是=.故选:C .8. 【答案】B【解析】解:∵函数f (2x+1)=3x+2,且f (a )=2,令3x+2=2,解得x=0, ∴a=2×0+1=1. 故选:B .9. 【答案】C【解析】解:由图象可得A=,=﹣(﹣),解得T=π,ω==2.再由五点法作图可得2×(﹣)+θ=﹣π,解得:θ=﹣,故f (x )=sin (2x ﹣),故f ()=sin (﹣)=sin=,故选:C .【点评】本题主要考查由函数y=Asin (ωx+θ)的部分图象求函数的解析式,属于中档题.10.【答案】A 【解析】解:∵线段AB 在平面α内, ∴直线AB 上所有的点都在平面α内, ∴直线AB 与平面α的位置关系: 直线在平面α内,用符号表示为:AB ⊂α故选A .【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.11.【答案】A【解析】解:因为四个面是全等的正三角形,则.故选A12.【答案】B=60人,【解析】1从甲校抽取110× 1 2001 200+1 000=50人,故x=10,y=7.从乙校抽取110× 1 0001 200+1 000二、填空题π13.【答案】4【解析】考点:正弦定理.【方法点晴】本题考查正余弦定理,根据正弦定理,将所给的含有边和角的等式化为只含有角的等式,再利用180,消去多余的变量,从而解出B角.三角函数题目在高考中的难度逐渐增加,以考查三三角形的三角和是︒角函数的图象和性质,以及三角形中的正余弦定理为主,在2016年全国卷()中以选择题的压轴题出现.14.【答案】3【解析】7sinsin sin cos cos sin 12434343πππππππ⎛⎫=+=+ ⎪⎝⎭=,sincos 73sin 12ααπ-∴==,故答案为3.考点:1、同角三角函数之间的关系;2、两角和的正弦公式.15.【答案】 ﹣1+2i .【解析】解: =故答案为:﹣1+2i .16.【答案】 [1,)∪(9,25] .【解析】解:∵集合,得 (ax ﹣5)(x 2﹣a )<0,当a=0时,显然不成立,当a >0时,原不等式可化为,若时,只需满足,解得;若,只需满足 ,解得 9<a ≤25, 当a <0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.17.【答案】A【解析】18.【答案】⎣⎦【解析】考点:点、线、面的距离问题.【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题.三、解答题19.【答案】【解析】【知识点】随机变量的期望与方差随机变量的分布列【试题解析】(Ⅰ)的可能取值为.,,分布列为:(Ⅱ)设先回答问题,再回答问题得分为随机变量,则的可能取值为.,,,分布列为:.应先回答所得分的期望值较高.20.【答案】(1)()26ln f x x x x =--;(2)3n =;(3)证明见解析. 【解析】试题解析: (1)()2af'x x b x =+-,所以(1)251(1)106f'b a b f b a =+-=-=-⎧⎧⇒⎨⎨=+==⎩⎩, ∴函数()f x 的解析式为2()6ln (0)f x x x x x =-->;(2)22626()6ln '()21x x f x x x x f x x x x--=--⇒=--=,因为函数()f x 的定义域为0x >,令(23)(2)3'()02x x f x x x +-==⇒=-或2x =, 当(0,2)x ∈时,'()0f x <,()f x 单调递减,当(2,)x ∈+∞时,'()0f x >,函数()f x 单调递增, 且函数()f x 的定义域为0x >,(3)当1a =时,函数2()ln f x x bx x =+-,21111()ln 0f x x bx x =+-=,22222()ln 0f x x bx x =+-=,两式相减可得22121212()ln ln 0x x b x x x x -+--+=,121212ln ln ()x x b x x x x -=-+-. 1'()2f x x b x =+-,0001'()2f x x b x =+-,因为1202x x x +=,所以12120121212ln ln 2'()2()2x x x x f x x x x x x x +-=⋅+-+--+ 212121221221122112211121ln ln 2()211ln ln ln 1x x x x x x x x x x x x x x x x x x x x x x ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤--⎝⎭⎢⎥=-=--=-⎢⎥⎢⎥-+-+-⎣⎦+⎢⎥⎢⎥⎣⎦设211xt x =>,2(1)()ln 1t h t t t -=-+,∴2222214(1)4(1)'()0(1)(1)(1)t t t h t t t t t t t +--=-==>+++, 所以()h t 在(1,)+∞上为增函数,且(1)0h =,∴()0h t >,又2110x x >-,所以0'()0f x >.考点:1、导数几何意义及零点存在定理;2、构造函数证明不等式.【方法点睛】本题主要考查导数几何意义及零点存在定理、构造函数证明不等式,属于难题.涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.21.【答案】【解析】设f(x)=x2﹣ax+2.当x∈,则t=,∴对称轴m=∈(0,],且开口向下;∴时,t取得最小值,此时x=9∴税率t的最小值为.【点评】此题是个指数函数的综合题,但在求解的过程中也用到了构造函数的思想及二次函数在定义域内求最值的知识.考查的知识全面而到位!22.【答案】【解析】解:(Ⅰ)在Rt△BEC中,CE=1,∠EBC=30°,∴BE=,在△ADE中,AE=BE=,DE=CE=1,∠AED=150°,由余弦定理可得AD==;(Ⅱ)∵∠ADC=∠ADE+60°,∠ABC=∠EBC+60°,∴问题转化为比较∠ADE与∠EBC的大小.在△ADE中,由正弦定理可得,∴sin∠ADE=<=sin30°,∴∠ADE<30°∴∠ADC<∠ABC.【点评】本题考查余弦定理的运用,考查正弦定理,考查学生分析解决问题的能力,正确运用正弦、余弦定理是关键.23.【答案】【解析】解:(1)∵四边形AA1C1C为平行四边形,∴AC=A1C1,∵AC=AA1,∴AA1=A1C1,∵∠AA1C1=60°,∴△AA1C1为等边三角形,同理△ABC1是等边三角形,∵D为AC1的中点,∴BD⊥AC1,∵平面ABC1⊥平面AA1C1C,平面ABC1∩平面AA1C1C=AC1,BD⊂平面ABC1,∴BD⊥平面AA1C1C.(2)以点D为坐标原点,DA、DC、DB分别为x轴、y轴、z轴,建立空间直角坐标系,平面ABC1的一个法向量为,设平面ABC的法向量为,由题意可得,,则,所以平面ABC的一个法向量为=(,1,1),∴cosθ=.即二面角C1﹣AB﹣C的余弦值等于.【点评】本题在三棱柱中求证线面垂直,并求二面角的平面角大小.着重考查了面面垂直的判定与性质、棱柱的性质、余弦定理、二面角的定义及求法等知识,属于中档题.24.【答案】【解析】解(1)原式=======﹣1.(2)∵tan(﹣α)=﹣tanα,sin(﹣α)=cosα,cos(α﹣π)=cos(π﹣α)=﹣sinα,tan(π+α)=tanα,∴原式=+=+==﹣=﹣1.【点评】本题考查二倍角公式的应用,诱导公式的应用,三角函数化简求值,考查计算能力.。
2017-2018学年高二年级第一次月考数学试题1. 已知两点,则直线的斜率是( )A. B. C. D.【答案】D【解析】根据直线的斜率公式,,所以应该选D.2. 下列说法中正确的是( )A. 平行于同一直线的两个平面平行B. 垂直于同一直线的两个平面平行C. 平行于同一平面的两条直线平行D. 垂直于同一平面的两个平面平行【答案】B【解析】平行于同一直线的两个平面平行可以相交,故不正确,垂直于同一直线的两个平面平行正确,平行于同一平面的两条直线平行错误,因为也可以相交也可以是异面直线,垂直于同一平面的两个平面平行错误,因为也可以相交,故选B.3. 用一个平面去截一个正四棱柱(底面是正方形,侧棱与底面垂直),截法不同,所得截面的形状不一定相同,在各种截法中,边数最多的截面的形状为()A. 四边形B. 五边形C. 六边形D. 八边形【答案】C【解析】分析:四棱柱有六个面,用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形.因此最多可以截出六边形.解答:解:∵用平面去截四棱柱时最多与六个面相交得六边形,最少与三个面相交得三角形,∴最多可以截出六边形,即截面的边数最多是6.故选C.点评:本题考查四棱柱的截面.考查的知识点为:截面经过四棱柱的几个面,得到的截面形状就是几边形.4. 用斜二测画法画一个水平放置的平面图形为如下图的一个正方形,则原来图形的形状是( )A. B. C. D.【答案】A【解析】试题分析:根据斜二测画法知,平行于x轴的线段长度不变,平行于y的线段变为原来的,∵O′C′=1,O′A′=,∴OC=O′C′=1,OA=2O′A′=;由此得出原来的图形是A.考点:斜二测画法5. 圆锥的底面半径为,侧面展开图是半圆面,那么此圆锥的侧面积是()A. B. C. D.【答案】A【解析】若圆锥的侧面展开图是半圆,则圆锥的母线长为底面半径的2倍,6. 为了得到函数的图像,只需把函数的图像()A. 向左平移个单位长度B. 向右平移个单位长度C. 向左平移个单位长度D. 向右平移个单位长度【答案】D【解析】因为,所以只需向右平移个单位长度即可得到,故选D.7. 某产品的广告费用与销售额的统计数据如下表:广告费用销售额根据上表可得回归方程,其中约等于,据此模型预测广告费用为万元时,销售额约为()A. 万元B. 万元C. 万元D. 万元【答案】D【解析】由上表得:,所以回归方程过点,代入方程得,即回归直线方程为,当时,代入方程得,故选D.8. 棱锥的中截面(过棱锥高的中点且与高垂直的截面)将棱锥的侧面分成两部分,这两部分的面积的比为()A. B. C. D.【答案】B【解析】因为中截面截棱锥为一个小棱锥和一个棱台,其中小棱锥的底面边长与棱长与原棱锥底面边长与棱长之比为,所以小棱锥侧面三角形与原棱锥侧面三角形的面积之比为,所以小棱锥与原棱锥侧面积之比为,因此小棱锥与棱台侧面积之比为,故选B.9. 若过定点的直线与直线的交点位于第一象限,则直线的倾斜角的取值范围是()A. B. C. D.【答案】B【解析】设直线的方程为(斜率不存在时不合题意),联立方程组得解得:,,因为交点在第一象限,所以,解得,即,所以,故选B.10. 执行如图所示程序框图,若输出值为,则实数等于()A. B. C. D.【答案】D【解析】模拟执行程序,可得n=1,x=a,满足条件n≤3,执行循环体,x=2a+1,n=2满足条件n≤3,执行循环体,x=4a+3,n=3,满足条件n≤3,执行循环体,x=8a+7,n=4,不满足条件n≤3,退出循环,输出x=8a+7.令8a+7=47,解得a=5.故选D.11. 若实数满足约束条件,则的最大值是()A. B. C. D.【答案】D【解析】作出约束条件表示的可行域如图:由得,由可行域可知当直线经过点A时,直线截距最大,即z最大,由解得.∴z的最大值.12. 在体积为的斜三棱柱中,是上的一点,的体积为,则三棱锥的体积为()A. B. C. D.【答案】C【解析】∵三棱柱ABC-A1B1C1的体积V=15,三棱锥S-ABC的体积与三棱锥S-A1B1C1的体积和为,又∵三棱锥S-ABC的体积为3,∴三棱锥S-A1B1C1的体积2,故选C.【点评】本题考查的知识点是棱柱的体积,棱锥的体积,其中分析出棱锥S-ABC的体积与三棱锥S-A1B1C1的体积和为,V(其中V为斜三棱柱ABC-A1B1C1的体积),是解答本题的关键.13. 如图,点分别为正方体的面,面的中心,则四边形在该正方体的面上的射影可能是__________.(要求:把可能的图的序号都填上)【答案】②③【解析】因为正方体是对称的几何体,所以四边形BFD1E在该正方体的面上的射影可分为:上下、左右、前后三个方向的射影,也就是在面ABCD、面ABB1A1、面ADD1A1上的射影.四边形BFD1E在面ABCD和面ABB1A1上的射影相同,如图②所示;四边形BFD1E在该正方体对角面的ABC1D1内,它在面ADD1A1上的射影显然是一条线段,如图③所示.故②③正确,答案为②③【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.本题是根据三视图投影规则来选择正确的视图,三视图是高考的新增考点,不时出现在高考试题中,应予以重视.14. 设向量,如果向量与平行,则__________.【答案】【解析】因为,所以,,又向量与平行,所以,解得.故,所以.故填.【点评】平行问题是一个重要的知识点,在高考题中常常出现,常与向量的模、向量的坐标表示等联系在一起,要特别注意垂直与平行的区别.若,,则,.是常见基础题.15. 某几何体的三视图如下图(单位:)则该几何体的表面积是__________.【答案】【解析】根据三视图得出:该几何体是三棱锥,AB=2,BC=3,DB=5,CD=4,AB⊥面BCD,BC⊥CD,∴几何体的表面积是,故填.16. 定义在上的奇函数是减函数,且满足,则实数取值范围是__________.【答案】..................17. 已知在中,分别是角的对边,且(1)求角;(2)当边长取得最小值时,求的面积;【答案】(1);(2)【解析】试题分析:(1)利用正弦定理化简表达式,再根据两角和与差的三角函数化简求解即可求角B;(2)利用余弦定理求边长b的最小值.推出b的表达式,利用基本不等式求解即可求出,然后利用三角形面积公式求出.试题解析:(1)因为,所以所以,所以,所以在中,,故,又因为,所以(2)由(1)求解,得,所以又,所以,又因为,所以,所以,又因为,故的最小值为,此时18. 如图,是正方形,是正方形的中心,底面,是的中点.求证:(1)平面;(2)平面平面;【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)证明线与面平行,可运用线与面平行的判定定理,转化为证线与平面内的线平行来证。
高二数学考试时间:120分钟 试卷满分:150分)一、选择题 :(本大题共12小题 ,每小题5分,共60分 )1. 已知直线经过点A(0,3)和点B (1,2),则直线AB 的斜率为( )A. -1B.1C. 3D. 不存在 2. 若a ∥α,⊂b α,则a 和b 的关系是( )A.平行 B .相交 C .平行或异面 D .以上都不对 3.如图⑴、⑵、⑶、⑷为四个几何体的三视图,根据三视图可以判断这四个几何体依次分别为( )A .三棱柱、四棱锥、圆锥、圆台B .三棱台、三棱锥、圆锥、圆台C .三棱台、三棱柱、圆锥、圆台D .三棱柱、三棱台、圆锥、圆台4. △ABC 是边长为1的正三角形,那么△ABC 的斜二测平面直观图C B A '''∆的面积为( )A .43 B .83 C .166D .86 5.已知直线01)1(=-+-y x a a 与直线012=++ay x 垂直,则实数a 的值等于( )A.21 B . 23 C . 0,23 D .0,21 6.设正方体的表面积为242cm ,一个球内切于该正方体, 那么这个球的体积是 ( )(4)(3)(1)俯视图 俯视图 俯视图侧视图侧视图侧视图侧视图正视正视图正视图正视图(2)俯视图·A. π63cm B .π343cm C .π383cm D .π3323cm7.在空间四边形ABCD 的各边AB ,BC ,CD ,DA 上依次取点E ,F ,G ,H ,若EH 、FG 所在直线相交于点P ,则( )A .点P 必在直线AC 上B .点P 必在直线BD 上C .点P 必在平面DBC 外D .点P 必在平面ABC 内 8.在如图所示的正方体中,M 、N 分别为棱BC 和棱CC 1的中点, 则异面直线AC 和MN 所成的角为( )A .30°B .45°C .90°D .60° 9. 设m 、n 是两条不同的直线,,,αβγ是三个不同的平面,给出下列四个命题: ①若,,则 ②若,,,则③若,,则 ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的个数是 ( ) A. 1个B. 2个C. 3个D. 4个10.已知直线m 的倾斜角是直线0333=--y x 的倾斜角的2倍,且直线m 在x 轴上的截距是-3,则直线m 的方程是( )A .0333=+-y xB .0333=+-y xC .033=--y xD .033=+-y x 11.如果AC>0,BC>0,那么直线Ax+By+C=0不通过( )A .第一象限B .第二象限C .第三象限D .第四象限12. 如图所示,已知AB ⊥平面BCD ,BC ⊥CD ,则图中互相垂直的平面有( )A. 0对 B .1对 C .2对 D. 3对二、填空题(本大题共4小题,每题5分,共20分) 13.直线y=2x 与直线x+y=3的交点坐标是 . 14. 已知某三棱锥的三视图(单位:cm)如图所示,BDCA1 D 1 B 1 A 1M DB A BDCA则该三棱锥的体积等于 __________cm 3.15. 过点(1,3)且在两坐标轴上的截距相等的直线的方程为 16.已知△ABC 为直角三角形,且090=∠ACB ,AB=8,点P 是平面ABC 外一点,若PA=PB=PC ,且P O⊥平面ABC ,O为垂足,则OC=__________________. 三、解答题(本大题共6小题,共70分) 17.(本题10分)已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图是一个底边为6,高为4的等腰三角形,求该几何体的表面积.18.(本题12分)求经过直线L 1:3x + 4y – 2 = 0与直线L 2:x – 3y + 8 = 0的交点M ,且满足下列条件的直线方程 (1)与直线2x + y + 5 = 0平行 ; (2)与直线2x + y + 5 = 0垂直;19.(本题12分)如图,在三棱锥S-ABC 中, ABC ∆为直角三角形,且︒=∠90ACB ,SC AD ABC SA ⊥⊥,平面. 求证:AD ⊥平面SBC .20.(本题12分)如图,四棱锥S- ABCD 中,底面ABCD 为平行四边形,M 是SB 上一点,试探求点M 的位置,使SD//平面MAC ,并证明.答:点M 的位置是 . 证明:21.(本题12分)过点P(2,1)的直线l 交x 轴、y 轴正半轴于A 、B 两点,求使:△AOB 面积最小时l 的方程BDASSDCBA(俯视图)22.(本题12分)已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且(01).AE AFAC ADλλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ;(Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ?孝义三中2013-2014学年上学期第一次月考高二数学答题纸一.选择题(每小题5分,共60分)二.填空题(每小题5分,共20分)13. __________ 14. _____ 15.__________________ 16.__________________三.解答题(本大题共6小题,共70分。
孝义市实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________姓名__________ 分数__________一、选择题1. 定义新运算⊕:当a ≥b 时,a ⊕b=a ;当a <b 时,a ⊕b=b 2,则函数f (x )=(1⊕x )x ﹣(2⊕x ),x ∈[﹣2,2]的最大值等于( )A .﹣1B .1C .6D .122. “x 2﹣4x <0”的一个充分不必要条件为( )A .0<x <4B .0<x <2C .x >0D .x <43. 设偶函数f (x )满足f (x )=2x ﹣4(x ≥0),则{x|f (x ﹣2)<0}=( )A .{x|x <﹣2或x >4}B .{x|x <0或x >4}C .{x|x <0或x >6}D .{x|0<x <4}4. 设函数f (x )=则不等式f (x )>f (1)的解集是( )A .(﹣3,1)∪(3,+∞)B .(﹣3,1)∪(2,+∞)C .(﹣1,1)∪(3,+∞)D .(﹣∞,﹣3)∪(1,3)5. 如图所示,网格纸表示边长为1的正方形,粗实线画出的是某几何体的三视图,则该几何体的体积为()A .4B .8C .12D .20【命题意图】本题考查三视图、几何体的体积等基础知识,意在考查空间想象能力和基本运算能力.6. 已知奇函数是上的增函数,且,则的取值范围是( )()f x [1,1]-1(3)()(0)3f t f t f +->t A 、 B 、 C 、 D 、1163t t ⎧⎫-<≤⎨⎬⎩⎭2433t t ⎧⎫-≤≤⎨⎬⎩⎭16t t ⎧⎫>-⎨⎬⎩⎭2133t t ⎧⎫-≤≤⎨⎬⎩⎭7. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( )A .13B .15C .12D .118. 如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是( )A .B .C .D .9. 若方程C :x 2+=1(a 是常数)则下列结论正确的是()A .∀a ∈R +,方程C 表示椭圆B .∀a ∈R ﹣,方程C 表示双曲线C .∃a ∈R ﹣,方程C 表示椭圆D .∃a ∈R ,方程C 表示抛物线10.设是虚数单位,则复数在复平面内所对应的点位于( )i 21ii-A .第一象限B .第二象限C .第三象限D .第四象限11.设命题p :函数y=sin (2x+)的图象向左平移个单位长度得到的曲线关于y 轴对称;命题q :函数y=|2x ﹣1|在[﹣1,+∞)上是增函数.则下列判断错误的是( )A .p 为假B .¬q 为真C .p ∨q 为真D .p ∧q 为假12.设函数的集合,平面上点的集合,则在同一直角坐标系中,P 中函数的图象恰好经过Q 中两个点的函数的个数是A4B6C8D10二、填空题13.已知直线l :ax ﹣by ﹣1=0(a >0,b >0)过点(1,﹣1),则ab 的最大值是 .14.抛物线的焦点为,经过其准线与轴的交点的直线与抛物线切于点,则24x y =F y Q P FPQ ∆外接圆的标准方程为_________.15.直线ax+by=1与圆x 2+y 2=1相交于A ,B 两点(其中a ,b 是实数),且△AOB 是直角三角形(O 是坐标原点),则点P (a ,b )与点(1,0)之间距离的最小值为 .16.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号) 17.若在圆C :x 2+(y ﹣a )2=4上有且仅有两个点到原点O 距离为1,则实数a 的取值范围是 . 18.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则ba的值为 ▲ .三、解答题19.已知函数(a ≠0)是奇函数,并且函数f (x )的图象经过点(1,3),(1)求实数a ,b 的值;(2)求函数f (x )的值域.20.已知函数f (x )=ax 2+bx+c ,满足f (1)=﹣,且3a >2c >2b .(1)求证:a >0时,的取值范围;(2)证明函数f (x )在区间(0,2)内至少有一个零点;(3)设x 1,x 2是函数f (x )的两个零点,求|x 1﹣x 2|的取值范围.21.已知函数f(x)=.(1)求f(f(﹣2));(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(﹣4,0)上的值域.22.(本小题满分12分)设f(x)=-x2+ax+a2ln x(a≠0).(1)讨论f(x)的单调性;(2)是否存在a>0,使f(x)∈[e-1,e2]对于x∈[1,e]时恒成立,若存在求出a的值,若不存在说明理由.23.已知函数,且.(Ⅰ)求的解析式; (Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.24.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO 图案是多边形,其ABEFMN 设计创意如下:在长、宽的长方形中,将四边形沿直线翻折到(点4cm 1cm ABCD DFEC EF MFEN F 是线段上异于的一点、点是线段上的一点),使得点落在线段上.AD D E BC N AD (1)当点与点重合时,求面积;N A NMF ∆(2)经观察测量,发现当最小时,LOGO 最美观,试求此时LOGO 图案的面积.2NF MF -孝义市实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:由题意知当﹣2≤x≤1时,f(x)=x﹣2,当1<x≤2时,f(x)=x3﹣2,又∵f(x)=x﹣2,f(x)=x3﹣2在定义域上都为增函数,∴f(x)的最大值为f(2)=23﹣2=6.故选C.2.【答案】B【解析】解:不等式x2﹣4x<0整理,得x(x﹣4)<0∴不等式的解集为A={x|0<x<4},因此,不等式x2﹣4x<0成立的一个充分不必要条件,对应的x范围应该是集合A的真子集.写出一个使不等式x2﹣4x<0成立的充分不必要条件可以是:0<x<2,故选:B.3.【答案】D【解析】解:∵偶函数f(x)=2x﹣4(x≥0),故它的图象关于y轴对称,且图象经过点(﹣2,0)、(0,﹣3),(2,0),故f(x﹣2)的图象是把f(x)的图象向右平移2个单位得到的,故f(x﹣2)的图象经过点(0,0)、(2,﹣3),(4,0),则由f(x﹣2)<0,可得0<x<4,故选:D.【点评】本题主要考查指数不等式的解法,函数的图象的平移规律,属于中档题. 4. 【答案】A【解析】解:f (1)=3,当不等式f (x )>f (1)即:f (x )>3如果x <0 则 x+6>3可得 x >﹣3,可得﹣3<x <0.如果 x ≥0 有x 2﹣4x+6>3可得x >3或 0≤x <1综上不等式的解集:(﹣3,1)∪(3,+∞)故选A . 5. 【答案】C【解析】由三视图可知该几何体是四棱锥,且底面为长,宽的矩形,高为3,所以此四棱锥体积为62,故选C.1231231=⨯⨯6. 【答案】A 【解析】考点:函数的性质。
山西省孝义市2017-2018学年高二数学上学期第一次月考试题(扫描
版)
尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。
文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。
This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。
2017---2018年度第一学期高二年级期末考试文科数学参考答案1---5 BABCD 6---10 AADDC 11---12 CA13、[]21,3,1x x ∃∈-> 14、4 15、3 1617、解:(1)因为22232cos 41002210805b a c ac B =+-=+-⨯⨯⨯=所以b = ………………………………6分(2)因为3cos 5B =,所以4sin 5B = 由正弦定理sin sin b c B C=,得sin C =12分 18、解:(1)当2n ≥时,由1111111222n n n n n n a S S ---=--+==………………3分 当1n =时,111122a == ()*n N ∈.………………………………4分 所以12n n a = ………………………………5分 (2)由(1)及12log n n b a = ()*n N ∈,可知121log 2nn b n ⎛⎫== ⎪⎝⎭,…………………7分 所以()1111111n n b b n n n n +==-++, …………………………9分 故2231111n n n n T b b b b b b +=+++= 1111112231n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦1111n n n =-=++. …………………………12分 19. (1)证明:∵直三棱柱侧面为矩形,且1AA AC =,∴四边形11ACC A 为正方形,………………………………2分∴11AC AC ⊥,∵11BC AC ⊥,1AC ⊆平面1ABC ,1BC ⊆平面1ABC ,∴1AC ⊥平面1ABC ………………………………4分 ∵1AC ⊆平面11ACC A ∴平面1ABC ⊥平面11ACC A ; ………………………………6分(2)解:分别取11,BB AA 的中点,E F ,连接,,EF DE DF 得平面∥平面, 所以DE ‖平面1ABC ………………………………8分由∴1AC ⊥平面1ABC ,知1A C AB ⊥,又1AB AA ⊥∴AB ⊥平面11ACC A ∴90BAC ∠=∴11190B A C ∠= ∴ 1111A C A B ⊥又111AC AA ⊥,∴11A C ⊥平面11ABB A …………………………………………10分 ∴11111112323E ABC C ABE V V --==⋅⋅⋅⋅= ………………………………12分 20、解:(1)过点(,0),(0,)c b 的直线方程为0bx cy bc +-=, …………………2分 则原点O 到该直线的距离2bc c d a ===, 得2a b =,……………4分解得离心率c a =. ………………………………5分 (2)由(1)知,椭圆E 的方程为22244x y b +=. ①依题意,圆心(2,1)M -是线段AB 的中点,且AB =易知,AB 与x 轴不垂直,设其方程为(2)1y k x =++,代入①得2222(14)8(21)4(21)40k x k k x k b +++++-= ………………………………8分设11(,)A x y ,22(,)B x y由124x x +=-,得28(21)414k k k +-=-+,解得12k =. ………………………………10分于是12AB x x =-=23b =.故椭圆E 的方程为221123x y +=. ………………………………12分 21.【解析】(Ⅰ)()(1)x g x a x =-+e ,所以()(1)xg x a '=-+e .当0x >时,e 1x >,故有:当11a +≤,即0a ≤时,(0)x ∈+∞,,()0g x '>;……………………3分当11a +>,即0a >时,e 1x >,令()0g x '>,得ln(1)x a >+;令()0g x '<,得0ln(1)x a <<+,综上,当0a ≤时,()g x 在(0)+∞,上是增函数;……………………5分当0a >时,()g x 在(0ln(1))a +,上是减函数,在(ln(1))a ++∞,上是增函数.……………6分(Ⅱ)证明:设()()1e 1xh x f x x x =--=--,则()e 1x h x '=- ………………………………………………………………………………8分所以当(),0x ∈-∞时,'()0h x <;()h x 在(),0-∞上是减函数,当()0,x ∈+∞时,'()0h x >,()h x 在()0,+∞上是增函数,所以()(0)0h x h ≥=,即证()1f x x ≥+ …………………………………………………………12分 22、选修4-4:坐标系与参数方程解:(Ⅰ)由2cos ρθ=得,22cos ρρθ=,所以222x y x += ……………………………4分 (Ⅱ)由已知,曲线C 经过变换后所得方程'C 的方程中为:2214x y +=。
2017-2018年度第一学期高二年级期末考试试题理科数学一、选择题:本大题共12个小题,每小题5分,共60分.1. 已知集合,,则()A. B. C. D.【答案】B【解析】集合,,则.故选B.2. “”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要【答案】A【解析】试题分析:根据不等式同向正数可乘性可得;但,不妨取,故“”是“”的必要不充分条件。
故A正确。
考点:充分必要条件。
3. 如图,矩形是水平放置的一个平面图形的直观图,其中,,则原图形的面积是()A. B. C. D.【答案】B【解析】由图可知矩形的面积为.原图形的面积是,则,解得.故选B.4. 表示两个不同的平面,表示既不在内也不在内的直线,存在以下三种情况:①;②;③.若以其中两个为条件,另一个为结论构成命题,则其中正确命题的个数为()A. 0B. 1C. 2D. 3【答案】C...........................5. 在中,,,,将绕直线旋转一周,所形成的几何体的体积是()A. B. C. D.【答案】D【解析】如图,绕直线旋转一周,,则所形成的几何体是以ACD为轴截面的圆锥中挖去一个以ABD为轴截面的校园追后剩余的部分.因为,,,所以.,所以.故选D.6. 已知直线的倾斜角为,直线经过点,,且,直线与直线平行,则()A. -4B. 0C. -2D. 2【答案】C【解析】∵l的斜率为−1,因为,所以的斜率为1,∴.由∥得,,得b=−2,所以,a+b=−2.故选C.7. 设实数满足不等式组,则的取值范围是()A. B. C. D.【答案】B【解析】作出不等式的可行域,如图所示:可以看作阴影部分内的点(x,y)与定点P(-4,0)连线的斜率,由图可知,AP的斜率最大,,x轴上的点与P连线斜率最小为0,所以.故选B.点睛:本题是常规的线性规划问题,线性规划问题常出现的形式有:①直线型,转化成斜截式比较截距,要注意前面的系数为负时,截距越大,值越小;②分式型,其几何意义是已知点与未知点的斜率;③平方型,其几何意义是距离,尤其要注意的是最终结果应该是距离的平方;④绝对值型,转化后其几何意义是点到直线的距离.8. 曲线与曲线有相同的()A. 长轴长B. 短轴长C. 离心率D. 焦距【答案】D【解析】曲线为椭圆,有中;曲线,即由,知,且焦点在x轴上,且椭圆的,即有两椭圆的焦距相同.故选D.9. 已知线段两端点的坐标分别为和,若直线与线段有交点,则实数的取值范围是()A. B. C. D.【答案】A【解析】线段两端点的坐标分别为和,若直线与线段有交点,即在直线的两侧,所以,解得:或.故选A.10. 当曲线与直线有公共点时,实数的取值范围是()A. B. C. D.【答案】C【解析】曲线可化简为:,即表示以(0,1)为圆心,为半径的上半圆.如图所示:当直线与半圆相切时,,由图可知,,当直线经过点时,.所以.故选C.点睛:本题主要考查直线与圆的位置关系以及求最值问题.解析几何中的最值问题一般有两种方法:一是几何意义,特别是用曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法.11. 是双曲线的右支上一点,分别是圆和上的点,则的最大值为()A. 12B. 13C. 14D. 15【答案】D【解析】双曲线中,∵a=6,b=8,c=10,∴F1(−10,0),F2(10,0),∵|PF1|−|PF2|=2a=12,∴|MP|⩽|PF1|+|MF1|,|PN|⩾|PF2|+|NF2|,∴−|PN|⩽−|PF2|+|NF2|,所以,|PM|−|PN|⩽|PF1|+|MF1|−|PF2|+|NF2|=12+1+2=15,故选D.12. 如图,在正方形中,分别是的中点,是的中点,现沿及把这个正方形折成一个几何体,使三点重合于点,这样,下列五个结论:①平面;②平面;③平面;④平面;⑤平面. 正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】∵在折叠过程中,始终有,即SG⊥GE,SG⊥GF,∴SG⊥平面EFG.因此①正确,则②不正确,由等腰三角形的对称性质可得:SD⊥EF,GD⊥EF,SD∩GD=D,可得EF⊥平面GSD,因此④正确,易知与不垂直,所以平面不正确,因此③不正确,由于SG⊥平面EFG,只有SG⊥,所以与SD不垂直,故平面不正确,因此⑤不正确.综上,正确的为①④故选:B.点睛:证明线与线垂直时,一般可都可将问题转化为证明线与包含另一条直线的平面垂直,而要证明线与平面垂直,又可将问题转化为证明线与线垂直,这样证明线线垂直,使用线面垂直的性质定理,证明线面垂直可用判定定理.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 命题“”的否定是__________.【答案】【解析】全称命题的否定为特称,所以命题“”的否定是:“”.故答案为:.14. 某四棱锥的三视图如图所示,则该三棱锥最长棱的长度为__________.【答案】3【解析】由三视图还原几何体得到三棱锥P-ABC,可将此三棱锥放入棱长为2的正方体内,如图所示,易知:AB=1,BC=.所以该三棱锥最长棱的长度为3.故答案为:3.点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示.(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.15. 过球表面上一点引三条长度相等的弦,且两两夹角都为,若,则该球的体积为__________.【答案】【解析】由条件A−BCD是正四面体,△BCD是正三角形,A,B,C,D为球上四点,球心O在正四面体中心如图所示,,CD的中点为E,为过点B,C,D截面圆圆心,则截面圆半径,正四面体A−BCD的高.∴截面BCD与球心的距离,在中,,解得.∴该球的体积为.故答案为:.16. 已知抛物线的焦点为,若点是该抛物线上的点,,线段的中点在抛物线的准线上的射影为,则的最大值为__________.【答案】【解析】设在准线上的射影点分别为Q、P,连接AQ、BQ由抛物线定义,得AF|=|AQ|且|BF|=|BP|在梯形ABPQ中根据中位线定理,得由勾股定理得|AB|2=a2+b2,配方得|AB|2=(a+b)2−2ab,又∵,∴得到.所以,即|MN||AB|的最大值为.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知点及圆.(1)若直线过点且被圆截得的线段长为,求的方程;(2)求过点的圆的弦的中点的轨迹方程.【答案】(1) 或;(2).【解析】试题分析:(1)直线与圆相交时,利用圆的半径,弦长的一半,圆心到直线的距离构成直角三角形的三边勾股定理求解;(2)求弦的中点的轨迹方程,首先设出动点坐标D(x,y),利用弦的中点与圆心的连线垂直于仙所在的直线得到动点的轨迹方程试题解析:(1)解法一:如图所示,AB=4,D是AB的中点,CD⊥AB,AD=2,AC=4,在Rt△ACD中,可得CD=2.设所求直线的斜率为k,则直线的方程为y-5=kx,即kx-y+5=0.由点C到直线AB的距离公式:=2,得k=.k=时,直线l的方程为3x-4y+20=0.又直线l的斜率不存在时,也满足题意,此时方程为x=0.∴所求直线的方程为3x-4y+20=0或x=0.(2)设过P点的圆C的弦的中点为D(x,y),则CD⊥PD,即(x+2,y-6)(x,y-5)=0,化简得所求轨迹方程为x2+y2+2x-11y+30=0.考点:1.轨迹方程;2.直线与圆相交的相关问题18. 在中,分别为内角的对边,设.(1)若且,求角的大小;(2)若,且,求的大小.【答案】(1);(2).【解析】试题分析:(1)由条件得,由正弦定理得,结合即可求解;(2)由条件可得,即,结合条件,利用余弦定理求解即可.试题解析:(1)由,得,∴,又由正弦定理,得,∵,∴,将其代入上式,得,整理得:,∴.∵角是三角形的内角,∴.(2)∵,∴,即,又由余弦定理,.19. 已知数列的前项和.(1)求数列的通项公式;(2)记,,求的前项和.【答案】(1);(2).【解析】试题分析:(1)当时,由,当时,,化简求解即可;(2)易得,,利用裂项相消法求和即可.试题解析:(1)当时,由当时,所以(2)由(1)及,可知,所以,故.点晴:本题主要考查等差数列的通项与求和公式,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.20. 在四棱锥中,,且,和都是边长为2的等边三角形,设在底面的投影为.(1)求证:是的中点;(2)证明:;(3)求二面角的余弦值.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】试题分析:(1),由底面,得,点为的外心,结合为是直角三角形即可证得;(2)由(1)知,点在底面的射影为点,点为中点,底面,得,再分析条件可证得,从而得面,从而得证;(3)以点为原点,以所在射线为轴,轴,轴建系,利用两个面的法向量求解二面角的余弦即可.试题解析:(1)证明:∵和都是等边三角形,∴,又∵底面,∴,则点为的外心,又因为是直角三角形,∴点为中点.(2)证明:由(1)知,点在底面的射影为点,点为中点,底面,∴,∵在中,,,∴,又且,∴,从而即,由,得面,∴.(3)以点为原点,以所在射线为轴,轴,轴建系如图,∵,则,,,,,,设面的法向量为,则,得,,取,得故.设面的法向量为,则,,取,则,故,于是,由图观察知为钝二面角,所以该二面角的余弦值为.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.21. 已知椭圆的左右焦点分别为,点为短轴的一个端点,,若点在椭圆上,则点称为点的一个“椭点”.(1)求椭圆的标准方程;(2)若直线与椭圆相交于、两点,且两点的“椭点”分别为,以为直径的圆经过坐标原点,试求的面积.【答案】(1);(2).【解析】试题分析:(1)由已知得,又,即可得方程;(2)设,则,由以为直径的圆经过坐标原点,得,即,由,消除整理得:,结合韦达定理可得,,讲条件带入求解即可.试题解析:(Ⅰ)由已知得,又,所以椭圆的方程为:;(Ⅱ)设,则,由以为直径的圆经过坐标原点,得,即(1)由,消除整理得:,由,得,而(2)(3)将(2)(3)代入(1)得:,即,又,原点到直线的距离,,把代入上式得,即的面积是为.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 以坐标原点为极点,轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为.(1)求曲线的普通方程;(2)将曲线的图像向左平移1个单位,再将所得图像上各点的横坐标伸长到原来的2倍,纵坐标不变,得到曲线的图像,若曲线与轴的正半轴及轴的正半轴分别交于点,在曲线上任取一点,且点在第一象限,求四边形面积的最大值.【答案】(1);(2).【解析】试题分析:(1)利用及求曲线的普通方程即可;试题解析:(Ⅰ)由得,,所以(Ⅱ)由已知,曲线经过变换后所得方程的方程中为:.所以,设.则,所以.当时,四边形的面积取最大值.23. 已知函数,.(1)解不等式;(2)若对任意,都存在,使得成立,求实数的取值范围.【答案】(1);(2)或.【解析】试题分析:(1),得,进而得解;(2)由题意知,分别求值域即可.试题解析:(Ⅰ)由,得(Ⅱ)由题意知又所以或。
2017 2018学年高二年级月考一数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知两点()()1,3,3,3--B A ,则直线AB 的斜率是( )A .3B .3-C .33 D .33- 2.下列说法中正确的是( )A .平行于同一直线的两个平面平行B .垂直于同一直线的两个平面平行C .平行于同一平面的两条直线平行D .垂直于同一平面的两个平面平行3.用一个平面去截一个正四棱柱(底面是正方形,侧棱与底面垂直),截法不同,所得截面的形状不一定相同,在各种截法中,边数最多的截面的形状为 ( )A .四边形B .五边形C .六边形D .八边形4.用斜二测画法画一个水平放置的平面图形为如下图的一个正方形,则原来图形的形状是( )A .B . C.D .5.圆锥的底面半径为a ,侧面展开图是半圆面,那么此圆锥的侧面积是 ( )A .22a πB .24a π C. 2a π D .23a π6.为了得到函数⎪⎭⎫ ⎝⎛-=32sin πx y 的图像,只需把函数x y 2sin =的图像( ) A .向左平移125π个单位长度 B .向右平移125π个单位长度 C.向左平移3π个单位长度 D .向右平移6π个单位长度 7.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+,其中ˆb 约等于9,据此模型预测广告费用为8万元时,销售额约为( )A .55万元B .57万元 C. 66万元 D .75万元8.棱锥的中截面(过棱锥高的中点且与高垂直的截面)将棱锥的侧面分成两部分,这两部分的面积的比为( )A . 4:1B . 3:1 C. 2:1 D .1:1 9.若过定点()3,0-P 的直线l 与直线232+-=x y 的交点位于第一象限,则直线l 的倾斜角的取值范围是( )A .⎪⎭⎫⎢⎣⎡3,6ππ B .⎪⎭⎫ ⎝⎛2,6ππ C.⎪⎭⎫ ⎝⎛2,3ππ D .⎥⎦⎤⎢⎣⎡2,3ππ 10.执行如图所示程序框图,若输出x 值为47,则实数a 等于( )A .2B .3 C. 4 D .511.若实数y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥+-011405201y x y x y x ,则y x z +=的最大值是( )A .6B .7 C. 8 D .912.在体积为15的斜三棱柱111C B A ABC -中,P 是C C 1上的一点,ABC P -的体积为3,则三棱锥111C B A P -的体积为( )A .1B .23 C. 2 D .3 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图,点F E ,分别为正方体的面11A ADD ,面11B BCC 的中心,则四边形E BFD 1在该正方体的面上的射影可能是 .(要求:把可能的图的序号都填上)14.设向量()()1,2,,1a b m =-= ,如果向量2a b + 与2a b - 平行,则a b ⋅= .15.某几何体的三视图如下图(单位:cm )则该几何体的表面积是2cm .16.定义在()5,2+-b b 上的奇函数()x f 是减函数,且满足()()01<++a f a f ,则实数a 取值范围是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知在ABC ∆中,c b a ,,分别是角C B A ,,的对边,且.2,2cos cos =+-=c a bc a B C (1)求角B ;(2)当边长b 取得最小值时,求ABC ∆的面积;18.如图,ABCD 是正方形,O 是正方形的中心,PO ⊥底面ABCD ,E 是PC 的中点.求证:(1) //PA 平面BDE ;(2)平面⊥PAC 平面BDE ;19.如图,在三棱锥ABC P -中,平面⊥PBC 平面ABC ,PBC ∆是边长为a 的正三角形,M BAC ACB ,30,9000=∠=∠是BC 的中点.(1)求证:AC PB ⊥;(2)求点M 到平面PCA 的距离.20.如图,已知⊥PA 平面ABCD ,ABCD 为矩形,N M ,分别为PC AB ,的中点.(1)求证:AB MN ⊥;(2)若045=∠PDA ,求证:平面⊥MND 平面PDC .21.已知各项均不相等的等差数列{}n a 的前五项和205=S ,且731,,a a a 成等比数列.(1)求数列{}n a 的通项公式;(2)若n T 为数列⎭⎬⎫⎩⎨⎧+11n n a a 的前n 项和,且存在*∈N n ,使得01≥-+n n a T λ成立,求实数λ的取值范围.22.在棱长为2正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,F 是棱AD 上的一点,E 是棱1CC 的中点.(1)如图1,若F 是棱AD 的中点,求异面直线OE 和1FD 所成角的余弦值;(2)如图2,若延长EO 与F D 1的延长线相交于点G ,求线段G D 1的长度.试卷答案一、选择题1-5: DBCAA 6-10: DDBBD 11、12:DC二、填空题13.②③ 14. 2515.14+⎪⎭⎫ ⎝⎛-9,21三、解答题17.解:(1) 因为b c a B C -=2cos cos ,所以.sin sin sin 2cos cos BC A B C -= 所以()B C A B C cos sin sin 2sin cos -=,所以()B A C B cos sin 2sin =+,所以.cos sin 2sin B A A =在ABC ∆中,0sin ≠A , 故21cos =B ,又因为()π,0∈B ,所以.3π=B (2)由(1)求解,得3π=B , 所以222222cos b a c ac B a c ac =+-=+-又2=+c a ,所以()ac ac c a b 34322-=-+=, 又因为22⎪⎭⎫ ⎝⎛+≤c a ac ,所以1≤ac ,所以12≥b , 又因为0>b ,故b 的最小值为1,此时.4360sin 11210=⨯⨯⨯=∆ABC S 18.证:(1) 连接EO ,在PAC ∆中 O 是AC 的中点,E 是PC 的中点.//AP OE ∴又⊂OE 平面⊄PA BDE ,平面BDE ,//PA ∴平面BDE ,(2)⊥PO 底面ABCD ,.BD PO ⊥∴又BD AC ⊥ ,且O PO AC = ,⊥∴BD 平面.PAC而⊂BD 平面BDE ,∴平面⊥PAC 平面.BDE19.解:(1) PBC ∆ 是边长为a 的正三角形,M 是BC 的中点 .BC PM ⊥∴又 平面⊥PBC 平面ABC ,且平面 PBC 平面BC ABC =, ⊥∴PM 平面ABC ,⊂AC 平面ABC ,.AC PM ⊥∴090=∠ACB ,即BC AC ⊥,又M BC PM = ,⊥∴AC 平面PBC ,⊂PB 平面PBC ,PB AC ⊥∴(2)PAC M ACM P V V --=,得a h 43=,即为点M 到平面PAC 的距离. 20.证明:(1) 设E 为PD 的中点,连接AE EN ,,N M , 分别为PC AB ,的中点,DC EN //∴且DC AM DC EN //,21=,且AM EN DC AM //,21∴=且AM EN =, ∴四边形AMNE 为平行四边形,AE MN //∴,⊥PA 平面PA AB ABCD ⊥∴,,又⊥∴⊥AB AD AB , 平面PAD , 又⊂AE 平面.,AE AB PAD ⊥∴.,//AB MN AE MN ⊥∴(2)AD PA PDA =∴=∠,450 ,则.PD AE ⊥又⊥AB 平面⊥∴CD CD AB PAD ,//,平面PAD .AE CD ⊥∴ 又⊥∴=AE D PD CD , 平面PDC ,⊥∴MN AE MN ,// 平面.PDC又⊂MN 平面∴,MND 平面⊥MND 平面.PDC21.解:(1) 设数列{}n a 的公差为d ,则()()⎪⎩⎪⎨⎧+=+=⨯+d a a d a d a 6220245511211,即⎩⎨⎧==+d a d d a 121242, 又因为0≠d ,所以⎩⎨⎧==121d a , 所以.1+=n a n(2)因为()(),211121111+-+=++=+n n n n a a n n 所以()222121211141313121+=+-=+-+++-+-=n n n n n T n , 因为存在*∈N n ,使得01≥--n n a T λ成立,所以存在*∈N n ,使得()()0222≥+-+n n n λ成立, 即存在*∈N n ,使()222+≤n n λ成立, 又()1614421,4421222≤⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=+n n n n n n ,(当且仅当2=n 时取等号) 所以.161≤λ 即实数λ的取值范围是.161,⎥⎦⎤ ⎝⎛∞-22.解:(1) 如图,连接OF ,取11D C 的中点M ,连接.,ME OM M F O ,, 分别为11,,D C AD AC 的中点,CD M D CD OF //,//1∴,且.21,211CD M D CD OF == M D OF 1//∴且,1M D OF =∴四边形M OFD 1为平行四边形,.//1OM F D ∴MOE ∠∴为异面直线1FD 与OE 所成的角,在MOE ∆中,易求.,3,2,5222OE ME OM OE ME OM +=∴=== .OE ME ⊥∴.51553cos ==∠∴MOE(2)∈G 平面F D 1,且F D 1在平面11A ADD 内,∈∴G 平面,11A ADD同理∈G 平面11A ACC ,又 平面 11A ADD 平面A A A ACC 111=,∴由公理2知1AA G ∈(如图)CE G A //1 ,且O 为AC 的中点,1==∴CE AG ,.31=∴G A.132322211211=+=+=∴D A G A G D。