决策树分类器课件
- 格式:pptx
- 大小:1.14 MB
- 文档页数:72
遥感专题讲座——影像信息提取(三、基于专家知识的决策树分类)基于专家知识的决策树分类可以将多源数据用于影像分类当中,这就是专家知识的决策树分类器,本专题以ENVI中Decision Tree为例来叙述这一分类器。
本专题包括以下内容:∙ ∙●专家知识分类器概述∙ ∙●知识(规则)定义∙ ∙●ENVI中Decision Tree的使用概述基于知识的决策树分类是基于遥感影像数据及其他空间数据,通过专家经验总结、简单的数学统计和归纳方法等,获得分类规则并进行遥感分类。
分类规则易于理解,分类过程也符合人的认知过程,最大的特点是利用的多源数据。
如图1所示,影像+DEM就能区分缓坡和陡坡的植被信息,如果添加其他数据,如区域图、道路图土地利用图等,就能进一步划分出那些是自然生长的植被,那些是公园植被。
图1 专家知识决策树分类器说明图专家知识决策树分类的步骤大体上可分为四步:知识(规则)定义、规则输入、决策树运行和分类后处理。
1.知识(规则)定义规则的定义是讲知识用数学语言表达的过程,可以通过一些算法获取,也可以通过经验总结获得。
2.规则输入将分类规则录入分类器中,不同的平台有着不同规则录入界面。
3.决策树运行运行分类器或者是算法程序。
4.分类后处理这步骤与监督/非监督分类的分类后处理类似。
知识(规则)定义分类规则获取的途径比较灵活,如从经验中获得,坡度小于20度,就认为是缓坡,等等。
也可以从样本中利用算法来获取,这里要讲述的就是C4.5算法。
利用C4.5算法获取规则可分为以下几个步骤:(1)多元文件的的构建:遥感数据经过几何校正、辐射校正处理后,进行波段运算,得到一些植被指数,连同影像一起输入空间数据库;其他空间数据经过矢量化、格式转换、地理配准,组成一个或多个多波段文件。
(2)提取样本,构建样本库:在遥感图像处理软件或者GIS软件支持下,选取合适的图层,采用计算机自动选点、人工解译影像选点等方法采集样本。
(3)分类规则挖掘与评价:在样本库的基础上采用适当的数据挖掘方法挖掘分类规则,后基于评价样本集对分类规则进行评价,并对分类规则做出适当的调整和筛选。