电力电子应用技术大作业
- 格式:docx
- 大小:265.10 KB
- 文档页数:11
电力电子技术的应用与发展学号:2101900330班级:N机自10—2F姓名:冯俊序号:16摘要:现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。
电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。
八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
一.电力电子技术的兴起电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,GTO,IGBT等)对电能进行变换和控制的技术。
电力电子技术所变换的“电力”功率可大到数百MW甚至GW,也可以小到数W甚至1W以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。
电力电子技术分为电力电子器件制造技术和交流技术(整流,逆变,斩波,变频,变相等)两个分支。
现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,在培养该专业人才中占有重要地位。
电力电子技术的诞生是以1957年美国通用电气公司研制出的第一个晶闸管为标志的,电力电子技术的概念和基础就是由于晶闸管和晶闸管变流技术的发展而确立的。
此前就已经有用于电力变换的电子技术,所以晶闸管出现前的时期可称为电力电子技术的史前或黎明时期。
70年代后期以门极可关断晶闸管(GTO),电力双极型晶体管(BJT),电力场效应管(Power-MOSFET)为代表的全控型器件全速发展(全控型器件的特点是通过对门极既栅极或基极的控制既可以使其开通又可以使其关断),使电力电子技术的面貌焕然一新进入了新的发展阶段。
80年代后期,以绝缘栅极双极型晶体管(IGBT 可看作MOSFET和BJT的复合)为代表的复合型器件集驱动功率小,开关速度快,通态压降小,在流能力大于一身,性能优越使之成为现代电力电子技术的主导器件。
三相桥式SPWM逆变电路仿真一、设计的技术指标:直流母线电压输入:650V;输出三相交流相电压:220V;调制方式:SPWM;频率调制比:N=5;幅值调制比为:0.8;二、工作原理三相桥式逆变电路如图所示,图中应用V1-V6作为逆变开关,也可用其它全控型器件构成逆变器,若用晶闸管时,还应有强迫换流电路。
从电路结构上看,如果把三相负载看成三相整流变压器的三个绕组,那么三相桥式逆变电路犹如三相桥式可控整流电路与三相二极管整流电路的反并联,其中可控电路用来实现直流到交流的逆变,不可控电路为感性负载电流提供续流回路,完成无功能量的续流和反馈,因此VD1~VD6称为续流二极管或反馈二极管。
在三相桥式逆变电路中,各管的导通次序同整流电路一样,也是T1、T2、T3……T6、T1……各管的触发信号依次互差60︒。
根据各管的导通时间可以分为180︒导通型和120︒导通型两种工作方式,在180︒导通型的逆变电路中,任意瞬间都有三只管子导通,各管导通时间为180︒,同一桥臂中上下两只管子轮流导通,称为互补管。
在120︒导通型逆变电路中,各管导通120︒,任意瞬间只有不同相的两只管子导通,同一桥臂中的两只管子不是瞬时互补导通,而是有60︒的间隙时间,当某相中没有逆变管导通时,其感性电流经该相中的二极管流通。
上图中的uao`、ubo`与uco`是逆变器输出端a、b、c分别与直流电源中点o`之间的电压,o`点与负载的零点o并不一定是等电位的,uao`等并不代表负载上的相电压。
令负载零点o与直流电源中点o`之间的电压为uoo`,则负载各相的相电压分别为(3-1)将式(3-1)中各式相加并整理后得一般负载三相对称,则uao+ubo+uco=0,故有(3-2)由此可求得a相负载电压为(3-3)在图3.3中绘出了相应的负载a相电压波形,ubo和uco波形与此相似。
三、仿真电路图四、仿真结果图1 一相正弦信号及其采样信号(svpwm)图2 IGBT两相输出间波形图3 三相未滤波波形图4 滤波后三相输出电压(250Hz采样率)图5 滤波后三相输出电压(1kHz采样率)图6 滤波后三相输出电压(5kHz采样率)五、仿真结果分析通过对图4、图5、图6的比较可以发现当采样率越高时逆变输出电压谐波越少。
电力电子应用技术
第一篇:电力电子应用技术概述
电力电子应用技术简称电力电子技术,是一种将电力电子技术应用于电力系统、电机驱动、照明、消费电子和新能源等领域的技术体系。
它的出现主要是为了解决传统电力系统中存在的电能效率低、用电网络不稳定、电网不适应变化的问题,同时也为人类社会的低碳环保和节能减排贡献力量。
电力电子技术在电力系统和电机驱动等领域的应用可以提高能量的利用效率,减少能量的损失,从而达到节能减排的目的。
在照明和消费电子领域,电力电子技术无疑推动了LED 照明和智能化家电的技术进步,为人类提供更加舒适、便捷、经济的生活体验。
而在新能源领域,电力电子技术扮演着决定性的角色,可以实现风力发电、光伏发电、继电器等的高效转换。
电力电子技术的发展经历了多个阶段,从早期的二极管整流、稳压器、变压器、逆变器到今天的IGBT等器件的广泛应用,其应用领域不断拓展,性能也不断提升。
未来,电力电子技术还将继续发展,随着物联网、大数据等技术的结合,将会进一步提高其效率和应用范围。
电力电子技术的实践应用电力电子技术的实践应用电力电子技术的实践应用【1】摘要:电力系统想要得到前所未有的供电速度,必须要通过结合电子技术、新材料结构,新的供电设备是代表高科技水平的电子技术,以及大规模在各个领域供电才逐渐显现出来,为现代计算机技术的建设,提供了一个发展的平台。
电子电力系统中,先进的电子设备得到了较普及的应用,通过电子设备所反映出详细信息,能够为广大科研人员提供必要的信息。
关键词:电力系统;电子设备;发电机一、引言电力电子技术的全面发展,使得电力电子控制理论和电力电子技术(电力电子)在下半年的20世纪出现于1974年,美国著名学者跨学科的把电力与电子并为一谈,首次出现电力电子技术工程,从技术的角度来看,电力电子技术是更有效的电力控制技术。
电力电子技术包括整流技术和电力电子设备的制造技术,采用逆变器、转换器由两个主要部分组成的设备。
能够更好的实现控制电源“动力”在规定电压内,或者限制电流在更低范围内的电流,以适应当前工作设备的类型。
电力电子技术能够非常灵活的进行组合控制,电力电子是新兴的领域,具有高效率和电力电子技术的使用,这取决于电力电子技术的使用需求。
它已成为现代不可缺少的电力电子技术。
电力电子技术是电力系统中的一个重要组成部分,当前,电力电子技术应用于电力系统模型,能够成功的推广高功率直流输电系统。
二、电力电子技术的应用现状20世纪50年代后期,电力电子技术开始出现,并应用于越来越多的领域中去。
电力电子技术的使用范围不断扩大,电力电子技术与可控硅功率电子设备正式使用,这是创造性地使用工具,这时整流电路等领域的交流转换电路DC转换电路出现。
在美国诞生第一个集成电路保证电力电子技术的安全性,在1958年,电力电子技术的可靠性得到进一步的保护。
创建智能的应用计算机技术的电力安全维护可操作系统,这种计算机智能自动化的操作系统,能够快速有效的应用到电力系统的分析。
1.电力部门使用电力电子技术的现状电力电子技术被电力部门较多的使用,所以电力部门必须要进行有效的管理,管理包括复杂和多样机械装置的正常运行所造成电力影响,电力控制系统中最直接控制部分是中央系统。
1、什么是信息电子技术?什么是电力电子技术?1) 信息电子技术:信息电子技术: 信息电子技术应用计算机等现代化技术进行电子信息控制和信息处理,主要研究信息的获取与处理,电子设备与信息系统的设计、开发、获取与处理,电子设备与信息系统的设计、开发、应用和集成。
信息电子技术已经涵盖了社应用和集成。
信息电子技术已经涵盖了社会的诸多方面。
会的诸多方面。
信息电子技术集现代电子技术、信息技术、通信技术于一体。
它在信息的存信息电子技术集现代电子技术、信息技术、通信技术于一体。
它在信息的存储、传播和应用方面已经从根本上打破了长期以来由纸质载体储存和传播信息的一统天下,代表了信息业发展的方向。
代表了信息业发展的方向。
2)电力电子技术:)电力电子技术:电力电子技术是一门新兴的应用于电力领域的电子技术,就是使用电力电子器件(如晶闸管,闸管,GTO GTO GTO,,IGBT 等)对电能进行变换和控制的技术。
电力电子技术所变换的“电力”功率可大到数百MW 甚至GW GW,也可以小到数,也可以小到数W 甚至1W 以下,和以信息处理为主的信息电子技术不同电力电子技术主要用于电力变换。
电力电子技术分为电力电子器件制造技术和变流技术(整流,逆变,斩波,变频,变相等)两个分支。
(整流,逆变,斩波,变频,变相等)两个分支。
2、简单地介绍电力电子器件和几种常用的器件。
电力电子器件又称为功率半导体器件,主要用于电力设备的电能变换和控制电路方面大功率的电子器件(通常指电流为数十至数千安,电压为数百伏以上)。
功率器件几乎用于所有的电子制造业有的电子制造业,,包括计算机领域的笔记本、包括计算机领域的笔记本、PC PC PC、、服务器、显示器以及各种外设显示器以及各种外设;;网络通信领域的手机、电话以及其它各种终端和局端设备域的手机、电话以及其它各种终端和局端设备;;消费电子领域的传统黑白家电和各种数码产品;工业控制类中的工业PC PC、各类仪器仪表和各类控制设备等。
作业
1、单端反激式电路(Flyback)仿真。
2、分析并仿真隔离型的Sepic电路,说明其特点。
3、分析并仿真隔离型Cuk电路,说明其特点。
4、分析并仿真Boost PFC电路。
5、分析并仿真三相PWM整流电路。
6、CCM方式下Boost PFC电路控制系统(平均值电流控制)仿真。
7、CCM方式下Boost PFC电路控制系统(峰值电流控制)仿真。
8、分析并仿真三相桥式SPWM逆变电路(频率调制比N=5,幅值
调制比为0.8)
要求:
1.在所有的仿真题目中任选三个完成
2.必须独立完成,一旦发现两份雷同的大作业,都按照不合格处理
3.仿真软件可以选择MATLAB,PSIM,PSPICE等,按照自己的兴趣
选择
4.按照以下的顺序依次给出:
(1)设计的技术指标:
给出仿真电路的具体设计指标,这个是设计的前提和依据。
(2)写出所选电路的具体工作原理,最好有理论波形支持。
(3)实验步骤:
详细的给出仿真的具体步骤;根据设计指标进行元器件的选
择;写清楚各个元件的型号、主要参数,注意:写出选择元
器件选择的依据
(4)仿真电路图
(5)仿真结果
(6)对仿真结果进行分析
(7)仿真结果与步骤(2)的理论进行对比
5.作业不仅要提交打印版的大作业,还需要提供相应的仿真的电子
版,以供检查作业的雷同性和真实性
6.大作业采用统一的封面,打印要求:建议使用B5纸打印,打印后
作业封装在所发的封皮中,统一上交
7.上交作业时间:第12周周五。
5、说明电力MOSFET栅极电压U GS控制漏极电流iD的基本原理。
答:当UGS<UGSth时,功率MOSFET处于截止区III。
此时若UDS超过击穿电压Ubr时,期间将被击穿,使iD急剧增大而进入雪崩击穿。
而当UGS >UGSth时输出特性在线性导电区,由于UDS它对导电沟道宽度和一点的漏-源电阻RDS,则iD=UDS/RDS将随UDS而线性增大;这就形成了线性到点去I(可调电阻区)。
对于一定的UGS,当UDS较大时,尽管UDS增大,但因iD已经达到饱和值,不能再增大多少,此时恒流饱和区II,这相当于漏源电阻RDS随UDS而加大,iD保持不变。
6.说明电力MOSFET的分类及其结构分类:N沟道增强型,P沟道增强型,N沟道耗尽型,P沟道耗尽型结构:N沟道增强型7.作为开关使用时电力MOSFET器件主要的优缺点是什么?优点:①开关速度高,②开关时间短,③工作频率高。
缺点:①电流容量小,耐压低,一般只适用于功率不超过10kW的电力电子装置。
②由于存在极间电容,使得输入栅极电压信号和漏极电流的波形上升和下降都应该呈指数曲线规律。
9.对于电力MOSFET来说,试说明N沟道、P沟道、增强型及耗尽型等名词术语的含义。
答:场效应管是一种利用电场效应来控制电流的一种半导体器件,是仅由一种载流子参与的半导体器件。
从参与导电的载流子来划分,它有电子作为载流子的N沟道器件和空穴作为载流子的P沟道器件。
增强型:V GS=0时,漏源之间没有导电沟道,在V DS作用下无i D。
耗尽型:V GS=0时,漏源之间有导电沟道,在V DS作用下有i D。
10. 电力MOSFET输出特性曲线可分为哪几个区?各有什么特点?作为开关使用时MOSFET一般工作在什么区?可分为线性导电区、饱和恒流区和截止区三个区域。
当u GS < u GSth(开启电压)时,功率MOSFET处于截止区。
此时若u DS超过击穿转折电压u BR时,器件将被击穿,使i D急剧增大而进入雪崩击穿。
VCCT Q D1C RN1 N2 ip isVO**不为零,与此相反即为电流断续。
如果,在t=T时刻,I smin=0表示导通期间储存的磁场能量刚好释放完毕;也就是临界状态。
,I smin >0表示导通期间储存的磁场能量还没有释放完,电路工作在连续状态;Ismin<0表示导通期间储存的磁场能量还没有到时刻就已经释放完毕,即电路工作在断续状态下。
电流连续下的理论波形:图1-3 理论输出波形3、实验步骤1)根据实验设计指标选择所需器件输入直流电源:Vin 200V;变压器T的参数,L p:10uH, ,L s:5uH,变压器初级线圈匝数:200匝,次级线圈匝数:10匝,变压器励磁电感L m:1m;滤波电容C:110uF,初始电压10V;触发频率:100k,占空比0.8;负载为阻性负载:5Ω。
2)利用所选的元器件,搭建原理图,并按已知参数设置各元件参数,设定仿真控制时间。
保存原理图。
将MOSFET和二极管D1参数选项中的current flag设置为1,这样可以将电流表缺省直接测得电流波形。
3)点击仿真按钮,双击要观察波形的参数值,点击确定,观察仿真波形。
4、仿真电路图电路原理图如下:图1-4 仿真电路图4、仿真结果1)电流连续输出波形按照顺序,图中的I(D1)为变压器次级电流大小,在图中的大致形状是呈线性下降的直线;I(MOS1)是变压器初级电流大小,在图中的大致形状是呈线性增长的直线;图中的Vp1是输出电压,近似为一条平行于时间轴的一条直线,但略有脉动。
图 1-5 电流连续下仿真结果2)电流断续输出波形降低触发电路的占空比,电流将断续,将占空比变为0.5,输出初、次级电流波形如下图1-6所示。
图1-6 电流连续下仿真结果6、仿真结果分析观察图1-5的仿真结果,按照所选参数构建的电路,电流连续时,输出电压40V达到了预期制定指标。
在开关管MOSFET导通的时间段内,变压器初级电流I(MOSFET)线性上升,此时变压器次级电压为下正上负,使得二极管反偏截止,即I(D)为零,此时负载电流由滤波电容提供。
《电力电子技术》大作业1.设计题目:交-直-交变频电路的仿真研究2.设计目的:1)掌握三相全桥相控整流电路的结构及其工作原理,明确触发脉冲的相位关系,熟悉整流电路交流侧与直流侧电流、电压关系;2)掌握单相全桥逆变电路的结构及其工作原理,明确调制信号与载波信号之间的幅值关系,明确驱动脉冲的分配关系,熟悉逆变电路输出电压与直流电压、调制信号幅值之间的关系;3)熟悉电力电子电路的计算机仿真方法。
3.设计内容:(以下内容以PSIM 9.0.4 Demo版软件为例,但也可以使用其它任何仿真软件)1)参考PSIM仿真软件所提供示例中的三相全桥相控整流稳压电路模型(.. \Powersim\PSIM9.0.4_Demo\examples\ac-dc\thy-3f.sch),构建触发延时角为30度的三相全桥整流电路。
其中交流侧电源选用380V线电压50Hz三相电源,星型联接。
其中整流电路直流侧平波电感1mH、滤波电容10mF及负载电阻10Ω。
采用宽脉冲触发方式。
观测电网电压波形、触发脉冲波形、直流侧电压波形和负载电流波形。
2)参考PSIM仿真软件所提供示例中的三相PWM逆变电路模型(.. \Powersim\PSIM9.0.4_Demo \examples\dc-ac\vsi3 spwm.sch),构建单相全桥PWM逆变电路。
直流侧使用100V直流电压源。
调制波信号为50Hz正弦波信号。
载波信号为10kHz双极性三角波。
调制比设为0.9。
负载使用1mH+10Ω阻感性负载。
观测调制波、三角载波和变流器输出电压波形。
3)将1)、2)构建的仿真模型相组合,实现交-直-交变频电路仿真模型。
其中触发延时角设为60度,调制波信号为250Hz正弦波信号。
载波信号为10kHz双极性三角波。
调制比设为0.9。
负载使用5mH+5Ω阻感性负载。
参考电路图如下。
观测交流侧A相电网电压波形、相控整流触发脉冲波形、直流电压波形、输出电压给定波形、负载电压波形及电流输出波形。