沿海地区混凝土耐久性研究
- 格式:pdf
- 大小:205.72 KB
- 文档页数:3
沿海地区桥涵混凝土结构耐久性之我见摘要:现代工程中对混凝土耐久性的要求愈来愈高,提出耐久性指标的工程设计也愈来愈多。
未来的工程设计中将用耐久性设计取代目前按强度进行的设计。
混凝土耐久性已经成为现代混凝土结构施工项目的重点研究对象,如何提高沿海腐蚀环境下混凝土结构的耐久性更是工程界研究的焦点。
本文对沿海地区桥涵混凝土结构耐久性的分析及施工、监理控制措施的探讨,希望同行们在沿海混凝土结构的耐久性问题上进行深入的研究。
关键词:桥梁;混凝土结构;耐久性一、工程概况江苏临海高等级公路是贯穿江苏南北、贴近海岸的骨干公路,是贯彻国家«江苏沿海地区发展规划»和省委、省政府实施意见的重大举措,对于促进江苏沿海滩涂开发、再海上苏东具有十分重要的意义。
临海高等级公路启东段位于江苏省启东市,路线沿着一道海堤内侧总体呈南北走向,按一级公路设计,全长62公里。
其中南段28公里建安费近4亿;北段34公里,包含大桥4座(其中大洋港大桥桥跨布置7*30*2+50+80+50+7*30全长810米;蒿枝港大桥桥跨布置6*30+51+85+51+7*35+6*30全长792米)、中桥3座、小型结构物57座,建安费10.5亿。
本人担任北段监理项目负责人。
二、提高桥梁结构耐久性的设计、施工及监理措施北段桥位于浅海滩涂地带,桥梁所处环境恶劣,受海水、盐雾、海风及涨落潮干湿环境等因素侵入钢筋砼,影响结构耐久性,因此必须在设计、施工、现场管理等方面采取有效措施,提高钢筋砼防腐、抗侵蚀能力。
兹归略如下:1.混凝土耐久性设计采取措施(1)根据«公路工程混凝土结构防腐技术规范»(jtg/t b07-01-2006)规定,经图纸会审,监理提出北段大桥混凝土结构耐久性应按不同部位采取不同措施,如下表: 本桥结构混凝土耐久性基本要求注:表中氯离子含量系指其与水泥用量的百分率。
海水中钢筋混凝土桥梁结构防腐耐久性技术措施分析随着社会发展的需求与技术的进步,使得公路桥梁的建设由内陆水环境延伸为沿海甚至跨海环境,在新环境的要求下,钢筋混凝土桥梁的防腐耐久性技术日趋重要。
然而处于海水环境中的钢筋混凝土桥梁结构,由于氯盐环境的影响导致结构内的钢筋极易锈蚀,进而大幅度降低了桥梁的使用寿命,对结构的安全也带来了危害。
据工业发达国家报道,钢筋混凝土在海洋环境中的浪溅区及海洋大气区内,使用寿命大幅缩短,结构大量返修,造成的损失往往能达到总投资的40%。
本文主要分析了海水环境下桥梁结构腐蚀的原因,并就海水环境下的桥梁结构防腐耐久性技术措施从结构形式、构造及材料选择等几个方面进行分析论述。
最后,针对北方海洋环境下桥梁的设计和施工,提出具体的提高桥梁抗腐蚀性的技术措施。
一、海水环境下的桥梁结构腐蚀原因分析一般来讲,砼内部的高碱性能使钢筋表面形成一层钝化膜,保护钢筋免受锈蚀。
而钢筋锈蚀往往也就开始于其表面钝化膜的破坏。
在海水环境下,它的破坏主要有以下原因导致:首先是供氧不足。
一般来讲,钢筋表面钝化膜要保持良好需要一定浓度的氧流量(一般为0. 2~0. 3mA/m2),而水下环境的氧流量一般很低,进而导致钝化膜的厚度逐渐减小直至完全消失,导致钢筋非常缓慢的腐蚀。
再有,海水环境下的桥梁结构由于经常与海水接触并处于潮湿环境中,因各种原材料挟进砼中的氯离子以及海水中的大量氯离子不断渗入到钢筋周围,当此氯离子含量达到某一临界值时,钢筋的钝化膜开始破坏,丧失对钢筋的保护作用,从而引起钢筋锈蚀,削弱其有效断面,并引起膨胀,进而破坏砼保护层,形成恶性循环,加速砼结构破坏,使桥梁使用寿命受到严重威胁。
因此,必须进行防腐蚀耐久性设计,保证砼结构在设计使用年限内的安全和正常使用功能。
二、桥梁结构钢筋混凝土防腐蚀耐久性设计桥梁结构钢筋混凝土防腐蚀耐久性设计,应针对结构预定功能和所处的环境条件,选择合理的结构形式、构造和抗腐蚀性、抗渗性好的优质砼;对处于浪溅区和水位变动区的桥梁下部结构,宜采用高性能砼,或同时采用特殊的防腐措施,同时宜采用焊接性能好的钢筋。
港口工程中水泥混凝土耐久性的探讨摘要:随着混凝土工程实践经验的积累,已开始注意到混凝土表面特性对耐久性的重要影响。
众所周知,混凝土是一种多相、不均质、多孔的复合体系,具有一定的渗透性,当其表面存在相对压力、浓度和电位差时,就会发生介质的迁移,混凝土的许多性能在一定程度上都与其孔隙率、孔隙结构和孔连通程度有关。
混凝土表面层对结构起着防护作用,可以抵御来自外部环境的物理和化学劣化的作用,例如碳化、化学侵蚀、钢筋锈蚀、冻融破坏等,对混凝土结构的长期耐久性起着决定性的影响。
本文通过一系列试验并结合国内某港口工程实例,进行了混凝土表面渗透性对混凝土耐久性影响的系统分析。
关键词:表层渗透性;碳化;抗冻性;孔结构;耐久性1 试验方法国内某港口建设过程中,c50 预制方桩在施打过程中由于遇到坚硬地质结构,施打次数增大,为检测施打过程对混凝土桩身是否造成破坏,进行了表层渗透性、超声波法匀质性、回弹取芯等检验,并对钻取的芯样进行了强度、碳化、氯离子渗透性、冻融循环等试验。
由于海工混凝土受侵蚀最严重的部位属于潮差区及浪溅区,本研究选择了潮差区的桩身进行试验。
试验采用 autoclam 自动渗透性测试仪,拟同时在现场对混凝土构件进行吸水量、渗水量和透气性三项指标的检验。
由于渗透试验中的吸水量试验对混凝土材料的表面含湿量有严格的限制,对于潮差区的混凝土,其含湿量较高,经过测试发现无法进行吸水性试验,本研究主要选用了不受含湿量影响的渗水量试验方法作为试验研究手段。
渗水量试验测试水压恒为 50 kpa (0.5 ba)r,控制器自动采集每分钟的渗水量。
文中水渗透系数的单位为10-7m3/min1/2。
2 数据分析2.1 混凝土碳化深度与表面渗透性之间的关系混凝土碳化是空气中 co2与水泥中的碱性物质相互作用,使其成分、结构和性能发生变化,使用机能下降的一种很复杂的物理化学过程。
co2可以与混凝土中的铝酸盐及 c-s-h 产物反应,使凝胶分解成 caco3以及无定型硅胶等多孔状结构。
高性能海工混凝土的技术研究与施工摘要:在国外已建沿海桥梁工程中,很多桥梁结构的破坏其主要原因来自混凝土病害,因此混凝土耐久性研究受到国内外研究混凝土的专家的高度重视,为满足耐久性要求,采用海工高性能混凝土,其特性除强度和拌和物的和易性必须满足设计和施工要求外,还应根据构件的具体使用条件和环境,具备所需要的防止钢筋锈蚀的性能及抗冻性与抗渗性。
基于此,本文主要对高性能海工混凝土的技术与施工进行分析探讨。
关键词:高性能;海工混凝土;技术研究;施工1、海工混凝土的使用环境混凝土在沿海地区的使用都要考虑混凝土在海洋环境下所产生的腐蚀机理1.1硫酸盐腐蚀硫酸盐包括硫酸钠和硫酸镁,在海洋环境影响使用条件下,海洋中的硫酸钠和硫酸镁会与混凝土结构中水化产物(氢氧化钙)产生反应生成硫酸钙,在这种化学反应所产生的过程中,混凝土体积会发生膨胀和破坏现象。
1.2氯盐腐蚀氯盐就是指氯化钠和氯化镁,在海洋环境影响的使用条件下,海水中的氯化钠和氯化镁会与混凝土结构中的氢氧化钙产生反应生成氯化钙和氢氧化镁等物质,而这种物质没有胶凝作用,这就会破坏混凝土的内部结构,而在化学反应的过程中会生成大量的游离的氯离子,氯离子会将混凝土结构中的钢筋进行腐蚀,从而破坏海工混凝土的结构影响使用寿命。
1.3水位变动影响耐久使用性海工混凝土在水位变动区使用会使混凝土遭到冻融破坏,水位的变动会让海水对混凝土结构进行冲刷和磨耗,会破坏混凝土的耐久性。
2、海工高性能混凝土施工与质量控制2.1防止Cl-引入新拌混凝土中对原材料中的Cl-含量做出严格的限制。
拌和物总Cl-含量小于0.06%(占胶凝材料质量百分比)。
防止构造物被Cl-污染,尽量采用岸上预制,达到龄期后安装。
采用淡水养生,到达规定强度后拆模。
2.2控制进场原材料质量确保每批进场原材料符合要求,重点是混凝土减水剂与胶凝材料的适应性。
2.3混凝土拌制与浇注海工高性能混凝土较普通混凝土拌制延长约40s,注意施工用水是否与理论用水相符。
海洋环境下混凝土结构的耐久性[摘要]混凝土的耐久性是指混凝土在实际使用条件下抵抗各种破坏因素的作用,长期保持强度和外观完整性的能力。
处于海洋环境下的混凝土由于受海洋生物,无机盐,大气,水,温度等的影响造成的耐久性的降低。
文章首先分析了混凝土耐久性破坏机理,然后总结了提高混凝土耐久性的措施。
1. 前言:混凝土的耐久性混凝土的耐久性是指混凝土的结构在规定的使用年限以内,在各种环境条件作用下,不需要额外的费用加固处理而保持其安全性、能够正常使用和有可接受的外观的能力。
现行国家标准《混凝土结构设计规范》(GB50010-2002)中,明确规定混凝土结构设计采用极限状态设计方法。
但现行的设计规范只划分成两个极限状态,为承载能力极限状态和正常使用极限状态,而将耐久性能的要求列入正常使用极限状态之中,且以构造要求为主。
混凝土的耐久性与工程的使用寿命相联系,是使用期内结构保持正常功能的能力,这一正常功能不仅包括混凝土结构的安全性,而且更多地体现在适用性上。
2. 背景影响混凝土结构耐久性的因素很多,随着近些年工程应用中出现的问题和形式的发展,人们认识到混凝土材料的耐久性应受到高度重视。
比如在海洋环境中混凝土结构的耐久性,国内外也有很多由于混凝土破坏问题发生事故而造成人力和财力的损耗。
随着经济的发展,社会的进步,许多投资大、施工长的大型工程(如大跨度桥梁)日益增多,人们对海洋混凝土使用寿命的期待日益提高。
而这些混凝土的使用环境却十分苛刻,客观上要求混凝土有优异的耐久性。
中国目前处于大规模建设基础设施时期。
临海城市深水港的建设已为世人瞩目,对沿海城市经济持续高速发展将起到十分重要的拉动作用。
作为深水港重要组成之一的跨海通道(大桥、隧道等),无论是从跨度、连接功能,还是交通纽带,其建设和服役环境(海洋环境)是建筑物面临的新挑战,主要通过提高混凝土的耐久性来实现。
本文就海洋环境中混凝土耐久性的主要影响因素进行总结并提出合理的技术措施。
北方滨海地区影响混凝土耐久性的因素及其保障措施摘要:由于北方滨海地区特殊的地理环境,近年来,混凝土耐久性问题越来越受到人们的关注。
本文对混凝土构件受腐蚀后耐久性的性能进行了分析,对钢筋混凝土的腐蚀因素进行了总结分析,同时提出了混凝土耐久性的保障措施。
关键词:北方滨海地区;混凝土;耐久性;保障措施中图分类号:tu37 文献标识码:a 文章编号:0 引言混凝土作为一种建筑材料,广泛应用于沿海地区的一些特殊结构中,如海港码头、海湾桥梁等,这些桥梁结构所处的环境中存在大量氯离子,对钢筋有腐蚀作用。
因此与这些桥梁结构耐久性直接相关的钢筋混凝土的腐蚀及腐蚀控制的研究越来越引起人们的注意。
同时,海上作业与水下基础,受自然条件的制约,一旦受到腐蚀破坏其修复极为困难,成本也是十分昂贵的。
因此,滨海混凝土工程耐久性的重要意义要比陆上建筑更重要。
1 滨海地区钢筋混凝土结构耐久性的性能分析钢筋混凝土结构受到腐蚀后,其抗弯性能、抗剪性能都会受到影响,同时,混凝土与钢筋的粘结性能也会降低。
(1)钢筋受腐蚀后混凝土抗弯性能下降原因分析抗弯强度下降主要有以下原因:钢筋腐蚀引起钢筋截面积减小,钢筋名义屈服强度减小,钢筋和混凝土间的粘结力下降。
这使破坏区段内混凝土和钢筋的平均应变大于正常构件,应力应变不能充分地进行重分布,导致钢筋与混凝土协同工作系数降低。
(2)钢筋受腐蚀后混凝土抗剪性能下降原因分析钢筋混凝土构件中箍筋一般首先腐蚀,其腐蚀程度往往比纵筋严重,特别是箍筋与纵筋交接处,其锈蚀程度最为严重。
箍筋的锈蚀直接降低了钢筋混凝土构件的抗剪性能,而抗剪性能的降低使得钢筋混凝土结构的脆性增加,结构的破坏也将变得更加的无预兆性。
另外锈蚀箍筋对混凝土的约束力降低也对构件的承载力有间接影响。
(3)钢筋受腐蚀后钢筋和混凝土粘结性能下降原因分析粘结性能的退化是钢筋混凝土构件性能退化的主要原因之一。
粘结性能退化的原因主要有:1)钢筋腐蚀后生成的氧化产物在钢筋与混凝土之间形成一层疏松隔离层,明显地改变了钢筋与混凝土的接触表面,降低了钢筋与混凝土之间的粘接作用。
沿海高桩码头水下桩芯混凝土耐久性分析
葛健晖;刘兵龙
【期刊名称】《水上安全》
【年(卷),期】2024()2
【摘要】沿海地区施工环境具有特殊性,施工控制难度大,所以每一个施工环节必须采取有效的措施,以确保质量安全。
本文探讨了沿海高桩码头水下桩芯混凝土的耐久性挑战和解决方案,重点分析了盐水腐蚀、波浪作用和海洋生物等因素,并深入研究了强调预先规划、混凝土浇筑、固化防护和施工后维护的施工技术。
本文重点强调了适当养护、保护措施和持续监测的重要性,旨在提高水下混凝土桩的弹性和寿命。
【总页数】3页(P193-195)
【作者】葛健晖;刘兵龙
【作者单位】盐田港东区国际集装箱码头有限公司;中交四航局第二工程有限公司【正文语种】中文
【中图分类】TU7
【相关文献】
1.沿海高桩码头主体结构耐久性影响因素分析
2.福建某高桩码头混凝土耐久性检测与分析
3.福建沿海某运营中码头混凝土方桩耐久性调查与分析
4.宁波某高桩码头混凝土耐久性检测与分析
因版权原因,仅展示原文概要,查看原文内容请购买。