当前位置:文档之家› 空气源热泵机组与水源热泵机组制冷及采暖时能效比较分析

空气源热泵机组与水源热泵机组制冷及采暖时能效比较分析

空气源热泵机组与水源热泵机组制冷及采暖时能效比较分析
空气源热泵机组与水源热泵机组制冷及采暖时能效比较分析

空气源热泵机组与水源热泵机组制冷及采暖时能效比较分析

一、两种中央空调机组工作原理

1.水源热泵机组工作原理是以水为载体,冬季把地下水中的低品位热能利用热泵原理,通过消耗部分电能,将提取出来的热量供房间取暖所用,而夏季把房间内的热量释放到地下水中,以达到夏季制冷的目的。

2.空气源热泵机组工作原理是以室外空气为载体,冬季把室外空气中的低品位热能利用热泵原理,通过消耗部分电能,将提取出来的热量供房间取暖所用,而夏季把房间内的热量释放到室外空气中,达到夏季制冷的目的。

二、两种中央空调机组设备机构特点

1.水源热泵机组是由:压缩机、冷凝器、蒸发器及膨胀阀四大主要部件构成,制冷时主要依靠蒸发器与室内散热系统热交换从而达到空调制冷的目的,冬季时主要依靠冷凝器与室内散热系统热交换。

2.空气源热泵机组也是由压缩机、冷凝器、蒸发器及膨胀阀四大主要部件构成,空气源热泵一般采用翅片换热器夏季充当冷凝器、冬季充当蒸发器使用。空气源热泵机组通过机组内部安装的四通换向阀,在夏季制冷时其翅片换热器充当冷凝器使用与室外空气进行换热进行冷却;冬季时翅片换热器充当蒸发器使用与室外空气进行换热吸取空气中的热量。

三、两种中央空调机组制冷时冷凝器冷却方式分析

中央空调机组在夏季制冷使用时,其冷凝器均需要通过外界不同类型的低品位能源进行冷却,将机组制冷时输出的电机功率产生的热量及房间热交换产生的热量带走或吸收从而达到一种热平衡。

1.水源热泵机组冷凝器的冷却方式:水源热泵机组夏季制冷时是依靠地下井水进行冷却,即地下井水与机组的的冷凝器进行循环换热,地下井水抽水后经过机组冷凝器,将热量通过直接回灌的方式把热量带走从而达到对机组冷却的目的。地下水温不受天气气候的变化而受影响,常年地下水温保持恒温。

2.空气源热泵机组换热器的冷却方式:空气源热泵机组夏季制冷时是依靠室外空气为低品位能源进行冷却,即室外空气与机组的翅片换热器进行热交换,将换热器释放的热量直接排放到室外空气中,从而达到对机组冷却的目的。夏季室外空气的温度基本在30℃以上时需要开启制冷机组对房间进行空气调节,因此空气源热泵机组的冷却时的低品位能源的最低温度保持在30℃以上。

四、两种中央空调机组采暖时蒸发器的取热方式分析

1.水源热泵机组蒸发器的取热方式:冬季时井水流过热泵机组的蒸发器,井水中的热使蒸发器中的制冷剂被汽化(即井水中的热被制冷剂吸收),压缩机将气态的制冷剂吸入压缩机后,产生高温、高压的气态的制冷剂被排入冷凝器实现采暖。也就是利用制冷剂的特性,将蒸发器从井水中吸收热量,通过冷凝器释放至采暖区。

2.空气源热泵机组换热器的取热方式:空气源热泵机组冬季时是依靠室外空气为低品位能源进行取热,即室外空气与机组的翅片换热器进行热交换,将空气中的低品位能量吸收,再通过冷凝器释放至采暖区,冬季室外温度0-5℃(以长江以南地区为例)。

五、两种中央空调机组制冷及采暖时能效能比较

1.两种中央空调机组设备选型及参数

序号名称水源热泵机组空气源热泵机组

1制冷量1129.4KW1142KW

2制冷输入功率194.8KW376KW

3制冷能效比5.80 3.04

4制热量1307.6KW1256KW

5制热输入功率273.4KW368KW

6采暖能效比4.783 3.413

2.分析说明:根据以上产品实际样本标识参数可以看出,水源热泵机组制冷时及采暖时的能效比均比较高,因此在能够同时满足两种类型中央空调机组工作的条件下,水源热泵机组的节能性比较明显。由于水源热泵机组的冷却系统采用的20℃地下水与制冷机组的冷凝器进行热交换实现的冷却功能,并且地下水温常年保持恒温,因此也就保障了水源热泵机组冷却系统的稳定性,并且冷却介质的温度比较低仅为

20℃,可提高机组的运转效率;冬季时水源热泵机组从20℃地下水中提取热量后再通过压缩机做功送往采暖房间,由于地下水作为热源时温度相对比较高,提高了机组吸热的效率,导致整机的输入功率比较低。而空气源热泵机组的冷却介质采用的是室外流动的空气,而空气的温度比较高保持在30℃以上,并且随着室外温度的升高冷却介质的温度随之升高,这样就加大了制冷机组的压缩机工作负担,使得运转功率的增高。随着室外温度的升高,制冷机组的输入功率也随之增高,因此空气源热泵机组在实际制冷运行过程中压缩机的输入功率高于机组标准工况的(室外环境温度35℃时为标准工况)。冬季时空气源热泵机组通过翅片换热器吸收室外空气(0-5℃)中的能量,再经过压缩机做功后送往采暖房间,而冬季时室外温度仅为0-5℃温度比较低,因此需要压缩机增加做功才能吸收到能量,导致压缩机的输入功率增加的比较大。

3.运行费用计算分析(以10000平方米办公楼使用为例分)计算条件运行费用=输入功率机组数量实际运行天数电机功率系数电价(1)夏季运行150天,冬季运行90天。(2)按照办公楼计算每天开机时间为8小时。(3)价按1.0元/KWh计算;

1.水源热泵机组运行费用分析

194.8KW1台150天8小时1.0元/KWh=233760元夏季

273.4KW1台90天8小时1.0元/KWh=196848元冬季

全年水源热泵机组运行费用:430608元

2.空气源热泵机组运行费用分析

376KW1台150天8小时1.0元/KWh=451200元夏季

368KW1台90天8小时1.0元/KWh=264960元冬季

全年空气源热泵机组运行费用:716160元

通过上述计算可以看出以10000平方米的办公楼为例计算夏季150天制冷及冬季90天运行费用,采用水源热泵机组比采用空气源热泵机组节约电费285552元。六、结论

1.夏季时水源热泵采用的低品位能源是20℃的地下水,空气源热泵采用的低品位能源是30℃的室外空气,明显地下水20℃的地下水温度比室外30℃空气温度低,导致了水源热泵机组的制冷能效比比空气源热泵高;冬季采暖时水源热泵采用的低品位能源还是20℃的地下水,空气源热泵采用的低品位能源是0-5℃的室外空气,明显地下水20℃的地下水温度比室外0-5℃空气温度高,也就致了水源热泵机组的采暖的能效比比空气源热泵高。

2.各类中央空调系统的冷却方式及取热方式的不同可以导致整机的能效比不同,冬季机组采暖时低品位能源的温度越高也就是说品质越高机组的运行功率就越低,低品位能源温度高可以提高机组蒸温度,降低了机组的输入功率,因此提高了能效;在夏季机组制冷时,冷却水或冷却介质的温度越低机组的运行功率越小,因为冷却介质温度低可以将冷凝器的温度降低的温差比较大,可降低机组的运行功率,提高能效。

3.尽管空气源热泵机组的能效比没有水源热泵机组高,但空气源热泵机组利用空气为低品位能源介质安装比较简单,机组只要与空气相通即可,并且可以制作成模块机,应用用途比

较广泛,小户型系统使用比较方便,不受地域的限制(长江以南地区使用比较广泛)。而水源热泵机组要求有地表水或地下井水,需要打井,并且利用后的井水需要100%的回灌不会造成地下水资源的浪费,这样对水源热泵中央空调机组使用的地域性及技术性就要求比较高,有些地区地下水贫乏或建筑没有打井空间的均无法使用该类型的机组,因此可根据机组本身的使用特点,因地制宜的选择合适的中央空调机组类型。

空气源热泵工作原理分析

空气源热泵工作原理分析 一、热泵简要介绍 日常生活中泵的应用很多,泵是一种提高位能的装置,根据用途不同有水泵、气泵、油泵等。 热泵,顾名思义就是泵热的装置。热泵技术是近年来在全世界备受关注的新能源技术,目前较多地应用于冷暖空调机。 热泵按结构、用途等可以有多种分类,如果按所取热源方式,常见的可分为空气源热泵、水源热泵、地热热泵等。 三、空气源热泵原理介绍 空气源热泵热水器是空气源热泵的其中一种用途方式。空气源热泵系统的主要工作原理就是利用少量高品位的电能作为驱动能源,从低温热源(空气当中蕴涵的热能)高效吸收低品位热能并传输给高温热源(水箱里的水),达到了“泵热”的目的。 热泵技术是一种提高能量品位的技术,它不是能量转换的过程,不受能量转换效率极限100%的制约。利用热泵热水机释放到水中的热量不是直接用电加热产生出来的,而是通过热泵热水机把热源搬运到水中去的,所以平均能效比能达到400%以上。也就是1度电通过热泵能产生4度电的效果。

三、各种热水器的比较能源利用率 家用型空气源热泵系统结构示意图: 四、系统结构流程说明 压缩机→高压保护器→换向阀→热交换器(家用型水箱)→节流装置→蒸发器→低压保护器→气液分离器→压缩机。 商用型空气源热泵系统结构示意图:

商用型空气源热泵系统安装示意图: 五、斯米茨水源热泵介绍

多乐?斯米茨水源热泵是一种空气能产品,适用于宾馆、商场、办公楼、学校、别墅、住宅小区的制热及制冷。 多乐?斯米茨水源热泵优势特点: 1、高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。运行费用仅为普通中央空调的40~60%。 2、节水省地

水源热泵与地源热泵优缺点的比较

水源热泵与地源热泵优缺点的比较 一、水源热泵深井技术介绍 1、水源热泵原理 地下水是一个巨大的天然资源,其热惰性极大,全年的温度波动很小,一般说来,埋藏于地表20M以下的浅表层地下水可常年维持在该地区年平均温度左右,是理想的天然冷热源。水源热泵系统正是利用地下水的特性而工作的一种新型节能空调。在水源热泵的水井系统中,水源热泵一般成井深度为50米到300米,因为此部分地下水主要由地表水补给,且不适宜饮用,故用于水源热泵中央空调是极佳选择水源中央空调系统的是由末端(室内空气处理末端等)系统,水源中央空调主机(又称为水源热泵)系统和水源水系统三部分组成。 为用户供热时,水源中央空调系统从水源中中提取低品位热能,通过电能驱动的水源中央空调主机(热泵)“泵”送到高温热源,以满足用户供热需求。为用户供冷时,水源中央空调将用户室内的余热通过水源中央空调主机(制冷)转移到水源中,以满足用户制冷需求。 1.1系统原理图:制热工况为例(制冷工况可通过阀门切换来实现,即使水源水进冷凝器,蒸发器的冷冻循环水接用户系统),系统原理见下图:

分类:水源热泵根据对水源的利用方式的不同,可以分为闭式系统和开式系统两种。 闭式系统是指在水侧为一组闭式循环的换热套管,该组套管一般水平或垂直埋于地下或湖水海水中,通过与土壤或海水换热来实现能量转移。 开式系统也就是通常所说的深井回灌式水源热泵系统。通过建造抽水井群将地下水抽出,通过二次换热或直接送至水源热泵机组,经提取热量或释放热量后,由回灌井群回地下。. 水源热泵原理图:

深井回灌开式环路

地下水平式封闭环路 2.水源热泵优点 2.1高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,。4~6,实际运行为7理论计算可达到. 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温

使用空气能热泵供暖怎样选配暖气片

空气能热泵和地暖管是完美匹配,但因为用户实际很多都是用的暖气片,因此需要考虑空气能热泵+暖气片的设计。 空气能热泵能保证60±3℃大温差范围可以正常工作的热泵主机,正规的散热片厂家的技术手册都会有类似下表的参数(其中省略了65~90℃的参数)。 图| 钢制板式散热器散热量转换系数表 假如原来散热片是配壁挂炉、按95℃供水/75℃回水房间温度按20℃选型设计的,其转化系数是1.01,热源用热泵替代后,如按55℃供水/50℃回水,房间温度按20℃设计,对应转化系数是0.43!也就是说,需要增加约60%的散热片。 片数=采暖负荷/标准散热量*片比系数 暖气片在不同的水温下,散热能力是不同的,其散热能力和平均水温有关,是一个复杂的函数关系。热泵商学院讲师安建新分享了计算公式:所需片数=采暖负荷/标准散热量*片比系数。

表:“温度-片数”对照表 注:此表仅适用于铸铁四柱760暖气片 从上表我们也可以看出,随着平均水温的降低,暖气片的散热能力明显下降,所需暖气片的片数也要随之增多:当散热器水温从95/70℃降到75/50℃时,所需片数增加了70%;当降到45/40℃时,所需片数增加到了3.6倍。 举个例子,假设一个耗热量为1200W房间,采用每片标准散热量129W的铸铁四柱760暖气片,之前的热源为燃煤锅炉,进出水温度为95/70℃时,所需铸铁四柱760暖气片数量为1200/129*1=9.3,也就是说10片就可以满足了。 当热源换成空气源热泵产品后,出回水温度降低到45/40℃,片比系数是95/70的3.6倍,可以直接用10片*3.6计算出需要暖气片的片数为36片,要在原来的基础上再加上26片。 由于暖气片计算忽略了修正系数,加之计算时取得是数据的整值以及片比系数的放大作用,直接用片比系数的倍数来估算可能会有一定的偏差。 另外,使用本公式得到比较准确的数值,前提还有计算获得相对准确的采暖热负荷。如果要想得到比较准确的数值,最好是采用公式来计算,即 1200/129*3.6≈33.5片,也就是说,要达到用户需要室内温度,还需要再增加24片铸铁四柱760暖气片。 从刚才的案例计算也可以看出来,不同进回水温度暖气片片比系数相差很大,因此准确计算房间负荷是计算暖气片片数的前提。而且,不同散热器的片比系数不一定相同,这个需要平时的经验积累。 值得一提的是,对于单管串联暖气片采暖系统,越靠后平均水温越低,同样的负荷所需的片数也就越多。另外,地暖中如果需要设置散热器时,请参照地暖的设计水温对暖气片进行计算,切不可直接套用。

空气源热泵对比天然气能耗计算

WORD格式 空气源热泵耗电与天然气耗气费用对比 一、基础计算 1、电能热值 860 大卡 /千瓦时,空气源热泵冬季采暖综合能效比3:1,即用空气 源热泵冬季采暖每千瓦时热能平均2580 大卡 /千瓦时 2、天然气热值8000 大卡 /m3,天然气普通锅炉热效率 70%,即实际计算5600 大卡 /m3。冷凝锅炉热效率97%,即实际计算 7760 大卡 /m3. 3、烧开热水每吨需要热量(温升 85 度)8500 大卡。则用空气源热泵需用电 3.29 度,费用(3.29×7.1=2.34 元)用天然气普通锅炉需要 1.52m3( 1.52×3.7=5.62 元)。用天然气冷凝炉耗气 1.1 m3( 1.1× 3.7=4.07 元) 综合上边计算结果, 天然气普通锅炉制热对比空气源热泵费用 5.62÷2.34=2.4 倍。 天然气冷凝锅炉制热对比空气源热泵费用 4.07 ÷2.34=1.74 倍 二、空气源热泵采暖1000 平米耗电计算 车间建筑热负荷估值为100W,(室外 -9℃,室内 18℃ ) 采暖需求热负荷: 100KW 冬季 -9℃时,设备的能效比为 2.2;(采暖季综合能效比为 3.0) 采暖季日均运行费用: 100KW ×10h÷3=333KW/h 采暖季 120 天× 333 度=39960 度电。(约 4 万度电) 三、天然气锅炉采暖1000 平米耗气计算 车间建筑热负荷估值为100W,(室外 -9℃,室内 18℃ ) 采暖需求热负荷: 100KW 1KW=1kj/s=3600kj/h 1 大卡 =4.18kj 100KW × 3600kj/h× 10h÷( 5600 大卡× 4.18kj ) =154 m3 采暖季 120 天× 154 m3=18480 m3(约 1.85 万立方天然气) 河北合和节能科技有限公司 2015.10.6 专业资料整理

水源热泵有哪些优点

水源热泵有哪些优点 (资料来源:中国联保网)水源热泵与常规空调技术相比,有以下优点: 高效节能 水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7,实际运行为4~6。 水源热泵机组可利用的水体温度冬季为12~22℃,水体温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季水体温度为18~35℃,水体温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,从而提高机组运行效率。水源热泵消耗1kW.h的电量,用户可以得到4.3~5.0kW.h的热量或5.4~6.2kW.h的冷量。与空气源热泵相比,其运行效率要高出20~60%,运行费用仅为普通中央空调的40~60 %。 可再生能源 水源热泵是利用了地球水体所储藏的太阳能资源作为热源,利用地球水体自然散热后的低温水作为冷源,进行能量转换的供暖空调系统。其中可以利用的水体,包括地下水或河流、地表的部分的河流和湖泊以及海洋。地表土壤和水体不仅是一个巨大的太阳能集热器,收集了47%的太阳辐射能量,比人类每年利用能量的500倍还多(地下的水体是通过土壤间接的接受太阳辐射能量),而且是一个巨大的动态能量平衡系统,地表的土壤和水体自然地保持能量接受和发散的相对的均衡。这使得利用储存于其中的近乎无限的太阳能或地能成为可能。所以说,水源热泵利用的是清洁的可再生能源的一种技术。 节水省地 以地表水为冷热源,向其放出热量或吸收热量,不消耗水资源,不会对其造成污染;省去了锅炉房及附属煤场、储油房、冷却塔等设施,机房面积大大小于常规空调系统,节省建筑空间,也有利于建筑的美观。

空气能热泵供暖机组与锅炉相比的优势

空气能热泵供暖机组采暖因为没有燃烧过程,所以没有废物排出,另外,它的制冷剂选用的也是具有环保功能的制冷剂R410A,整体是个好的环保产品。利冠佳特空气能热泵供暖机组节能可以达到70%,再加上现在电费持续走低,燃料的价格逐渐高涨,从长远的角度看,空气源热泵运行成本在日后会逐渐突出。空气能热泵供暖机组是完全智能化的,不需要人操作。另外,空气源热泵对外机放置位置没有太多的要求。 (空气能热泵供暖机组-图片) 【空气能热泵供暖机组相比锅炉有何优势】 1、环保:空气源热泵采暖因为没有燃烧过程,所以没有废物排出,另外,它的制冷剂选用的也是具有环保功能的制冷剂R410A,整体是个好的环保产品。 2、运行安全:空气源热泵是可以全自动控制的,完全不需要人员看守,大大减少的人力的成本。 3、热效率高:空气源热泵的能效比比较高,热效率平均在300%左右,远超锅炉的热效率。 4、模块式安装,便于增添设备:空气源热泵采用的是多台机组并联的安装模式,方便用户后期添加设备。 5、节能:空气源热泵节能可以达到70%,再加上现在电费持续走低,燃料的价格逐渐高涨,从长远

的角度看,空气源热泵运行成本在日后会逐渐突出。 (空气能热泵供暖机组-图片) 【空气能热泵供暖机组详细介绍】 一、空气能热泵供暖机组是否需要提供机房 答案是不需要,它是完全智能化的,不需要人操作。另外,空气源热泵对外机放置位置没有太多的要求。同时也不依赖于光照,所以不一定放在楼顶,安装的时候可以放置在地库,或者像空调那样也完全可以。 二、若使用多台空气源热泵采暖设备,其中一台出了问题是否影响整个系统? 答案是不影响。就如果家里的电灯装置一样,一个电灯坏了不会影响别的灯的照明,因为采用的是并联的手段,空气源热泵也是一样的道理,它们是完全独立的,单个独立运行。 三、从环境吸收热能为什么会使空气源热泵采暖有更大的效率? 因为空气源热泵的原理,所以可以用1份电能吸取2-3份空气中的低位热能,在通过一定的运行,使得这些热能产出高位热能,所以效率很高。 四、目前国内的空气能热泵供暖机组运行是否稳定?

解决空气能热泵制热量和能效比衰减方案分析

解决空气能热泵制热量和能效比衰减方案分析 独立供暖的热源设备主要有两种,一种是采用天然气燃烧的壁挂炉,一种是采用电驱动的热泵。热泵有分为地源热泵和空气源热泵两种,下表是两种设备的比较: 通过比较可以看出,采用热泵来做独立供暖系统,在安全性,综合造价,使用寿命,使用条件限制方面具有明显优势,特别是一套热泵系统既能满足冬季的取暖需求,又能满足夏季的空调制冷需求;使用的能源是最为普及的电力,相比之下,燃气炉受供气量,供气管网 等诸多限制;而且从环保性来讲,燃气炉毕竟还是有CO2的排放,而且消耗的是可以做其 他用途的高品位能源,而热泵消耗的是电力,虽然目前中国的大部分的电力来自非清洁能源-煤,但是,随着核电,风电,太阳能发电和水电的进一步发展,中国的电力也将变得越来越清洁。从这三点来看,热泵作为独立供暖系统的热源,具有巨大优势。热泵的最大缺点是

其制热量和能效比随热源侧的温度下降而衰减。 如何解决热泵的制热量和能效比随热源侧的温度下降而衰减这个问题呢?目前有两种解决方案。一种解决方案是采用地源热泵,一种是采用空气源热泵+辅助热源。 地源热泵的热源是浅层地表的热量,经过实际测量,在10米以下的地层,其土壤温度恒定在10℃以上,土壤中的热量都来自太阳。采用地埋管的形式,将土壤中的热量交换到 塑料管内的水中,对于热泵来讲是非常稳定的热源。地源热泵的应用很好地解决了热源稳定的问题。但是地源热泵的应用也有如下的一些缺点: 1)必须有较大的土壤面积来埋管,实际应用中,每100m2的建筑面积需要的土壤面积为25m2以上; 2)埋管的费用较高,对于华北,东北等冲积平原的费用较低,但对于有些地质条件不佳的地方,埋管的费用要占到整个工程造价的50%以上; 3)地源热泵夏天将热量从房间转移到土壤里,冬天将热量从土壤里转移到房间里,如 果这两个热量是基本平衡的,系统是安全和高效的,如果两个热量相差太远,轻则导致系统的能效比下降,重则导致系统崩溃,无法正常制冷和制热。

空气源热泵空调系统设计方案

空气源热泵空调系统设计 方案 第1章绪论 改革开放以来,随着国民经济的迅速发展和人民生活水平的大幅度提高,能源的消耗越来越大,其中建筑能源占相当大的比例。据统计,我国历年建筑能耗在总能耗的比例是19%~20%左右,平均值为19.8%。其中,暖通空调的能耗约占建筑总能耗的85%。在发达城市,夏季空调、冬季采暖与供热所消耗的能能量已占建筑物总能耗的40%~50%。特别是冬季采暖用的燃煤锅炉、燃油锅炉的大量使用,给大气环境造成了极大的污染。因此,建筑物污染控制和节能已是国民经济发展的一个重大问题。热泵空调高效节能、不污染环境,真正做到了“一机两用”(夏季降温、冬季采暖),进入20世纪90年代以来在我国得到了长足的发展,特别是空气源热泵冷热水机组平均每年以20%的速度增长,成为我国空调行业又一个引人注目的快速增长点。 所谓热泵,就是靠电能拖动,迫使热量从低位热源流向高位热源的装置。也就是说,热泵可以把不能直接利用的低品位热能(空气、土壤、井水、河水、太阳能、工业废水等)转换为可以利用的高位能,从而达到节约部分高位能(煤、石油、燃气、电能等)的目的。类似于人们把水自低水头压送至高水头的机械称为“水泵”,把气体自低压区送至高压区的机械称为“气泵”(在我国习称气体压缩机),因而把这种输送热能的机械称为“热泵”。因此,在矿物能源逐渐短缺、环境问题日益严重的当今世界,利用低位能的热泵技术已引起人们的关注和重视。空气源热泵的历史以压缩式最悠久。它可追溯到18世纪初叶,可以说1824年卡诺循环的发表即奠定了热泵研究的基础。热泵的发展受制于能源价格与技术条件,所以其历史较为曲折,有高潮有低潮,但热泵发展的前景肯定是光明的。当前热泵研究的方向是向高温高效发展,即开发高温热泵并最大限度提高COP(性能系数 Coefficient of Performance)值,同时积极发展吸收和化学热泵等。空气源热泵热水机组的制造、推广和使用在我国只是最近10年的事,但由于其相对传统制取热水设备的高效节能、环保、安全、智能化控制、不占用永久性建筑空间等优点而引起了市场日益广泛的关注。 热泵热水机组以清洁再生原料(空气+电)为能源,既不使用也不产生对人体有害的气体,同时也减少了温室效应和大气污染。目前,在我国电力资源短缺

空气源与水源热泵对比分析报告文案

空气源热泵与水源热泵比较 一、概述: 在我国主要利用三种热泵技术,分别是水源热泵,地源热泵,以及空气源热泵。 热泵即可制冷,又可制热。制冷时,其工作原理跟一般的冷气机没有区别;制热时,利用制冷循环系统的热端,将冷凝器排出的热量送入室内采暖或加热生活用水。这时,热泵的运行过程看起来就像是把低温端的热量,源源不断地抽送到高温端一样,所以形象地称之为热泵。如果热泵的冷端(蒸发器)直接置于室外的空气之中,称之为空气源热泵;如果其冷端(蒸发器)通过管道埋植于水中,则称之为水源热泵。 二、水源热泵 2.1优点: 2.1.1水源热泵技术属可再生能源利用技术 2.1.2水源热泵属经济有效的节能技术 2.1.3水源热泵环境效益显著 2.1.4水源热泵一机多用,应用范围广 2.1.5水源热泵空调系统维护费用低 2.1.6水源热泵高效节能。水源热泵是目前空调系统中能效比(COP值)最高的制冷、制热方式,理论计算可达到7(空气源热泵理论值为2--6),实际运行4~6。 2.2水源热泵的应用限制 2.2.1利用会受到制约; 2.2.2可利用的水源条件限制,对开式系统,地源要求必须满足一定的温度、水量和清洁度;

2.2.3水层的地理结构的限制,对于从地下抽水回灌的使用,必须考虑到使用地的地质的结构,保证用后尾水的回灌可以实现; 2.2.4投资的经济性,由于受到不同地区、不同用户及国家能源政策、燃料价格的影响,虽然总体来说,水源热泵的运行效率较高、费用较低,但与传统的空调制冷取暖方式相比,在不同地区不同需求的条件下,水源热泵的投资经济性会有所不同; 2.3水源热泵目前的市场状况: 水源热泵目前主要应用在北方冬季寒冷的地区,而在广阔的南方很少见到身影。 主要原因:南方主要以空气源热泵为主,冬天对空调制热的依赖不如北方明显,主要用来洗澡,所以空气源热泵基本能满足需要,并且工程相对简单,造价成本要低。所以这类产品有较大的局限性,所以必须要走产品的差异化道路,来做好产品的推广! 三、污水源热泵: 3.1简介:污水源热泵是水源热泵的一种。众所周知,水源热泵的优点是水的热容量大,设备传热性能好,所以换热设备较紧凑;水温的变化较室外空气温度的变化要小,因而污水源热泵的运行工况比空气源热泵的运行工况要稳定。处理后的污水是一种优良的引入注目的低温余热源,是水/水热泵或水/空气热泵的理想低温热源。 3.2污水源热泵的形式 污水源热泵形式繁多,根据热泵是否直接从污水中取热量,可分为直接式和间接式两种。 所谓的间接式污水源热泵是指热泵低位热源环路与污水热量抽取环路之间设有中间换热器或热泵低位热源环路通过水/污水浸没式换热器在污水池中直接吸取污水中的热量。而直接式污水源是城市污水可以通过热泵或热泵的蒸发器直接设置在污水池中,通过制冷剂气化吸取污水中的热量。

空气源热泵与电锅炉取暖的区别

空气源热泵与电锅炉取暖的区别 日期:2015-01-21 作者:西莱克热泵点击:535 空气源热泵与电锅炉都是使用电的设备,是北方目前煤改电政策的首选的取暖设备;它们之间有什么区别,它们的好处分别是什么?投资成本怎样,它们两者那种更好,更节能,都是用户选购之前必须了解清楚的。 一从投资成本来看。 相同产热量的情况小,电锅炉要比空气源热泵稍微便宜一点,但是它需要的电功率要比空气源热泵大3倍作用。 二、从节能性来看》 空气源热泵是通过吸收空气中热量,经过压缩机压缩产热的过程,比传统的电节能4倍左右;而电锅炉是直接产热的设备,中间没有经过任何的转换直接产热的过程,所以只能产生90%的热量,节能性空气源热泵比电锅炉节能。 1、、空气源热泵常年可以实现1KW可以转化4KW的过程。 2、锅炉只能实现1KW实现0.95KW或者更低的过程。 三、工作原理的差异: 1、空气源热泵运转基本原理根据是逆卡循环原理,液态工质首先在蒸腾器内吸收空气中的热量而蒸腾形成蒸汽(汽化),汽化潜热即为所回收热量,然后经压缩机压缩成高温高压气体,进入冷凝器内冷凝成液态(液化)把吸收的热量发给需求的加热的水中,液态工质经胀大阀降压胀大后从头回到胀大阀内,吸收热量蒸腾而完成一个循环,如此往复,不断吸收低温源的热而输出所加热的水中,直接达到预定温度。 2、电锅炉也称电加热锅炉、电热锅炉,望文生义,它是由电加热和相关的电控部件组成的,主要以电加热的形式,向外输出具 有必定热能的蒸汽、高温水或有机热载体的设备。 四、机构上的区别: 1、空气源热泵机组比较复杂,主要由压缩机、冷凝器、蒸发器、膨胀阀、四大部件组成。 2、锅的机构比较简单,主要由大功率的电热线和绝缘的壳体组成。 五、安全性的区别 空气源热泵产热过程中,无压力,无漏电的危险,电锅炉产热的过程,主要绝缘的壳体,看是否有漏电的可能,有触电的危险。 六、电功率的要求 空气源热泵需要的电负荷要比电锅炉小1/3,对电网的要求小于传统的电锅炉。 七、功能上的区别: 空气源热泵属于空调设备,在使用过程中可以根据用户的需求,实现取暖和制冷功能和日常的生活热水,实现了三合一;,而电锅炉比较单一,只能实现取暖功能。 当然,由于投资成本方面的制约,用户得根据自己的经济条件来选取合适自己的取暖产品,由于电锅炉的安全系数比较低,所以在选购的时候,必选选用品牌大,售后服务好的公司生产的;选用空气源热泵应当选用在行业比较知名的品牌厂家。 上一篇:空气源热泵制热量受哪些因素影响 下一篇:别墅安装什么样的取暖设备比较好

一目了然的空气源热泵原理

一目了然的空气源热泵 一、什么是热泵? 热泵不是水泵,甚至不是泵,而是成套装置。热泵的英文名称heat pump,它有2个定义:定义1:从低温热源吸热送往高温热源的循环设备。 定义2:以消耗一部分高品位能源(机械能、电能或高温热能)为补偿,使热能从低温热源向高温热源传递的装置。 让我们来回忆一下物理知识: 热力学第一定律:能量守恒定律。 热力学第二定律:热量可以自发地从温度高的物体传递到温度低的物体,但不可能自发地从温度低的物体传递到温度高的物体。 那热泵是不是违反热力学定律的怪物?热泵是不是永动机? 我们来看一下热泵的工作原理: 高压锅:大于1个大气压,水的沸点会超过100℃, 换言之,在高压下,水蒸气会在超过100 ℃的情况下冷凝成液体! 在2个大气压下,水的沸点是121 ℃!

低压锅:小于1个大气压下,水的沸点会低于100℃, 换言之,在低压下,水会在低于100 ℃情况下蒸发成气体! 在0.12个大气压下,水的沸点是50 ℃! 通过压缩机做功,使工质产生物理变相(气态--液态--气态),利用这一往复循环相变过程不断通过低压锅(蒸发器)吸热和高压锅(冷凝器)放热,由吸热装置吸取免费的热量,经过热交换器使冷水升温,制取的热水通过水循环系统送至用户。 蒸汽机开启了第一次工业革命,世界进入到利用能源的新时代,其原理是卡诺循环,是利用热能转化为机械能的方式,能效永远低于1。

热泵则开启了节约能源的新时代。其原理是逆卡诺循环,利用机械能将低温热能转换为高温热能的方式,能效永远大于1,热泵是节约能源的最佳方式。 各种能源形式的密度最高的是电力 中国能源的最佳利用方式:

空气源热泵选型计算

4 主要设备选型计算 4.1冷源设备的选择 1)冷源形式:本项目冷源采用空气源热泵机组。 2)设备容量计算与配置 根据项目的设备布置条件,选用5台机组,其中3台布置在201号楼5楼,2台布置在181号楼7楼。项目计算冷负荷为2574kW,181号楼预留冷负荷1096kW,总冷负荷3670kW。选用单台制冷量为735kW的空气源热泵机组5台。 4.2热源设备的选择 1)热源形式:本项目冷源采用空气源热泵机组。 2)设备容量计算与配置 项目计算热负荷为1411kW,181号楼预留热负荷768kW,总热负荷2179kW。 项目空气源热泵容量根据夏季制冷工况选择,按冬季-2.2℃工况修正校核。 根据设备厂家资料,温度修正K1=0.72;融霜修正K2=0.9;机组单台制热量为Q=735*0.72*0.9=475kW。 机组制热量可以满足冬季制热需求。 4.3水泵选型计算 1)水泵流量计算 2)水泵扬程计算 a)最不利环路水系统简图 b)扬程计算汇总表 (注4.3-2) 3)水系统水力平衡 空调水系统各管道环路,通过设置平衡阀和调节阀使各并联环路之间的压力损失相对差额不大于15%。(注4.3-3) 4)水系统输送能效比计算

(注4.3-4) 5通风系统计算 5.1 通风系统风量计算(注5.1) 5.2通风系统水力计算与风机单位风量耗功率计算1)通风系统水力计算简图 2)通风系统水力计算表(注5.2-1) 3)通风系统风机单位风量耗功率计算(注5.2-2)

6空调系统计算 6.1 空调系统焓湿图计算 (注6.1) 6.2空调系统水力计算与风机单位风量耗功率计算 1)空调风系统水力计算简图 2)空调风系统水力计算表(注6.2-1) 3)空调风系统风机单位风量耗功率计算(注6.2-2) 7节能措施 7.1本工程夏季计算冷负荷XX kW,冬季计算热负荷XX kW。建筑面积为XX m2,单位面积冷负荷指标为XX W/m2, 单位面积热负荷指标为XX W/m2。 7.2主要冷(热)源设备及能效比 (注7.2) 7.3空调水系统输送能效比详4.3,均满足相关节能规范要求。 7.4普通通风系统风机单位风量耗功率详5.2,均满足相关节能规范要求。

污水源热泵 地源热泵与空气源热泵的比较

污水源热泵地源热泵与空气源热泵的比较 污水源热泵系统与传统换热器相比的优越性就是污水源热泵以城市污水做为室内制冷供暖的冷热源,在消耗少量电力的情况下通过污水源热泵系统内部的热泵做功,将污水中的 冷热能传递到室内以满足人类的需求。 污水源热泵系统既可以采暖又能够制冷,可以说是一机两用,在很大程度上帮助现代企业降低了运营成本,而且采用污水做为建筑物取暖制冷的能源,同传统的依靠煤炭和地下水来采暖制冷相比,节能而且环保。 污水源热泵系统与空气源热泵,电锅炉煤炭采暖,地源热泵采暖制冷相比较: 1.同空气源热泵系统相比较 污水源热泵系统与空气源热泵相比,避免了空气源热泵冬季需要定时的结霜和除霜问题,由于污水的内部温度相对来说一年四季都处于一个比较平稳的转台,因此污水源热泵系统的工作性能相对也是比较稳定。一般情况下热泵的制热制冷系数可以达到5~6,这个制冷制热系数是在产生相同冷热能的情况下所消耗的能量要比空气源热泵节省42%-45%. 2.同地下水水源热泵相比较 污水源热泵系统与地下水水源热泵相比较而言,好处是采用污水作为能源因而避免了从地下水中抽取水资源,因此也就不必浪费大量的精力和物力考虑和解决废水回灌的问题,这就在解决了打井基建的同时,还能够节省后期抽水和废水回灌的运行费用。而且还可以避免由于回灌不当而引发的地下水资源破坏等问题。 3.与电锅炉和燃煤锅炉相比较 与电热锅炉相比,污水水源热泵是借助电力来驱动内部热泵进行做功,产生相同冷热能的情况下,其消耗的电能相比之于电锅炉可以节省电能将近65%,比燃料锅炉也要节省出1/2的能源。传统的锅炉燃烧会产生大量的有害气体,因而容易对大气造成破坏,而污水源热泵系统采取污水进行换热与其相比更加环保而且节能而且还能避免由于使用传统锅炉造成的大气污染,具有良好的环保效应。 污水源热泵系统的利用一般有两种方式,一种是是直接利用,就是污水直接进入热泵机组内部进行换热后在将冷热能传递给室内;而是间接利用方式,间接利用方式通常是污水先流经污水换热器进行换热,换热后在有热泵将冷热能传递到室内。如果直接让污水通过污水源热泵进行换热,容易导致热泵的堵塞,长期会造成换热效率的降低;采取间接式方式离心式污水换热器,在提高换热效率的同时也有效的避免了污水污渍在换热器内部造成堵塞,可 谓是一举两得。 斯方达舒适家居一站式服务平台

污水源热泵工作原理及效益分析

污水源热本调研报告 所谓污水源热泵,主要是以城市污水做为提取和储存能量的冷热源,借助热泵机组系统内部制冷剂的物态循环变化,消耗少量的电能,从而达到制冷制暖效果的一种创新技术。 城市污水源热泵空调技术能实现冬季供暖、夏季空调、全年生活热水供应(很廉价的热水供应方案)、夏季部分免费生活热水供应。城市污水热泵空调是一项高新技术,具有节能、环保及经济效益,符合经济与社会的可持续性发展战略。城市污水源热泵机组以污水为冷热源,冬季采集来自污水的低品位热能,借助热泵系统,通过消耗部分电能(1份),将所取得的能量(大于4份)供给室内取暖;在夏季把室内的热量取出,释放到水中,以达到夏季空调的目的。 1、污水源热泵的工作原理 污水源热泵的主要工作原理是借助污水源热泵压缩机系统,消耗少量电能,在冬季把存于水中的低位热能“提取”出来,为用户供热,夏季则把室内的热量“提取”出来,释放到水中,从而降低室温,达到制冷的效果。其能量流动是利用热泵机组所消耗能量(电能)吸取的全部热能(即电能+吸收的热能)一起排输至高温热源,而起所消耗能量作用的是使介质压缩至高温高压状态,从而达到吸收低温热源中热能的作用。 污水源热泵系统由通过水源水管路和冷热水管路的水源系统、热泵系统、末端系统等部分相连接组成。根据原生污水是否直接进热泵机组蒸发器或者冷凝器可以将该系统分为直接利用和间接利用两种

方式。直接利用方式是指将污水中的热量通过热泵回收后输送到采暖空调建筑物;间接利用方式是指污水先通过热交换器进行热交换后,再把污水中的热量通过热泵进行回收输送到采暖空调建筑物。 2、污水源热泵系统的特点: (1)环保效益显著 城市污水源热泵是利用了污水作为冷热源,进行能量转换的供暖空调系统。供热时省去了燃煤、燃气、然油等锅炉房系统,没有燃烧过程,避免了排烟污染;供冷时省去了冷却水塔,避免了冷却塔的噪音及霉菌污染。不产生任何废渣、废水、废气和烟尘,环境效益显著。 (2)高效节能 冬季,污水温度比环境空气温度高,所以热泵循环的蒸发温度提高,能效比也提高。而夏季污水温度比环境空气温度低,所以制冷的冷凝温度降低,使得冷却效果好于风冷式和冷却塔式,机组效率提高。 (3)运行稳定可靠 污水的温度一年四季相对稳定,其波动的范围远远小于空气的变动。是很好的热泵热源和空调冷源,水体温度较恒定的特性,使得热泵机组运行更可靠、稳定,也保证了系统的高效性和经济性。不存在空气源热泵的冬季除霜等难点问题。 (4)一机多用,应用范围广 此热泵系统可供暖、空调,生活热水供应(夏季免费)等。一机多用,一套系统可以替换原来的锅炉加空调的两套装置或系统。 (5)投资运行费用低

空气源热泵对比天然气能耗计算

此文档收集于网络,如有侵权请联系网站删除 空气源热泵耗电与天然气耗气费用对比 一、基础计算 1、电能热值860大卡/千瓦时,空气源热泵冬季采暖综合能效比3:1,即用空气 源热泵冬季采暖每千瓦时热能平均2580大卡/千瓦时 2、天然气热值8000大卡/m3,天然气普通锅炉热效率70%,即实际计算5600 大卡/m3。冷凝锅炉热效率97%,即实际计算7760大卡/m3. 3、烧开热水每吨需要热量(温升85度)8500大卡。则用空气源热泵需用电3.29 度,费用(3.29×7.1=2.34元)用天然气普通锅炉需要1.52m3(1.52×3.7=5.62元)。用天然气冷凝炉耗气1.1 m3(1.1×3.7=4.07元) 综合上边计算结果, 天然气普通锅炉制热对比空气源热泵费用5.62÷2.34=2.4倍。 天然气冷凝锅炉制热对比空气源热泵费用4.07÷2.34=1.74倍 二、空气源热泵采暖1000平米耗电计算 车间建筑热负荷估值为100W,(室外-9℃,室内18℃) 采暖需求热负荷:100KW 冬季-9℃时,设备的能效比为2.2;(采暖季综合能效比为3.0) 采暖季日均运行费用:100KW×10h÷3=333KW/h 采暖季120天×333度=39960度电。(约4万度电) 三、天然气锅炉采暖1000平米耗气计算 车间建筑热负荷估值为100W,(室外-9℃,室内18℃) 采暖需求热负荷:100KW 1KW=1kj/s=3600kj/h 1大卡=4.18kj 100KW×3600kj/h×10h÷(5600大卡×4.18kj)=154 m3 采暖季120天×154 m3=18480 m3(约1.85万立方天然气) 河北合和节能科技有限公司 2015.10.6 只供学习与交流

空气能计算公式大全

空气能计算公式 一、空气源热泵制热功率公式及计算(计算电、电费 /年) 1卡等于4.2焦耳?热量单位换算:1千卡/千克(kcal/kg )=1大卡=4.1868千焦(kJ )=1卡/克 它与焦耳的关系为:1卡20C =4.1868J 1千卡:是能使出1升水上升摄氏1度的热量。 1大卡=1000卡 (1 大卡=1000 卡 /千克(kcal/kg )=4.1868 千焦(kJ )=1 卡/克) 1° =1000 千瓦 1 千瓦=1000 瓦=860 kca1/h (千卡 / 时) ★千瓦换算成大卡 1大卡=1千卡/时=1.163w=860kca1/h (千卡/时) 1 kW (千瓦)=860 kca1/h (千卡/时) 20万大卡=200000千卡=232.56千瓦、 ★ 1° 度=1 千瓦 / 时=860 kca1/h (千卡 / 时)=859971.2 卡=3599.7 千焦=3599712 焦耳 1吨水加热到1°需要多少度电 一度电是一千瓦时就是 3600秒*1000瓦=3600000焦耳。 水的热容量(比热)是4.16焦耳/克*度 一千克水加热一度需要 4160焦耳,也就是4160/3600000度电=0.0000002755。 ★ 1吨水加热到55度需要123.5度电 水的比热是4.2 X 10A 3焦/(千克X C ),表示质量是1千克的水,温度升高(或 降低)1C ,吸收(或放出)的热量是4.2 X 10A3焦。1度=1000W*3600S/H=36*10A5 焦耳。 根据cm A t=Q 得到: 1 kcal = 4186.75 J 1kca1/h (千卡 / 时)=1.163 W (瓦) 20大卡=20000卡/时=20千卡

空气源热泵热水机组工作原理及节能分析

空气源热泵热水机组工作原理及节能分析 、空气能热水中心机组工作原理 空气源热泵热水机组是一种新型、可替代热水锅炉的热水装置。与传统太阳能相比,空气能源热泵热水机组不仅可吸收空气中的热量,还可吸收太阳能,它是将电热水器和太阳能热水器的优点完美的结合于一体的新型热水器。该产品以制冷剂为媒介,通过制冷剂状态、温度的变化和压缩机压缩制取热量,通过换热装置将热量传递给水,使水的温度升高来,升高温度的水通过水循环系统送入用户散热器进行采暖或直接用于卫生热水的供应。 空气源热热泵热水机组技术是基于逆卡诺循环原理建立起来的一种节能、环保制热技术。空气源热泵热水中机组系统通过自然能(空气蓄热)获取低温热源,经热泵系统高效集热整合后成为高温热源,用来制取供暖或卫生热水。整个系统集热效率较电热水机组(锅炉)、燃油、燃气热水机组有了很大提高。 空气源热热泵热水中心机组遵循能量守恒定律和热力学第二定律,运用热泵的原理,只需要消耗一小部分的机械功(电能),将处于低温环境(大气)中的热量转移到水中,去加热制取高温的热水。热泵可以与水泵相比拟,水是不能自发地从低处流向高处,要将低处的水输送到高处,必须用一台水泵,消耗一部分电力,才能将水送到高处的水箱中。同样,根据热力学第二定律,热量也是不能自发地从低温环境向高温环境中转移(传送),而要实现这个目的,必须要有一台机器,消耗一部分机械功(例如电能),才能将低温环境中的热量传送到高温环境中去。这样的机器就称之为“热泵”。热泵的作用是将空气中的热量取出,连同本身所用的电能转变成的热能,一起送到水中。 空气源热泵热水机组由压缩机、冷凝器、蒸发器和膨胀阀等部件组成。它运用逆卡诺循环原理,通过压缩机做功使工质产生相变(气态—液态—气态),在这种往复循环相变的过程中,通过蒸发器不间断的从环境吸取热量,通过冷凝器(换热器)不间断的放出热量,使冷水逐步升温,制取的热水通过热水管网循环装置输出到用户使用终端。 空气源热泵热水机组工作原理图 二、空气源热泵热水机组特点:目前市场上空气源热泵热水机组大部分属于技术成熟产品,压缩机一般采用涡 旋式或活塞式,也有采用螺杆式的,每台机组一般有单台或两台,一般机组有如下特点: (1)高效节能:其输出能量与输入电能之比即能效比(COP 一般可达到3.0 以上,而普通电热水锅炉的能效比(COP不大于0.90,燃气、燃油锅炉的能

空气能热泵的三种取暖方式

空气能热泵采暖的三种方式 第一种方式:空气能热泵主机+风机盘管供暖系统 优点:风机盘管通常是暗装吊顶,不会占用生活区域空间,比明装散热片节省空间,而且出风温和,不像空调或电暖风机吹出的热风那样干燥不适,同时风盘换热效率高,采暖区域会在较短时间内达到设定温度。 而且因为出热水温度在45℃左右,空气能热泵的效率很高。若使用采暖/制冷空气源热泵机组,还可以替代中央空调实现夏季制冷。 缺点:绝大部分风机盘管出热风是吹在头部,容易形成头燥足冷的现象,舒适度一般。目前也有少部分新型底部出风的风盘地暖机, 让暖风从底部吹出,其效果要比顶部送热风的方式好一些,但同时也会存在占用生活空间,地表浮尘被带入空气中等问题。 适用场合:适用于非连续、间歇性采暖需求的用户。比如:商超、饭店、办公室、周末归家族等。 第二种方式:空气能热泵主机+地暖供暖系统 优点:公认的最舒适的家庭采暖方式,采暖温度均匀,暖热从脚生,符合中医“头凉足暖”的理论。地板采暖所需的热水温度一般在40℃左右,空气能热泵出热水温度在40℃左右时,效率更高。 缺点:地暖的前期安装比较复杂,若是改造已装修过的房屋,需撬开地板才能安装,初装成本较高;此外,空气能地暖时需要提前预热,加热慢。

适用场合:适用于需要连续供暖的场所,以及对采暖舒适度有较高要求的用户。比如:宾馆酒店、别墅以及家中常住老人与小孩的家庭。 第三种方式:空气能热泵主机+暖气片供暖系统 暖气片所需要的热水温度一般要求达到55℃以上,热水温度越高,空气能热泵效率越低,因为冬季气温本来就偏低,这使得热泵在空气中获取热量的难度变大,热泵的能效会大大降低,设备能耗大幅增加,无法做到节能采暖。 优点:暖气片是即开即热,升温较快;可以明装,不受地板影响。 缺点:加热慢,热量不均匀,对热水温度要求高,空气能热泵主机负荷大,制热效率低,在环境温度较低而且采暖热负荷较高的地区节能采暖效果不佳。 适用场合:适用于采暖热负荷低,室内外保温效果较好,旧房改造或装修后不能装地暖或风盘的用户。 以上这三种方式,都是根据用户的实际需求与使用环境来确定的,有时还可以进行多种方式组合供暖,比如在卧室装地暖,客厅装风盘等。 此外,空气能采暖系统,还需要配备合适的缓冲保温水箱,以此利用白昼温差以及波谷电价达到更好的节能和供暖效果,并延长空气能热泵主机的使用寿命。 总体来说,通过专业的公司来合理配置空气能采暖方式加上规范的安装等完整的系统施工,最终都能让空气能采暖达到节能环保、智能采暖、省心又省钱的效果。

螺杆机与直燃机对比分析

一、溴化锂制冷机组和电制冷冷水机组综合分析 选择什么样的中央空调,对现代化的酒店而言是一件举足轻重的事情。因为对业主来讲使用空调是一项长达二、三十年的事情,直接涉及到初期的投资、每年的运行费用、所使用能源的长远性、设备的性能、维护保养费用等。我们根据工程的具体情况,在此将螺杆式冷水机组加锅炉推荐方案与溴化锂直燃机作出比较,以供投资方在决策时作参考。首先对溴化锂制冷机组和电制冷冷水机组做以下简要介绍。 1、溴化锂制冷机组 溴化锂制冷机组是利用燃油或燃气提供能源,可同时或单独提供制冷、采暖、卫生热水,冷媒使用溴化锂溶液。但由于溴化锂制冷机组能量利用效率较低、初投资高、冷量逐年衰减大,维护费用高、工作稳定性差、寿命短等缺点,应用范围很窄,比较适用于有廉价的天燃气、蒸汽或缺电的地区。近年来,由于供电的影响,有些用户选择了溴化锂机组,同时也使该机组本身的一些致命的弊端暴露无疑: 1)、使用寿命短:直燃溴冷机的进口机采用90/10铜镍管作换热器传热管,设计使用寿命为10年,国产机采0p-用95/5铜镍管作换热器传热管,设计使用寿命为8~10年; 2)、冷量衰减严重:每年机器容量衰减约7%左右。大部分溴冷机组运行使用三年后,冷量衰减达30%以上。 3)、运行维护费较高:不仅运行费用高,且每年需对内部铜管进行清洗,使用两年后每年需对溴化锂溶液再生处理,每年正常维修、维护费用均大大高于电制冷机组。 4)、溴化锂结晶的影响:操作略有不当或电源不稳定,很容易导致溴化锂结晶,堵塞喷嘴,造成冷量衰减,严重时使机组无法正常运行;

5)、制冷剂污染的影响:溴化锂溶液很容易进入蒸发器和冷凝器,造成冷量严重衰减,严重时可能导致两器的液位下降,影响溶液泵的正常工作。 3、设备特性比较 1)、运行状态 直燃机采用溴化锂溶液作吸收剂,水作为制冷剂,借助于燃烧机产生的热量作为动力在高温发生器、低温发生器、冷凝器、吸收器、蒸发器之间使溴化锂溶液不断发生吸收与释放水蒸汽的化学过程,从而达到热量迁移,产生冷冻水的目的。溴冷机所有的热量转移的过程都是依靠大温差传部,而且燃烧机火焰温度高达1400℃t,高温发生器、高温热交换器内温度高达165℃,传热温差高达123℃~ 1235℃,不可逆传热损失占了溴冷机能源总值的绝大部分,因此直燃溴冷机的制冷效率COP值仅0.98左右,国内个别品牌声称其制冷效率达到1.2左右,这并没有得到权威检测部门的测试,更没有得到世界权威机构的认证。 电动式制冷机依靠近世纪不断发展的先进技术,从材料到加工技术都取得了质的飞跃,压缩机压缩作功,冷媒在蒸发器和冷凝器内等温相变,达到能量转移的目的,传热温差小,不可逆损失小,深受制冷空调领域的青睐,目前,电动压缩式制冷机的市场占有率超过99%,其中直接采用终端电能作能源的电动式冷水机组的市场占有率已超过80%以上。电动螺杆式和离心式冷水机组的平均能效值高达5.6,是直燃型溴冷机的6倍左右。 2)、运行可靠性 溴化锂制冷机因下列几个方面的原因大大影响了其可靠性,冷量衰减极其严重: ⑴溴化锂结晶的影响

空气源热泵与水源热泵比较

水源热泵与空气源热泵比较 一、定义: 在我国主要利用三种热泵技术,分别是水源热泵,地源热泵,以及空气源 热泵。 热泵即可制冷,又可制热。制冷时,其工作原理跟一般的冷气机没有 区别;制热时,利用制冷循环系统的热端,将冷凝器排出的热量送入室内采暖,或加热生活用水。这时,热泵的运行过程看起来就像是把低温端的热量,源源不断地抽送到高温端一样,所以形象地称之为热泵。如果热泵的冷端(蒸发器)直接置于室外的空气之中,称之为空气源热泵;如果其冷端(蒸发器)通过管道埋植于水中,则称之为水源热泵。 二、水源热泵的优点 : (一)水源热泵技术属可再生能源利用技术 (二)水源热泵属经济有效的节能技术 (三)水源热泵环境效益显着 (四)水源热泵一机多用,应用范围广 (五)水源热泵空调系统维护费用低 (六)水源热泵高效节能。水源热泵是目前空调系统中能效比 (COP值)最高的制冷、制热方式,理论计算可达到7(空气源热泵理论值为2--6),实际运行4~6。 三、水源热泵的应用限制 1:会受到制约。 2、可利用的水源条件限制,对开式系统,地源要求必须满足一 定的温度、水量和清洁度。 3、水层的地理结构的限制,对于从地下抽水回灌 的使用,必须考虑到使用地的地质的结构,保证用后尾水的回灌可以实现。 4、投资的经济性,由于受到不同地区、不同用户及国家能源政策、燃料价格的影 响,虽然总体来说,水源热泵的运行效率较高、费用较低,但与传统的空调制 冷取暖方式相比,在不同地区不同需求的条件下,水源热泵的投资经济性会有 所不同。

四、水源热泵目前的市场状况: 水源热泵目前主要应用在北方冬季寒冷的地区,而在广阔的南方很少见到身影。主要原因:南方主要以空气源热泵为主,冬天对空调制热的依赖不如北方明显, 主要用来洗澡,所以空气源热泵基本能满足需要,并且工程相对简单, 造价成本要低。所以这类产品有较大的局限性,所以必须要走产品的差异化道 路,来做好产品的推广! 五、空气源热泵的优点 空气源热泵优点一: 适用范围广,适用温度范围在-7℃至40℃,并且一年 四季全天候使用。可连续加热,适合各类团体热水工程使用,可实现无人值守,全自动运行。 空气源热泵优点二 运行成本低,节能效果突出,投资回报期短,空气源热 泵可节省70%的能源;与燃气、电和电辅助加热的太阳能热水器相比, 是燃气热水器的1/3左右、电热水器的1/4左右。 空气源热泵优点三: 环保型产品,无任何污染,无任何燃烧外排物,不会 对人体造成损害,具有良好的社会效益。 空气源热泵优点四: 方便。空气能热泵占地空间很小,外形与空调室外机 相似 , 可直接接保温水箱或与供暖管网连接,适合于大中城市的高层建筑。 空气源热泵优点五: 安全性能好,家用中央空调无任何漏电、漏气等安全 隐患。 空气源热泵优点六: 多组组合安装建立中央热水系统,可把多组相同型号 的热泵机组并联使用,确保整组热水器一体工作,满足热水用量高峰要求,为 大量用热水提供了保证。 空气源热泵优点七:使用寿命长、维护费用低,使用寿命长达15年以上,设备性能稳定。 运行安全,自动化程度高,该空气能热水器采用间接加热方式,运行安全靠;自

相关主题
文本预览
相关文档 最新文档