数学巧算速算方法
- 格式:docx
- 大小:36.46 KB
- 文档页数:1
三年级数学5大速算技巧,让孩子做题又快又准确!如果说学语文,最重要的基础是字词,那么学数学,最重要的基础就是口算了。
当代教育家,数学特级教师曾经说过:“计算要过关,必须抓口算。
”那么,怎样才能算得既快又准确呢?只要熟练掌握计算法则和运算顺序,根据题目本身的特点,使用合理、灵活的计算方法,化繁为简,化难为易,就能算得又快又准确。
先为大家介绍5个速算技巧:1. 方法一:带符号搬家法当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
例如:23-11+7=23+7-114×14×5=4×5×1410÷8×4=10×4÷82. 方法二:结合律法(1)在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。
例如:23+19-9=23+(19-9)33-6-4=33-(6+4)(2)在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。
例如:2×6÷3=2×(6÷3)10÷2÷5=10÷(2×5)(1)在加减运算中去括号时,括号前是加号,去掉括号不变号,括号前是减号,去掉括号要变号(原来括号里的加,现在要变为减;原来是减,现在就要变为加)。
例如:17+(13-7)=17+13-723-(13-9)=23-13+923-(13+5)=23-13-5(2)在乘除运算中去括号时,括号前是乘号,去掉括号不变号,括号前是除号,去掉括号要变号(原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。
)例如:1×(6÷2)=1×6÷224÷(3×2)=24÷3÷224÷(6÷3)=24÷6×33. 方法三:乘法分配律法括号里是加或减运算,与另一个数相乘,注意分配。
几种简单的数学速算技巧一、一种做多位乘法不用竖式的方法。
我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。
其中有趣的规律:积个位上的数字正好是两个因数个位数字的积。
十位上的数字是两个数字个位上的和。
百位上的数字是两个因数十位数字的积。
例如:12X14=168 1=1X1 6=2+4 8=2X4如果有进位怎么办呢这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。
~例如:14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1试着做做看下面的题:12X15= 11X13= 15X18= 17X19=二、几十一乘以几十一的速算方法例如:21×61=41×91=41×91= 51×61= 81×91= 41×51= 41×81= 71×81=这些算式有什么特点呢是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位和(和满10 进1),后写个位积。
“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十位数的和的个位数,最后写一个1 就一定正确。
我们来看两个算式:21×61=41×91=用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程。
第一个算式,21×61=思维过程是:2×6=12,2+6=8,21×61 就等于1281。
第二个算式,41×91=思维过程是:4×9=36,4+9=13,36+1=37,41×91 就等于3731。
小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确.一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来。
(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来。
2。
计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算。
3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算。
(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90—6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+"、“—”号的混合算式中,运算顺序可改变计算:(1)45—18+19(2)45+18-19解:(1)45—18+19=45+19-18=45+(19—18)=45+1=46这样想:把+19带着符号搬家,搬到—18的前面。
小学数学速算与巧算方法例解速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
几种简单的数学速算技巧一、一种做多位乘法不用竖式的方法。
我们都可以口算1X1 10X1,但是,11X12 12X13 12X14呢?这时候,大家一般都会用竖式,通过竖式计算,得数是132、156、168。
其中有趣的规律:积个位上的数字正好是两个因数个位数字的积。
十位上的数字是两个数字个位上的和。
百位上的数字是两个因数十位数字的积。
例如:12X14=168 1=1X1 6=2+4 8=2X4如果有进位怎么办呢?这个定律对有进位的情况同样适用,在竖式时只要~满几时,就向下一位进几。
~例如:14X16=224 4=4X6的个位 2=2+4+6 2=1+1X1试着做做看下面的题:12X15= 11X13= 15X18= 17X19=二、几十一乘以几十一的速算方法例如:21×61=41×91=41×91= 51×61= 81×91= 41×51= 41×81= 71×81=这些算式有什么特点呢?是“几十一乘以几十一”的乘法算式,我们可以用:先写十位积,再写十位和(和满10 进1),后写个位积。
“先写十位积,再写十位和(和满10 进1),后写个位积”就是一见到几十一乘以几十一的乘法算式,如果十位数的和是一位数,我们先直接写十位数的积,再接着写十位数的和,最后写上1 就一定正确;如果十位数的和是两位数,我们先直接写十位数的积加1 的和,再接着写十位数的和的个位数,最后写一个1 就一定正确。
我们来看两个算式:21×61=41×91=用“先写十位积,再写十位和(和满10 进1),后写个位积”这种速算方法直接写得数时的思维过程。
第一个算式,21×61=?思维过程是:2×6=12,2+6=8,21×61 就等于1281。
第二个算式,41×91=?思维过程是:4×9=36,4+9=13,36+1=37,41×91 就等于3731。
小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
速算与巧算方法随着数学竞赛的蓬勃发展,数值计算充满了活力,除了遵循四则混合运算的运算顺序外,破局部考虑、立整体分析,巧妙、灵活地运用定律和方法,对处理一些貌似复杂的计算题常常有事半功倍的效果,常见适用的巧算方法如下:一、凑整法整数速算与巧算的基础是凑整思想,通过用交换律、结合律和分配律凑出1,10,100,1000,…,将复杂的计算变简便。
运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,应用定律和性质“凑整” 运算数据,能使计算比较简便。
1 、加法“凑整”。
利用加法交换律、结合律“凑整”,例如:4673+27689+5327+22311=(4673+5327)+( 27689+2231 1)= 10000+50000= 600002、减法“凑整”。
利用减法的性质“凑整”,例如:50-13-7= 50 -( 13+7)= 303、乘法“凑整”。
利用乘法交换律、结合律、分配律“凑整”,例如:125 X 4X 8X 25X 78=(125X 8)X( 4X 25)X 78= 1000X100X 78= 78000004、补充数“凑整”。
末尾是一个或几个0 的数,运算起来比较简便。
若数末尾不是0,而是98、51 等,我们可以用( 100-2)、(50+1)等来代替,使运算变得比较简便、快速。
一般地我们把100叫作98的“大约强数”,2叫做98的“补充数”;50叫作51 的“大约弱数”,1 叫作51 的“补充数”。
把一个数先写成它的大约强(弱)数与补充数的差(和) ,然后再进行运算,例如:( 1 ) 387+99=387+( 100-1 )=387+100-1=486( 2) 1680-89=1680-( 100-11 )=1680-100+11=1580+11=1591(3) 69x 101=69X(100+1)=6900+69=6969二、基准数法根据数据特征,从诸多数中选择一个做计算基础的数,通过“割” 、“补”,采用“以乘代加”的方法速算。
常用的巧算和速算方法小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
数学巧算速算方法
以下是一些常见的数学巧算速算方法:
1. 乘法速算:
- 相邻两位数相乘:如72 × 74 = 5376,先计算7 × 7 = 49,再计算2 × 4 = 8,最后将结果连接起来,得到5376。
- 一位数乘以11的倍数:如4 × 44 = 176,将原数首尾加起来得到第一位数(4 + 4 = 8),再将原数的个位数放在中间,得到结果176。
2. 除法速算:
- 除以10的倍数:如240 ÷ 30 = 8,将被除数末尾的0去掉,再将结果与被除数的个位数相乘,得到最终结果8。
- 除以2的倍数:如468 ÷ 12 = 39,将被除数每一位数相加得到和(4 + 6 + 8 = 18),再判断和是否能被12整除,如果可以,则商为和除以12,否则商加1。
3. 平方速算:
- 以5为基准的平方:如65² = 4225,将原数去掉个位数后乘以(原数加1),再在末尾加上25,得到结果4225。
- 以50为基准的平方:如57² = 3249,将原数去掉个位数后乘以(原数加1),再在末尾加上49,得到结果3249。
这些巧算速算方法可以帮助简化数学运算,提高计算速度。
但需要注意的是,速算方法适用于简单的计算,对于复杂的计算仍然需要使用正常的计算方法。