变形观测的概念
- 格式:doc
- 大小:35.00 KB
- 文档页数:5
建筑物变形观测与动态位移监测3.1 变形概述建筑物在工程建设和使用过程中,由于基础的地质结构不均匀,土壤的物理性质不同,土基的塑性变形,地下水位的变化,大气温度的变化,建筑物本身的荷重(如风力,震动等)的作用,会导致工程建筑物随时间的推移发生沉降,位移,扰曲,倾斜及裂缝等现象。
这些现象统称为变形。
工程建筑物的变形,按其类型可以分为:静态变形和动态变形.静态变形通常是指变形观测的结果只表示在某一时期内的变形值,也就是说,它只是时间的函数;动态变形是指在外力影响下而产生的变形,故它是以外力为函数来表示的动态系统对于时间的变化,其观测结果是表示建筑物在某一时刻的瞬时变形.变形按时间长短可分为:长周期变形(建筑物自重引起的沉降和变形),短周期变形(温度变化引起的变形)。
按研究的范围可以分为:全局性变形,区域性变形,局域性变形。
按成因可以分为:人工干预变形,自然原因变形,综合原因变形。
3.2 变形观测概述3.2.1.变形观测所谓变形观测,是用测量仪器或者专用仪器测定建筑物及地基建筑物在荷载和外力作用下随时间变形的工作.通过变形观测,可以检查、各种工程建筑物和地质构造的稳定性,及时发现问题,确保质量和使用安全;更好的了解变形的机理,验证有关工程设计的理论和地壳运动的假说,建立正确的预报变形的理论和方法;以及对某种新结构,新材料,新工艺的性能做出科学的客观的评价。
变形观测属于安全监测。
变形观测有内部观测和外部观测两方面。
内部观测内容由建(构)筑物的内部应力,温度变化的测量,动力特征及其速度的测定等,一般不由测量工作者完成。
内部观测与外部观测之间有着密切的联系,应同时进行,以便互相验证和补充。
外部观测的内容主要有沉降观测,位移观测,倾斜观测,裂缝观测和扰度观测等.1、沉降观测它是指建筑物及其基础在垂直方向上的变形(也称垂直位移).沉降观测就是测定建筑物上所设观测点(沉降点)与基准点(水准点)之间随时间的变化的高差变化量.通常采用精密水准测量或液体静力水准测量的方法进行.2、水平位移观测它是指建筑物在水平面内的变形,其表现形式为在不同时期平面坐标或距离的变化.建筑物水平位移观测是测定建筑物在平面位置上随时间变化的移动量. 测定水平位移的方法很多,有常规的地面控制测量方法,如导线,前方交会法等;也有各专用方法,如基准线法,正、倒垂线法等3、倾斜位移观测它是指建筑物因为地基的不均匀沉降或其他原因造成的.建筑物倾斜位移分为两类:一类表现为以不均匀的水平位移为主;另一类则表现为以不均匀的沉降为主.倾斜观测是用经纬仪,水准仪或其他专用仪器测量建筑物的倾斜随时间变化的工作.对于上述两种倾斜一般采用不同的观测方法,前者可采用先测出水平位移然后计算倾斜的方法,即所谓的“直接法”;后者可通过测量建筑物基础相对沉降的方法进行测定,即先测出沉降后计算倾斜的方法,也就是所谓的“间接法”.4、裂缝观测它是指建筑物基础的不均匀沉降,温度的变化和外界各种荷载的作用,使得建筑物内部的应力大大超过了允许的限度,使得建筑物的结构产生裂缝。
简述变形观测的特点变形观测是地球科学领域中的一项关键技术,用于测定大地构造运动和地壳变形现象。
它是通过监测地球表面上地标、地面设备或卫星的位置变化,来研究地球的变形特征。
变形观测的特点主要体现在以下几个方面:首先,变形观测具有高精度的特点。
通过利用现代地测仪器和卫星测量技术,可以实现亚毫米级甚至亚米级的位移精度。
这种高精度的观测能力为研究地球变形提供了重要的数据基础,使得科学家们能够更准确地了解地球的变化。
其次,变形观测是一种非常实时的技术。
利用卫星遥感技术和全球定位系统(GPS),可以实时监测地球上的变形现象。
这种实时监测的特点使得我们能够更及时地了解地球的动态变化,提前预警和防范自然灾害,为灾害预防和减灾提供了重要的决策依据。
此外,变形观测还具有全局性的特点。
地球是一个复杂的系统,不同区域存在着不同的地壳运动和变形特征。
通过利用多个观测网点,可以实现对全球范围内地壳变形的监测。
这种全球性的观测能力有助于揭示地球不同区域的地壳运动规律,为全球性气候变化和地质灾害的研究提供了有力支持。
最后,变形观测还具有多尺度的特点。
地球的变形现象存在着多个尺度,包括大尺度的大陆漂移、板块运动,以及小尺度的地质构造变形等。
通过利用不同精度的观测仪器和技术,可以实现对不同尺度地壳变形的监测。
这种多尺度的观测能力使得科学家们能够更全面地了解地球的变形特征,揭示地球内部构造和演化的规律。
总而言之,变形观测作为地球科学领域的一项重要技术,具有高精度、实时性、全局性和多尺度性的特点。
通过利用这项技术,科学家们能够更加全面地了解地球的变形特征,为解释地球内部构造、预测地质灾害、以及应对全球气候变化等提供重要的科学依据。
因此,进一步推进变形观测技术的发展,将为地球科学研究和社会发展做出更大的贡献。
建筑物的变形观测一、建筑物的沉降观测步骤1. 水准点和观测点的设置水准点是沉降观测的基准,它应埋设在沉降影响范围以外,距沉降观测点20~100 m,观测方便,且不受施工影响的地方。
为了相互校核并防止由于某个水准点的高程变动造成差错,一般至少埋设三个水准点。
水准点之间的高差应用DS1 级水准仪、铟瓦水准尺和尺垫,或精密水准测量方法进行测定,将水准点组成闭合水准路线,或进行往返观测,其闭合差不得超过0.5 mm(n 为测站数)。
水准点的高程自国家或城市水准点引测,或者通过假定得到。
沉降观测的主要内容是建筑物的垂直位移监测,建筑沉降观测的首次观测应连续进行两次独立观测,并取观测结果的中数作为变形测量的初始值。
从基准点开始,组成闭合水准路线,按照二等水准观测精度施测,经平差计算后求出各观测点的相对高程,从而计算出沉降点的沉降量。
本项目自始至终都遵循“五定”原则。
“五定”即沉降观测依据的基准点、工作基点和沉降观测点,点位要稳定;所用仪器、设备要稳定;观测人员要稳定;观测时的环境条件基本一致;观测路线、镜位、程序和方法要固定。
以上措施在客观上尽量减少观测误差的不定性,使所测的结果具有统一的趋向性,保证各次复测结果与首次观测的结果可比性更一致,使所观测的沉降量更真实可靠。
观测点的数目和位置应能全面、正确反映建筑物沉降的情况,一般情况下,在民用建筑中,沿房屋四周每隔10~15 m 布置一点。
另外,在房屋转角及沉降缝两侧也应布设观测点。
观测点的埋设要求稳固,通常采用角钢、圆钢或铆钉作为观测点的标志。
2. 观测时间、方法及精度一般在增加荷重前后,如浇灌基础、回填土、安装柱子和厂房屋架、砌筑砖墙、设备安装、设备运转等,都要进行沉降观测。
施工期间,高层建筑物每升高1~2 层或每增加一次载荷,如基础浇灌、安装柱子等,就要观测一次。
3. 仪器设备DSZ1 精密水准仪,铟钢尺。
4. 沉降观测的成果整理沉降观测是一项长期、连续的工作,为了保证观测成果的正性,应尽可能做到“四定”,即固定观测人员、使用固定的水准仪和水准尺、使用固定的水准基点、按固定的实测路线和测站进行。
变形观测的基本方法
变形观测是地球物理学中的一项重要技术,用于研究地球内部的构造和性质。
变形观测的基本方法包括GPS观测、地面变形观测和遥感测量等,下面我们就来详细介绍。
GPS观测是通过全球定位系统(GPS)测量地球表面的变形情况。
GPS技术的原理是通过卫星发射的电磁波信号,测量接收器和卫星之间的距离,从而确定接收器的位置。
利用GPS观测可以测量地球表面的水平和垂直方向的运动和变形,以及地壳运动的速度和方向等信息。
地面变形观测是通过在地面上设置变形仪或地震仪等设备,测量地面的变形情况。
地面变形观测可以通过测量地震引起的地面变形,来了解地球内部的结构和运动情况。
同时,地面变形观测还可以监测地球表面的沉降、隆起、坡度等信息,以及地下水位、水文气候等因素对地面变形的影响。
遥感测量是利用卫星、飞机等遥感技术,对地球表面的形态、地貌、温度、湿度等信息进行观测和测量。
遥感技术可以测量地球表面的形态、高程、地形、地貌等信息,并通过遥感图像的分析,了解地球表面的变形情况。
同时,遥感技术还可以监测气候变化、海洋环境、冰川变化等信息,从而更好地了解地球表面的变化和演化。
除了以上三种基本方法,变形观测还包括其他一些技术,如测量地震波传播速度、电磁场变化等。
这些技术可以用于研究地球内部的构造和运动,以及地球表面的变形和演化情况。
总的来说,变形观测是地球物理学中的一项重要技术,可以用于研究地球内部的结构和运动,以及地球表面的变化和演化情况。
不同的变形观测方法可以提供不同的信息,从而更好地了解地球的变化和演化。
测绘基础知识-变形观测变形观测的概念:变形是指变形体在各种荷载作用下,其形状、大小及位置在时间域或空间域的变化。
变形监测又称为变形测量或变形观测,变形测量则是对设置在变形体上的观测点进行周期性地重复观测,求得观测点各周期相对于首期的点位或高程的变化量。
变形体用一定数量的有代表性的位于变形体上的离散点(称监测点或目标点)来代表,监测点的变形可以描述变形体的变形。
变形分类:1)变形体自身的形变。
变形体自身的形变包括:伸缩、错动、弯曲和扭转四种变形,2)变形体的刚体位移。
刚体位移则含整体平移、整体升降、整体转动和整体倾斜。
变形监测分类:(1)静态变形监测,静态变形是时间的函数,观测结果只表示在某一期间内的变形,静态变形通过周期测量得到。
(2)动态变形监测,动态变形指在外力(如风、阳光)作用下产生的变形,它是以外力为函数表示的,动态变形需通过持续监测得到。
变形观测对象1)研究全球性变形,如监测全球板块运动、地极运动、地球自转速率变化、地潮等;2)区域性变形研究,如地壳形变监测、城市地面沉降;3)工程和局部性变形研究,工程变形监测一般包括工程(构)建筑物及其设备以及其他与工程建设有关的自然或人工对象,这是本课程研究的主要内容。
工程变形的原因一、自然条件及其变化;二、与建筑物本身相联系的原因;三、勘测设计、施工及运营管理工作做的不合理,也会引起建筑物额外的变形。
变形监测的内容1)垂直位移(沉降)监测2)水平位移监测3)倾斜监测4)裂缝监测5)挠度监测6)日照和风振监测等变形观测的意义(1)首先是实用上的意义,主要是掌握各种工程建筑物的地质构造的稳定性,为安全诊断提供必要的信息,以便发现问题并采取措施;(2)其次是科学上的意义,包括更好地理解变形的机理,验证有关设计的理论和地壳运动的假说,进行反馈设计以及建立有效的预报模型对于工程的安全来说:监测是基础,分析是手段,预报是目的。
工程变形监测技术在工程和局部变形监测方面,地面常规测量技术、地面摄影测量技术、特殊和专业的测量手段、以及以GPS为主的空间定位技术等均得到了较好的应用。
水工建筑物的变形观测作者:金彤来源:《科学与财富》2016年第03期摘要:自然界的变形危害现象很普遍,如地震、滑坡、地表沉陷、溃坝、桥梁和建筑物垮塌等等。
当变形量不超过限定值时,建筑物是安全的,但如果超出了允许值,就有可能引发灾害,严重地危害人类的生命财产安全。
关键词:水工建筑物;变形;地震;地表沉陷1 变形观测的任务变形是自然界普遍存在的现象,它是指变形体在各种荷载作用下,其形状、大小及位置在时间域和空间域中发生变化。
所谓变形观测,就是利用测量仪器与专用仪器和方法对变形体的变形现象进行监视观测的工作。
其任务是在确定各种荷载和外力作用下,变形体的形状、大小及位置变化的空间状态和时间特征。
自然界的变形危害现象很普遍,如地震、滑坡、地表沉陷、溃坝、桥梁和建筑物垮塌等等。
由于许多自然灾害的发生都与变形有着密切的关系,所以变形监测研究成为有关学者给予高度关注的问题。
由于各类建筑物一旦出现安全事故,将给人民的生命财产造成损失,而水工建筑物的变形观测则会改变水流方向和水深变化,严重影响着船舶的航行安全。
“水工建筑物”是指在静水或动水中为开发、利用和保护水资源,减免水害而修建的承受水作用的建筑物。
主要有:挡水建筑物,如拦水坝、水闸、各种堤和海塘;泄水建筑物,如各种溢流坝、岸边溢洪道、泄水隧洞、分洪闸;进水建筑物,如进水闸、深式进水口、泵站;输水建筑物,如引水隧洞、渡槽、输水管道、渠道;河道整治建筑物,如丁坝、顺坝、潜坝、护岸、导流堤、锁坝。
要预防这些水工建筑物因严重变形发生灾害就必须对建筑物的变形进行监测,总结出变形发生的规律和原因,对于可控制的变形,力求控制变形发展的方向;对于不可控制的变形,则预测变形的大小,分析变形给建筑物造成的影响,以采取措施减小可能发生的灾害造成的影响。
2 建筑物的变形监测的分类2.1 工业与民用建筑:主要包括基础的沉降观测与建筑物本身的变形观测。
2.2 地下工程:主要包括隧道、深基坑等。
变形观测的主要内容变形观测是一种重要的地质勘探方法,通过对地质构造、地表形貌等进行观测和分析,可以揭示地质构造运动规律,为资源勘查和工程建设提供重要依据。
本文将介绍变形观测的主要内容,包括变形观测的概念、方法和应用。
一、概念。
变形观测是指通过对地质体的形变进行观测和分析,揭示地质构造运动的规律和特征。
地质体的形变包括水平位移、垂直位移、扭曲变形等,可以通过各种测量手段进行观测,如GPS定位、测斜仪观测、地面形变监测等。
变形观测可以帮助我们了解地质构造的活动程度,预测地质灾害的发生概率,为地质灾害防治和工程建设提供科学依据。
二、方法。
1. GPS定位。
GPS定位是一种常用的变形观测方法,通过在地表布设GPS测站,实时监测地表点的坐标变化,可以获取地表的水平位移和垂直位移数据。
利用GPS定位可以实现对地质体的形变监测,为地质构造运动提供准确的数据支持。
2. 测斜仪观测。
测斜仪是一种用于测量地表倾斜角度的仪器,可以对地表的扭曲变形进行观测。
通过布设测斜仪观测点,可以监测地表的扭曲变形情况,及时发现地质构造的活动特征。
3. 地面形变监测。
地面形变监测是利用遥感技术和地面观测手段,对地表形貌进行监测和分析。
通过遥感影像、激光雷达等技术,可以获取地表形变的数据,揭示地质构造运动的规律和趋势。
三、应用。
1. 地质灾害预测。
变形观测可以帮助我们对地质灾害进行预测和评估。
通过监测地质构造的形变情况,可以发现地质灾害的发生潜在性,及时采取防治措施,保护人民生命财产安全。
2. 工程建设。
在工程建设中,变形观测可以帮助我们了解地质构造的活动情况,及时调整工程设计方案,减少地质灾害的风险。
通过变形观测数据,可以为工程建设提供科学依据,保障工程的安全可靠性。
3. 资源勘查。
变形观测可以为资源勘查提供重要依据。
通过监测地质构造的形变情况,可以发现矿产资源的分布规律,指导资源勘查工作,提高勘查效率和准确性。
总结。
变形观测是一种重要的地质勘探方法,通过对地质构造的形变进行观测和分析,可以揭示地质构造运动的规律和特征。
变形观测规范变形观测规范,是指在地质调查和地质工程中,对地表和岩石体变形进行观测和记录的一系列规定。
它是进行土地开发、工程设计、地质灾害预防和岩土工程稳定性评估等工作的基础。
下面将对变形观测规范进行详细阐述。
一、变形观测目的和基本原则1. 变形观测的目的是为了掌握工程或地质体的变形情况,及时发现和总结变形规律,为工程设计和风险评估提供依据。
2. 变形观测的基本原则是准确、连续、稳定。
观测仪器需要经过校准和调试,观测过程需要持续进行,观测点选取需要牢固稳定,以确保观测数据的可靠性。
二、变形观测方法和技术1. 变形观测方法包括传统测量和现代测量两种。
传统测量包括经验和定性判断,现代测量包括全站仪、激光测距仪、GNSS 等。
2. 针对不同的变形类型,应选择相应的观测方法。
常见的观测方法有水准观测、位移监测、测斜仪观测、应变测试等。
3. 在进行变形观测时,需要控制测量误差,比较不同方法的适用性和准确性,并采取校正措施,以获得准确的变形数据。
三、变形观测点的选择和布设1. 变形观测点的选择应根据工程设计、地质状况和变形特征来确定。
观测点应尽可能覆盖整个观测区域,同时应选择不同类型的地质体进行观测。
2. 变形观测点的布设应做到合理、稳定和可靠。
观测点应固定在岩石体或地表上,要保证测点的牢固稳定,避免测点的变形影响观测结果。
四、变形观测数据的处理与分析1. 变形观测数据应及时记录和编制。
观测数据要详细记录每一次观测的时间、观测位置、观测方法和观测结果,以便进行后续数据处理和分析。
2. 变形观测数据的处理应根据实际情况采取相应的方法。
对于连续变形观测,可以通过插值和平滑等方法处理数据;对于离散变形观测,可以通过拟合或者分布曲线等来表示数据。
3. 变形观测数据的分析应结合地质条件和变形规律进行。
通过比较观测数据的差异和趋势,总结出地质体的变形规律,并进行相应的预测和风险评估。
综上所述,变形观测规范是确保地质工程稳定性和风险评估准确性的基础。
变形观测设计方案变形观测是一种重要的实验研究方法,它通过对被研究对象在不同时间点的观察,揭示其变化和演化过程。
变形观测设计方案是进行变形观测的基础,下面我将提供一个1200字以上的变形观测设计方案,以帮助您更好地开展研究。
实验目的:本实验旨在通过变形观测,研究地区地壳变形的时空特征及其与地质构造的关系,为地质灾害的防控提供科学依据。
实验内容:本实验将在地区选取若干观测点,采用变形观测技术对地壳运动进行监测。
观测点的选择应考虑地壳变形的主要影响因素,如构造活动、地震活动、岩石性质等。
观测点的布设应尽可能避开人为干扰,并考虑被观测对象的代表性。
实验时间:本实验将持续一年时间,每月进行一次观测。
观测时间的选择应考虑季节变化的影响,并尽量避开恶劣天气条件。
实验方法:1.GPS观测:在每个观测点布设GPS接收器,记录其经纬度和海拔高度,并设置观测间隔为10分钟。
GPS观测可通过卫星信号的接收,精确测量地表点的水平位移和垂直位移。
2. InSAR观测:选择适当的星载雷达卫星,对目标地区进行InSAR (Interferometric Synthetic Aperture Radar)观测。
通过计算雷达信号在地表发生的位移,可以获得地表点的水平位移和垂直位移。
3.GNSS观测:选取两个相距较远但相对稳定的GNSS基准站,在观测区域分别设置移位观测点。
使用GNSS接收器定期进行观测,以获得地表点的水平位移和垂直位移。
4.环境监测:在每个观测点布设环境监测仪器,记录温度、湿度、风速、气压等环境参数。
通过对环境参数的分析,可以了解环境变化对地壳变形的影响。
数据处理:1.GPS数据处理:对每个观测点的GPS数据进行差分处理,得到相对位移数据。
然后将相对位移数据转化为绝对位移数据,以最稳定的基准站为基准。
2.InSAR数据处理:使用InSAR算法处理卫星雷达数据,得到每个观测点的位移数据。
通过多时相的InSAR数据叠加,可以获取地表点的变形速率和变形梯度。
变形观测的概念正文对建筑物及其地基由于荷重和地质条件变化等外界因素引起的各种变形(空间位移)的测定工作。
其目的在于了解建筑物的稳定性,监视它的安全情况,研究变形规律,检验设计理论及其所采用的计算方法和经验数据,是工程测量学的重要内容之一。
观测的主要内容变形观测主要包括沉降观测、位移观测、挠度观测、转动角观测和振动观测等。
此法的观测基准面由经纬仪的视准线和仪器竖轴建立。
根据测定观测点偏离值的方法不同,视准线法又分为测小角法和活动觇牌法。
20世纪60年代初,又采用了以激光束代替经纬仪视准线的激光经纬仪准直法和利用光干涉原理的波带板激光准直法。
这些方法虽然大大提高了照准精度,但仍不能克服大气折射的影响。
在某些特定条件(如水坝的廊道内)下,可采用引张线法,即用拉紧的钢丝作为基准线。
近年来在激光准直法和引张线法中已采用光电传感技术,实现了观测的自动化。
挠度观测测定建筑物受力后挠曲程度的工作。
观测方法是测定建筑物在铅垂面内各不同高程点相对于底部的水平位移值。
高层建筑物通常采用前方交会法测定。
对内部有竖直通道的建筑物,挠度观测多采用垂线观测,即从建筑物顶部附近悬挂一根不锈钢丝,下挂重锤,直到建筑物底部。
在建筑物不同高程上设置观测点,以坐标仪定期测出各点相对于垂线最低点的位移。
比较不同周期的观测成果,即可求得建筑物的挠度值。
如果采用电子传感设备,可将观测点相对于垂线的微小位移变换成电感输出,经放大后由电桥测定并显示各点的挠度值。
转动角观测观测建筑物或机械设备倾斜度的变化,计算其转动角的工作。
对某些建筑物,例如水坝,转动角的大小反映了它不均匀沉降的情况。
同沉降观测一样,可用精密水准测量或液体静力水准测量方法测定。
对一些精密机械设备,则需采用专门的转动角观测仪。
这类仪器主要由一个高灵敏度的气泡水准和一套精密的测微仪器组成。
当气泡居中时利用测微仪器进行读数,即得该处的倾斜度。
比较不同周期的倾斜度,可以求得观测周期间机械设备的转动角。
振动观测对于高层建筑物和机械设备往返摆动情况的观测工作。
高层建筑物在风力、日照和温度的影响下,某些机械设备在动荷重的状态下,都会发生摆动。
传统的变形观测方法无法满足这方面观测的要求。
利用光电系统可以将观测点坐标自动记录在纸带上,从而求得建筑物的振动频率和振幅大小。
自动倾斜仪(例如电子水准器)能将精密水准气泡的微小倾斜转换成电信号输出,可用于观测转动角的往返变动。
利用电子水准器同时测定不同高度的转动角,通过换算可以求得建筑物顶点的振动。
沉降观测测定建筑物或其基础的高程随时间变化的工作。
建筑物在施工和运营期间,对埋设在基础和建筑物上的观测点,定期用精密水准测量的方法测定它们的高程,比较观测点不同周期的高程即可求得其沉降值。
有时也可用地面立体摄影测量的方法及液体静力水准测量的方法测定沉降值。
在液体静力水准测量中,可采用探针探测液面高程,也可采用将液面高程的变化用传感器输出等方法实现自动化观测。
位移观测测定建筑物上某些点的平面位置随时间变化的工作。
建筑物位移可能是任意方向的,也可能发生在某一特定方向。
任意方向位移的测定常用前方交会法,或地面立体摄影测量的方法测定(见地面摄影测量);对某些不宜用交会法观测的建筑物,也可采用导线测量方法。
位移值均由比较不同观测周期所得的观测点坐标求得。
特定方向位移的测定常用基准线法,即以垂直于位移方向的固定不变的铅垂面为观测基准面,定期测定建筑物相对于它的偏离值,以计算位移值。
此外,还可采用视准线法。
基准点设置为了在变形观测中测定绝对位移,选择不变动的基准点是很重要的。
基准点一般分工作基准点和基准点两级。
工作基准点设置在建筑物附近的稳固位置,直接用于测定观测点的位置变化;基准点一般选在变形范围外远离建筑物的地区。
沉降观测的基准点通常成组(每组3个)设置,用以检核工作基准点的稳定性。
其检核方法一般采用精密水准测量的方法。
位移观测的工作基准点的稳定性检核通常采用三角测量法进行。
由于电磁波测距仪精度的提高,变形观测中也可采用三维三边测量来检核工作基准点的稳定性。
在基准线观测中,常用倒锤装置来建立基准点。
这种装置是把不锈钢丝的一端固定在一个锚块上,将此锚块用钻孔的方法浇固在基岩中。
不锈钢丝的另一端同一浮体相连接,钢丝被拉紧而处于竖直位置,以它作基准,用坐标仪可以测定工作基准点的位移。
变形观测中设置的基准点应进行定期观测,将观测结果进行统计分析,以判断基准点本身的稳定情况。
变形是指变形体在各种荷载作用下,其形状、大小及位置在时间域或空间域的变化。
变形监测又称为变形测量或变形观测,变形测量则是对设置在变形体上的观测点进行周期性地重复观测,求得观测点各周期相对于首期的点位或高程的变化量。
变形体用一定数量的有代表性的位于变形体上的离散点(称监测点或目标点)来代表,监测点的变形可以描述变形体的变形。
变形分类:1)变形体自身的形变。
变形体自身的形变包括:伸缩、错动、弯曲和扭转四种变形,2)变形体的刚体位移。
刚体位移则含整体平移、整体升降、整体转动和整体倾斜。
变形监测分类:(1)静态变形监测,静态变形是时间的函数,观测结果只表示在某一期间内的变形,静态变形通过周期测量得到。
(2)动态变形监测,动态变形指在外力(如风、阳光)作用下产生的变形,它是以外力为函数表示的,动态变形需通过持续监测得到。
变形观测对象1)研究全球性变形,如监测全球板块运动、地极运动、地球自转速率变化、地潮等;2)区域性变形研究,如地壳形变监测、城市地面沉降;3)工程和局部性变形研究,工程变形监测一般包括工程(构)建筑物及其设备以及其他与工程建设有关的自然或人工对象,这是本课程研究的主要内容。
工程变形的原因一、自然条件及其变化;二、与建筑物本身相联系的原因;三、勘测设计、施工及运营管理工作做的不合理,也会引起建筑物额外的变形。
变形监测的内容1)垂直位移(沉降)监测2)水平位移监测3)倾斜监测4)裂缝监测5)挠度监测6)日照和风振监测等变形观测的意义(1)首先是实用上的意义,主要是掌握各种工程建筑物的地质构造的稳定性,为安全诊断提供必要的信息,以便发现问题并采取措施;(2)其次是科学上的意义,包括更好地理解变形的机理,验证有关设计的理论和地壳运动的假说,进行反馈设计以及建立有效的预报模型对于工程的安全来说:监测是基础,分析是手段,预报是目的。
工程变形监测技术在工程和局部变形监测方面,地面常规测量技术、地面摄影测量技术、特殊和专业的测量手段、以及以GPS为主的空间定位技术等均得到了较好的应用。
(1)常规大地测量方法常规大地测量方法的完善与发展,其显著进步是全站型仪器的广泛使用,尤其是全自动跟踪全站仪(RTS,Robotic Total Stati**),有时也叫测量机器人(Georobot),为局部工程变形的自动监测或室内监测提高了一种良好的技术手段,它可以进行一定范围内无人值守、全天候、全方位的自动监测。
实际工程试验表明,测量机器人监测精度可达亚mm级。
最大的缺陷是受测程限制,测站点一般都在变形区域的范围之内。
(2)地面摄影测量地面摄影测量技术在变形监测中的应用虽然起步较早,但是由于摄影距离不能过远,加上绝对精度较低,使得其应用受到局限,过去仅大量应用于高塔、烟筒、古建筑、船闸、边坡体等的变形监测。
近几年发展起来的数字摄影测量和实时摄影测量为地面摄影测量技术在变形监测中的深入应用开拓了非常广泛的前景。
(3)特殊的测量手段光、机、电技术的发展,研制了一些特殊和专用的仪器可用于变形的自动监测,它包括应变测量、准直测量和倾斜测量。
例如,遥测垂线坐标仪,采用自动读数设备,其分辨率可达0.01mm;采用光纤传感器测量系统将信号测量于信号传输合二为一,具有很强的抗雷击、抗电磁干扰和抗恶劣环境的能力,便于组成遥测系统,实现在线分布式监测。
(4)GPS空间定位技术。
GPS用于变形监测的作业方式可划分为周期性和连续性(Episodic and Continuous Mode)两种模式。
(5)3D激光扫描技术三维激光扫描技术是上世纪九十年代中期开始出现的一项高新技术,是继GPS空间定位系统之后又一项测绘技术新突破。
它通过高速激光扫描测量的方法,大面积高分辨率地快速获取被测对象表面的三维坐标数据。
可以快速、大量、高精度地获取空间点位及其变化信息。
2、动态(连续)监测与静态监测连续性变形监测指的是采用固定监测仪器进行长时间的数据采集,获得变形数据序列。
在动态监测方面,过去一般采用加速度计、激光干涉仪等测量设备测定建筑结构的振动特性,GPS作为一种新方法,由于其硬件和软件的发展与完善,特别是高采样率(目前有的已高达20Hz)GPS接收机的出现,在大型结构物动态特性和变形监测方面已表现出其独特的优越性。
静态监测是周期性的对建筑物进行变形观测。
3.监测技术的发展趋势(1)多种传感器、数字近景摄影、全自动跟踪全站仪和GPS的应用,将走向实时、连续、高效率、自动化、动态监测系统的方向发展;(2)变形监测的时空采样率会得到大大提高,变形监测自动化为变形分析提供了极为丰富的数据信息;(3)高度可靠、实用、先进的监测仪器和自动化系统,要求在恶劣环境下长期稳定可靠地运行;(4)实现远程在线实时监控,在大坝、桥梁、边坡体等工程中将发挥巨大作用,网络监控是推动重大工程安全监控管理的必由之路。
变形分析的研究内容1.变形数据处理与分析;2.变形物理解释;3.变形预报。
变形分析分类通常可将其分为变形的几何分析和变形的物理解释两部分。
变形的几何分析是对变形体的形状和大小作几何描述,其任务是描述变形体变形的空间状态和时间特性。
变形物理解释的任务是确定变形体的变形和变形原因之间的关系,解释变形的原因。
变形分析的内容传统的变形几何分析主要包括参考点的稳定性分析、观测值的平差处理和质量评定以及变形模型参数估计等内容。