人教版八年级数学上册 第3课时 13.1.2线段的垂直平分线的性质(2)
- 格式:ppt
- 大小:741.00 KB
- 文档页数:9
13.1.2 线段的垂直平分线教学目标1.会用尺规作线段的垂直平分线.2.经历探究轴对称图形的对称轴的作法的过程,体会利用操作、归纳获得数学结论的过程. 3.掌握轴对称图形对称轴的作法.4.通过提问、思考、归纳、探究来激发学习数学的兴趣,并了解一些研究问题的经验和方法,开拓实践能力,培养创新精神.教学重点尺规作线段的垂直平分线.教学难点探索轴对称图形对称轴的作法.教学过程设计知识回顾1.轴对称的性质是什么?师生活动:教师结合所展示的图形进行提问,学生思考并回答:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.BACED F2.线段垂直平分线的性质?线段垂直平分线的判定?师生活动:教师结合所展示的图形进行提问,学生思考并回答:线段垂直平分线的性质是:线段垂直平分线上的点与这条线段两个端点的距离相等;判定方法是:与线段两个端点距离相等的点在这条线段的垂直平分线上.学生回答后,教师结合性质和判定方法的区别进行点评.PA=PB点P 在线段AB 的垂直平分线上性质判定PBl设计意图:让学生通过观察、思考,复习关于线段的垂直平分线的性质和判定方法,为本节课的内容做铺垫.追问:有时我们感觉两个平面图形是轴对称的,如何验证呢?不折叠图形,你能准确地作出成轴对称的两个图形的对称轴吗?师生活动:学生思考并说出自己的想法,当学生感到迷惑时,教师结合图形适当提示:可作出其中几对对应点的垂直平分线,看它们是否为同一条直线!A BCFDE新课讲授问题1 如图,点A 和点B 关于某条直线成轴对称,你能作出这条对称轴吗?AB师生活动:教师提出问题,学生思考可以利用所学过的哪些知识点来解决问题,教师提示,并画图操作演示,归纳以下画法: 作法:⑴分别以点A 、B 为圆心,以大于12AB 的长为半径作弧,两弧相交于C 、D 两点; ⑵作直线CD .则直线CD 即为所求的直线.归纳:利用作成轴对称图形的对称轴的画法,根据“两点关于某条直线成轴对称,其对称轴是它们所连线段的垂直平分线”我们还可以得到线段的垂直平分线作法以及确定线段的中点作法.设计意图:通过提出问题、解决问题,让学生学会用所学知识点解决实际操作问题,提高动手操作能力. 问题2 如图,与图形A 成轴对称的是哪个图形?作出它们的对称轴.CDAB师生活动:通过教师提出问题,学生观察思考,发现图形特点,并归纳:两个图形关于某条直线成轴对称,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.问题3 类似的,对于一个轴对称图形,如何作出它的对称轴?类似地,你能作出这个五角星的其他对称轴吗?师生活动:通过教师提出问题,学生观察思考,发现图形特点,通过作五角星的对称轴得出方法:对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.A A1课堂练习1.完成课本64页的练习2:如图,角是轴对称图形吗?如果是,它的对称轴是什么?角是轴对称图形,它的对称轴是角平分线所在直线.2. 政府为了方便居民的生活,计划在三个住宅小区A、B、C之间修建一个购物中心,该购物中心应建于何处,才能使得它到三个小区的距离相等?师生活动:教师提示学生把实际问题转化成数学问题:如图点A 、B 、C 表示三个小区,现要修建一个购物中心,使它到三个小区的距离相等,求购物中心的位置P ,学生动手操作,从而得到解决方法:绿色线上的点到点A 、B 的距离相等,蓝色线上的点到点B 、C 的距离相等,点P 到点A 、B 、C 的距离都相等,所以点P 为所求.CC设计意图: 课堂小结本节课的学习内容: 1.作线段的垂直平分线的依据 2.如何用尺规作轴对称图形的对称轴.设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心——作线段的垂直平分线,回顾由知识到操作的过程,体会数学在实际应用当中的作用. 巩固提升两个班的同学分别在道路AB 、AC 上及M 、N 两处参加义务劳动。
教学内容13.1.2线段的垂直平分线的性质(2)备课日期授课日期教学目标1.会作轴对称图形的对称轴.2.会根据已知点和对称轴作对应的对称点.教材分析[来源学+科+]重点[来源学#科#Z#X#X#K][来源:Z*xx*]作轴对称图形的对称轴.难点根据已知点和对称轴作对应的对称点.板书设计13.1.1线段的垂直平分线的性质(2)1.作轴对称图形的对称轴.2.作一个图形的轴对称图形.课前准备课件教学过程二次备课一、预习导学阅读教材P62~63,完成预习内容.知识探究1.如果两个图形成轴对称,其对称轴就是任何一对对应点所连线段的__________.因此,我们只要找到一对对应点,作出连接它们的线段的____________,就可以得到这两个图形的对称轴.2.对于轴对称图形,只要找到任意一对对应点,作出对应点所连线段的________,就得到此图形的对称轴.自学反馈1.下列成轴对称的图形中,所画的对称轴不正确的是()2.下列轴对称图形中,对称轴的画法正确的是()二、合作探究活动1小组讨论例如图,△ABC和△DEF关于某条直线成轴对称,你能作出这条直线吗?作线段垂直平分线是根据线段垂直平分线的判定,而作对称轴是根据轴对称的性质作对称轴.活动2跟踪训练1.画出下列图形的对称轴.2.如图,△ABC和△A′B′C′是两个成轴对称的图形,请画出它们的对称轴.(保留作图痕迹,不写作法)3.如图,△ABC和△A′B′C′关于直线MN对称,△A′B′C′和△A″B″C″关于直线EF对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角α的数量关系.活动3课堂小结作对称轴的步骤:先找出任意一对对应点,再作出对应点所连线段的垂直平分线.三、作业设计必做题:三维练习册。
选做题:习题13.1第8题。
教学反思。
第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定学习目标:1.理解并掌握线段的垂直平分线的性质和判定方法.2.会用尺规过一点作已知直线的垂线.3.能够运用线段的垂直平分线的性质和判定解决实际问题.重点:线段的垂直平分线的性质和判定方法难点:运用线段的垂直平分线的性质和判定解决实际问题自主学习一、知识链接线段是轴对称图形吗?通过折叠的方法作出线段AB的对称轴l,交AB与O.(1)点A的对称点是_______(2)量出AO与BO的长度,它们有什么关系?(3)AB与直线l在位置上有什么关系?经过线段________并且______于这条线段的________,叫做这条线段的垂直平分线.二、新知预习已知直线l垂直平分线段AB,交AB与O.点C是l上任意一点,连接AC,BC.(1)量出AC,BC的长度,它们有什么关系?(2)另在l上任找一点D,量出AD,DB的长度,它们有什么关系?(3)由(1),(2),你得到什么结论?要点归纳:线段垂直平分线上的点与这条线段两个端点的__________.三、自学自测如图所示,直线CD是线段PB的垂直平分线,点P为直线CD 上的一点,且PA=5,则线段PB的长为()A. 6B. 5C. 4D. 3四、我的疑惑___________________________________________________________________________一、要点探究探究点1:线段垂直平分线的性质 证一证:线段垂直平分线上的点和这条线段两个端点的距离相等. 已知:如图,直线MN ⊥AB ,垂足为C ,AC =CB ,点P 在MN 上.求证:PA =PB .典例精析 例1:如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为( ) A .5cm B .10cm C .15cm D .17.5cm方法总结:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长.例2: 已知:如图,在ΔABC 中,边AB ,BC 的垂直平分线交于P.求证:PA=PB=PC.结论:三角形三边垂直平分线交于一点,这一点到三角形三个顶点的距离相等. 实际应用:某区政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.例3:如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延课堂探究B ACM N M ' N ' PBAC长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.方法总结:证明线段相等的方法一般有:1.由全等得对应线段相等;2.由线段垂直平分线的性质得出线段相等.针对训练1.如图,△ABC中,AC的垂直平分线交AB于点D,∠A=50°,则∠BDC=()第1题图第2题图2.如图,△ABC中,AB=AC=18cm,BC=10cm,AB的垂直平分线ED交AC于D点,则△BCD的周长为_________.3.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB,交AB于D,求证:BE+DE=AC.探究点2:线段垂直平分线的判定1.做一做:用一根木棒和一根弹性均匀的橡皮筋,做一个简易的弓,箭通过木棒中央的孔射出去.图①图②(1)如图①要使CO垂直于AB,需要添加什么条件?为什么?点C在_____________上.(2)如图②,拉动C,到达D的位置,若AD=DB,那么点D在__________上.(3)由(1),(2),你得到什么猜想?要点归纳:DA BOOBAC与线段两个端点距离________的点在这条线段的______________上.2.证一证:已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.典例精析例4:已知:如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD.求证:OE是CD的垂直平分线.针对训练1.三角形纸片上有一点P,量得PA=3cm,PB=3cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.小明做了一个如图所示的风筝,其中EH=FH,ED=FD,小明说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是__________________________________________.3.如图,在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.二、课堂小结PA B线段垂直平分线的判定线段垂直平分线的性质与判定线段垂直平分线的性质三角形三边的垂直平分线的交点到三角形三个顶点的距离相等.证明线段相1.如图所示,AC=AD,BC=BD,则下列说法正确的是( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分 D .CD 平分∠ ACB2.在锐角三角形ABC 内一点P,,满足PA=PB=PC,则点P 是△ABC ( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点3.已知线段AB ,在平面上找到三个点D 、E 、F ,使DA =DB ,EA =EB,FA =FB ,这样的点的组合共有_________种.4.下列说法:①若点P 、E 是线段AB 的垂直平分线上两点,则EA =EB ,PA =PB ; ②若PA =PB ,EA =EB ,则直线PE 垂直平分线段AB ;③若PA =PB ,则点P 必是线段AB的垂直平分线上的点;④若EA =EB ,则经过点E 的直线垂直平分线段AB .其中正确的有_________(填序号).5.如图,△ABC 中,AB=AC,AB 的垂直平分线交AC 于E,连接BE ,AB+BC=16cm,则△BCE 的周长是_________cm.6.如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的位置关系.拓展提升7.如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O. (1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.当堂检测ABDC第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质第2课时线段垂直平分线的有关作图学习目标:1.能用尺规作已知线段的垂直平分线.2.进一步了解尺规作图的一般步骤和作图语言,理解作图的依据.3.能够运用尺规作图的方法解决简单的作图问题.重点:用尺规作已知线段的垂直平分线.难点:运用尺规作图的方法解决简单的作图问题温故知新1.按如下要求,用尺规作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.2.轴对称图形的性质是_______________________________________.3.线段垂直平分线的性质是_______________________________________.二、要点探究探究点1:线段垂直平分线的画法问题1:如何验证两个图形是轴对称的?不折叠图形,你能准确地作出图形的对称轴吗?图①图②问题2:如何作出线段的垂直平分线?[提示:由两点确定一条直线和线段垂直平分线的性质,只要作出到线段两端点距离相等的两点即可.]已知:线段AB.求作:线段AB的垂直平分线.作法:思考1:在上述作法中,为什么要以“大于AB的长”为半径作弧?思考2:根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.归纳总结:可以运用线段垂直平分线的尺规作图,确定线段的中点.典例精析例1:如图,已知点A、点B以及直线l.(1)用尺规作图的方法在直线l上求作一点P,使PA=PB.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM=PN,BN=PM,求证:∠MAP=∠NPB.例2:如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计(尺规作图,不写作法,保留作图痕迹).方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线段的垂直平分线上.课堂探究探究点2:作轴对称图形的对称轴问题:下图中的五角星有几条对称轴?如何作出这些对称轴呢?方法总结:对于轴对称图形,只要找到任意一组对称点,作出对称点所连线段的垂直平分线,即能得此图形的对称轴.典例精析如图,△ABC和△A′B′C′关于直线l对称,请用无刻度的直尺作出它们的对称轴.方法总结:成轴对称的两个图形对称点连线段(或延长线)相交,交点必定在对称轴上.针对训练1.作出下列图形的一条对称轴.和同学比较一下,你们作出的对称轴一样吗?2.如图,小河边有两个村庄,要在河岸边建一自来水厂向A村与B村供水,若要使厂部到A,B 的距离相等,则应选在哪里?二、课堂小结ABCA′B′C′线段垂直平分线的有关作图用尺规作图作线段垂直平分线作轴对称图形的对称轴作对称轴的重要方法l1.如图,在△ABC中,分别以点A,B为圆心,大于12AB长为半径画弧,两弧分别交于点D,E,则直线DE是()A.∠A的平分线B.AC边的中线C.BC边的高线D.AB边的垂直平分线第1题图第2题图2.如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙两种作法:甲:分别作∠ACP、∠BCP的平分线,分别交AB于D、E,则D、E即为所求;乙:分别作AC、BC的垂直平分线,分别交AB于D、E,则D、E两点即为所求.下列说法正确的是()A.甲、乙都正确B.甲、乙都错误C.甲正确,乙错误D.甲错误,乙正确3.如图,与图形A 成轴对称的是哪个图形?画出它的对称轴.4.如图,角是轴对称图形吗?如果是,它的对称轴是什么?5.如图,有A,B,C三个村庄,现准备要建一所希望小学,要求学校到三个村庄的距离相等,请你确定学校的位置.当堂检测A BC DCAB。
13.1.2 线段的垂直平分线2学习目标:1、进一步理解线段垂直平分线的性质,并能灵活运用。
2、理解并掌握线段垂直平分线的判定3、运用线段垂直平分线的判定解决问题重点:探索并理解线段垂直平分线的判定难点:运用线段垂直平分线的判定解决问题一、自主学习;、预习新知P611、用一根木棒和一根弹性均匀的橡皮筋,做一个简易的弓,箭通过木棒中央的孔射出去。
(1)(2)1)如图(1)要使CO垂直于AB,需要添加什么条件?为什么?那么点C在_____________上。
2)如图(2),拉动C,到达D的位置,若AD=DB,那么点D在__________上。
3)由1),2),你得到什么猜想?4)用学过的知识证明你的猜想。
二、导学交流:知识点一理解并掌握线段垂直平分线的判定小帅同学为验证逆命题已经做出了一些步骤,请你帮他补充完整:已知:_______=_______求证:_____在AB的______________线上P证明:A B 判定定理:几何语言:∵∴总结:与一条线段两个端点距离________的点,在这条线段的______________上三、随堂练习;知识点三3、运用线段垂直平分线的性质、判定解决问题1.点P是△ABC中边AB的垂直平分线上的点,则一定有()A.PB=PC B. PA=PCC. PA=PBD. 点P到∠ABC的两边距离相等2.下列说法错误的是()A. D.E是线段AB的垂直平分线上的两点,则 AD=BD,AE=BEB.若AD=BD,AE=BE,则线段DE是线段AB的垂直平分线BBC . 若PA=PB ,则点P 在线段AB 的垂直平分线上D. 若PA=PB,则过点P 的直线是线段AB 的垂直平分线1、如图所示,有A 、B 、C 三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超,使超市到三个小区的距离相等,则超市应建在( )A.在AC 、BC 两边高线的交点处B.在AC 、BC 两边中线的交点处C.在AC 、BC 两边垂直平分线的交点处D.在A 、B 两内角平分线的交点处3:如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,AB ,AC ,CE 的长度有什么关系?AB+BD 与DE 有什么关系?四、小结:本节课学习你有什么收获?什么疑惑?五、课后作业1. △ABC 中,DE 是AC 的垂直平分线,垂足为E,交AB 于点D , AE=5cm ,△CBD 的周长为24cm ,求△ABC 的周长。