2019年苏州市中考一轮复习第23讲《特殊四边形》讲学案
- 格式:doc
- 大小:1.04 MB
- 文档页数:44
2019版中考数学专题复习专题五(19-2)特殊的平行四边形教案一、【教材分析】教学目标知识技能1、进一步理解平行四边形、矩形、菱形、正方形的概念及其相互联系2、掌握平行四边形、矩形、菱形、正方形的性质和判定3、会把各种平行四边形的相关知识进行结构化整理过程方法在复习的过程中,通过练习回忆已学过的知识,提高逻辑思维能力、合情推理能力和归纳概括能力,训练思维的灵活性,领悟数学思想.情感态度在整理知识点的过程中,以生为本,正视学生学习能力、认知水平等个体差异,发展学生的独立思考习惯,使之感受成功,并找到解决平行四过形问题的一般方法.教学重点理解并掌握几种特殊四边形的性质和判定.教学难点发展合情推理和初步的演绎推理能力.二、【教学流程】教学环节教学问题设计师生活动二次备课知识回顾【回顾练习】1.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形2.平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BDC.AC⊥BDD.AB⊥BD3.在下列命题中,正确的是()A.一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.有一组邻边相等的平行四边形是菱形D.对角线互相垂直平分的四边形是正方形4. 矩形的两条对角线的一个交角为60 o,两条对通过课前热身练习,让学生对知识进行回忆,进一步体会特殊平行四边形的性质、判定。
角线的长度的和为8cm,则这个矩形的一条较短边为cm.5.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是.6. 若正方形的一条对角线的长为2cm,则这个正方形的面积为.7、如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_____________.概念再现,知识梳理。
2019年中考数学一轮复习第23讲《特殊四边形》【考点解析】知识点一、矩形的性质及判定的应用【例1】(2019·四川宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△A O D=S△A O P+S△D O P=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形A B C D=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△A C D=S矩形A B C D=24,∴S△A O D=S△A C D=12,∵S△A O D=S△A O P+S△D O P=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.【变式】(2019·四川眉山·3分)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△E OA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.知识点二、菱形的性质及判定的应用【例2】(2019辽宁朝阳)如图,在△ABC中,点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC,从中选择一个条件使四边形BECF是菱形,并给出证明,你选择的条件是(只填写序号).【答案】③,证明见解析.【分析】由点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可得到四边形BECF是平行四边形,由AF是BC的中垂线,得到BE=CE,从而得到结论.【解析】∵BD=CD,DE=DF,∴四边形BECF是平行四边形,①BE⊥EC时,四边形BECF是矩形,不一定是菱形;②四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;③AB=AC时,∵D是BC的中点,∴AF是BC的中垂线,∴BE=CE,∴平行四边形BECF是菱形.故答案为:③..【点评】此题主要考查了菱形的判定以及等腰三角形的性质,能根据已知条件来选择让问题成立的条件是解题关键.【变式】(2019·青海西宁·2分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是16 .【考点】菱形的性质;三角形中位线定理.【分析】先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.【解答】解:∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=16.故答案为16.知识点三、正方形的性质及判定的应用【例3】(2019·四川眉山·3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A. B.6 C. D.【分析】由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【解答】解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.【点评】本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接BC′构造等腰Rt△OBC′是解题的关键,注意旋转中的对应关系.【变式】(2019·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OG F=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.知识点四、特殊平行四边形的综合应用【例4】(2019辽宁铁岭)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.【答案】(1)证明见解析;(2)25.【分析】(1)由四边形ABCD为矩形,得到AB=CD,AB∥CD,由DE=BF,得到AF=CE,AF∥CE,即可证明四边形AFCE是平行四边形;(2)由四边形AFCE是菱形,得到AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.【解析】(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则,CE=8﹣x8x=-,解得:x=74,则菱形的边长为:784-=254,周长为:4×254=25,故菱形AFCE的周长为25.【点评】本题考查了矩形的性质、平行四边形的判定、菱形的性质以及勾股定理等知识,能正确地分析图形的特点是解决此类问题的关键.【变式】(2019·四川内江)如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF .(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.[考点]三角形例行,特殊四边形的性质与判定。
XX年中考数学一轮复习特殊四边形讲学案XX年中考数学一轮复习第23讲《特殊四边形》【考点解析】知识点一、矩形的性质及判定的应用【例1】如图,点P是矩形ABcD的边AD上的一动点,矩形的两条边AB、Bc的长分别是6和8,则点P到矩形的两条对角线Ac和BD的距离之和是A.4.8B.5c.6D.7.2【考点】矩形的性质.【分析】首先连接oP,由矩形的两条边AB、Bc的长分别为3和4,可求得oA=oD=5,△AoD的面积,然后由S△AoD=S △AoP+S△DoP=oA•PE+oD•PF求得答案.【解答】解:连接oP,∵矩形的两条边AB、Bc的长分别为6和8,∴S矩形ABcD=AB•Bc=48,oA=oc,oB=oD,Ac=BD=10,∴oA=oD=5,∴S△AcD=S矩形ABcD=24,∴S△AoD=S△AcD=12,∵S△AoD=S△AoP+S△DoP=oA•PE+oD•PF=×5×PE+×5×PF==12,解得:PE+PF=4.8.故选:A.【变式】如图,矩形ABcD中,o为Ac中点,过点o的直线分别与AB、cD交于点E、F,连结BF交Ac于点,连结DE、Bo.若∠coB=60°,Fo=Fc,则下列结论:①FB垂直平分oc;②△EoB≌△cB;③DE=EF;④S△AoE:S△Bc=2:3.其中正确结论的个数是A.4个B.3个c.2个D.1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△oB≌△oEB得△EoB≌△cB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△Bc≌△BEo,则面积相等,△AoE和△BEo 属于等高的两个三角形,其面积比就等于两底的比,即S△AoE:S△BoE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2oE=2AE,得出结论S△AoE:S△BoE=AE:BE=1:2.【解答】解:①∵矩形ABcD中,o为Ac中点,∴oB=oc,∵∠coB=60°,∴△oBc是等边三角形,∵Fo=Fc,∴FB垂直平分oc,故①正确;②∵FB垂直平分oc,∴△cB≌△oB,∵oA=oc,∠Foc=∠EoA,∠Dco=∠BAo,∴△Foc≌△EoA,∴Fo=Eo,易得oB⊥EF,∴△oB≌△oEB,∴△EoB≌△cB,故②正确;③由△oB≌△oEB≌△cB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BoE中∵∠3=30°,∵∠oAE=∠AoE=30°,∴AE=oE,∴BE=2AE,∴S△AoE:S△Bc=S△AoE:S△BoE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.知识点二、菱形的性质及判定的应用【例2】如图,在△ABc中,点D是Bc的中点,点E、F 分别是线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥Ec;②BF∥Ec;③AB=Ac,从中选择一个条件使四边形BEcF是菱形,并给出证明,你选择的条件是.【答案】③,证明见解析.【分析】由点D是Bc的中点,点E、F分别是线段AD 及其延长线上,且DE=DF,即可得到四边形BEcF是平行四边形,由AF是Bc的中垂线,得到BE=cE,从而得到结论.【解析】∵BD=cD,DE=DF,∴四边形BEcF是平行四边形,①BE⊥Ec时,四边形BEcF是矩形,不一定是菱形;②四边形BEcF是平行四边形,则BF∥Ec一定成立,故不一定是菱形;③AB=Ac时,∵D是Bc的中点,∴AF是Bc的中垂线,∴BE=cE,∴平行四边形BEcF是菱形.故答案为:③.【点评】此题主要考查了菱形的判定以及等腰三角形的性质,能根据已知条件来选择让问题成立的条件是解题关键.【变式】如图,在菱形ABcD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABcD的周长是16 .【考点】菱形的性质;三角形中位线定理.【分析】先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABcD的周长.【解答】解:∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABcD为菱形,∴AB=Bc=cD=DA=4,∴菱形ABcD的周长=4×4=16.故答案为16.知识点三、正方形的性质及判定的应用【例3】把边长为3的正方形ABcD绕点A顺时针旋转45°得到正方形AB′c′D′,边Bc与D′c′交于点o,则四边形ABoD′的周长是A.B.6c.D.【分析】由边长为3的正方形ABcD绕点A顺时针旋转45°得到正方形AB′c′D′,利用勾股定理的知识求出Bc′的长,再根据等腰直角三角形的性质,勾股定理可求Bo,oD′,从而可求四边形ABoD′的周长.【解答】解:连接Bc′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线Ac′上,∵B′c′=AB′=3,在Rt△AB′c′中,Ac′==3,∴B′c=3﹣3,在等腰Rt△oBc′中,oB=Bc′=3﹣3,在直角三角形oBc′中,oc==6﹣3,∴oD′=3﹣oc′=3﹣3,∴四边形ABoD′的周长是:2AD′+oB+oD′=6+3﹣3+3﹣3=6.故选:A.【点评】本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接Bc′构造等腰Rt△oBc′是解题的关键,注意旋转中的对应关系.【变式】如图,正方形纸片ABcD中,对角线Ac、BD交于点o,折叠正方形纸片ABcD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、Ac于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S △AGD=S△oGD;④四边形AEFG是菱形;⑤BE=2oG;⑥若S △oGF=1,则正方形ABcD的面积是6+4,其中正确的结论个数为A.2B.3c.4D.5【考点】四边形综合题.【分析】①由四边形ABcD是正方形,可得∠GAD=∠ADo=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>oG,可得△AGD的面积>△oGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2oG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAo=45°,∠GoF=90°可得出△oGF时等腰直角三角形,由S△oGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABcD是正方形,∴∠GAD=∠ADo=45°,由折叠的性质可得:∠ADG=∠ADo=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AoB=90°,∴AG=FG>oG,△AGD与△oGD同高,∴S△AGD>S△oGD,故③错误.∵∠EFD=∠AoF=90°,∴EF∥Ac,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠oGF=∠oAB=45°,∴EF=GF=oG,∴BE=EF=×oG=2oG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAo=45°,∠GoF=90°,∴△oGF时等腰直角三角形.∵S△oGF=1,∴oG2=1,解得oG=,∴BE=2oG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABcD=AB2=2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.知识点四、特殊平行四边形的综合应用【例4】如图,矩形ABcD中,AB=8,AD=6,点E、F分别在边cD、AB上.若DE=BF,求证:四边形AFcE是平行四边形;若四边形AFcE是菱形,求菱形AFcE的周长.【答案】证明见解析;25.【分析】由四边形ABcD为矩形,得到AB=cD,AB∥cD,由DE=BF,得到AF=cE,AF∥cE,即可证明四边形AFcE是平行四边形;由四边形AFcE是菱形,得到AE=cE,然后设DE=x,表示出AE,cE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.【解析】∵四边形ABcD为矩形,∴AB=cD,AB∥cD,∵DE=BF,∴AF=cE,AF∥cE,∴四边形AFcE是平行四边形;∵四边形AFcE是菱形,∴AE=cE,设DE=x,则AE=,cE=8﹣x,则,解得:x=,则菱形的边长为:=,周长为:4×=25,故菱形AFcE的周长为25.【点评】本题考查了矩形的性质、平行四边形的判定、菱形的性质以及勾股定理等知识,能正确地分析图形的特点是解决此类问题的关键.【变式】如图所示,△ABc中,D是Bc边上一点,E是AD的中点,过点A作Bc的平行线交cE的延长线于F,且AF=BD,连接BF.求证:D是Bc的中点;若AB=Ac,试判断四边形AFBD的形状,并证明你的结论.[考点]三角形例行,特殊四边形的性质与判定。
第23课时特殊四边形和中位线班级:姓名:学习目标:1.掌握平行四边形、矩形、菱形、正方形的性质和判定方法,能够应用知识解决相关问题。
2.掌握三角形中位线定理,并利用该定理解决相关问题。
重难点:利用知识解决相关问题学习过程一、知识梳理四边形性质(在相应的性质内打“√”)对角相平行四边形的判定:①的四边形是平行四边形;②的四边形是平行四边形;③的四边形是平行四边形;④的四边形是平行四边形。
矩形的判定:① 的平行四边形是矩形;② 的平行四边形是矩形;③ 的四边形是矩形; 菱形的判定:① 的平行四边形是菱形;② 的平行四边形是菱形;③ 的四边形是菱形; 正方形的判定:① 的矩形是正方形;② 的矩形是正方形;③ 的菱形是正方形;④ 的菱形是正方形;三角形中位线定理:三角形的中位线 ,并且等于 。
二、典型例题1.平行四边形的性质和判定: (1)(2017武汉)如图,在ABCD 中,100D ∠=︒,DAB ∠的平分线AE 交DC 于点E ,连接BE ,若AE AB =,则EBC ∠的度数为 . (2)(2017丽水)如图,在ABCD 中,连结AC ,45ABC CAD ∠=∠=︒,2AB =,则ABCD 的周长是2.矩形的性质和判定:(2017怀化)如图,在矩形ABCD 中, 对角线AC ,BD 相交于点O ,60AOB =∠°,6cm AC =,则BC 的长是 3.菱形的性质和判定:(1)(2017孝感)如图,四边形ABCD 是菱形,2410AC BD DH AB ==⊥,,于点H ,则线段BH 的长为 .(2)(2017张家界)如图,在平行四边形ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接AF BE ,. (1)求证:△AGE ≌△BGF ;(2)试判断四边形AFBE 的形状,并说明理由. 4.正方形的性质和判定:(1)(2017黔东南)如图,正方形ABCD 中,E 为AB 中点,FE AB ⊥,2AF AE =,FC 交BD 于O ,则DOC ∠的度数为( )A .60?︒B .67.5?︒C .75?︒D .54︒(2)(2017青岛)已知:如图,在菱形ABCD 中,点E O F ,,分别为AB AC AD ,,的中点,连接CE CF OE OF ,,,. (1)求证:△BCE ≌△DCF ;(2)当AB 与BC 满足什么关系时,四边形AEOF 是正方形?请说明理由.5.四边形的综合应用(1)(中考指要例1)如图,点A B C D ,,,在同一条AE DF A D =∠=∠,,直线上,点E F ,分别在直线AD 的两侧,且(1)求证:四边形BFCE 是平行四边形; (2)若10360AD DC EBD ==∠=︒,,,则。
第23讲特殊的平行四边形一、矩形矩形是特殊的平行四边形,从运动变化的观点来看,当平行四边形的一个内角变为90°时,其它的边、角位置也都随之变化。
因此矩形的性质是在平行四边形的基础上扩充的。
1、矩形:有一个角是直角的平行四边形叫做短形(通常也叫做长方形)2、矩形性质定理1:矩形的四个角都是直角。
3.矩形性质定理2:矩形的对角线相等。
4、矩形判定定理1:有三个角是直角的四边形是矩形。
说明:因为四边形的内角和等于360度,已知有三个角都是直角,那么第四个角必定是直角。
5、矩形判定定理2:对角线相等的平行四边形是矩形。
说明:要判定四边形是矩形的方法是:法一:先证明出是平行四边形,再证出有一个直角(这是用定义证明)法二:先证明出是平行四边形,再证出对角线相等(这是判定定理1)法三:只需证出三个角都是直角。
(这是判定定理2)二、菱形菱形也是特殊的平行四边形,当平行四边形的两个邻边发生变化时,即当两个邻边相等时,平行四边形变成了菱形。
1、菱形:有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质1:菱形的四条边相等。
3、菱形的性质2:菱形的对角线互相垂直,并且每一条对角线平分一组对角。
4、菱形判定定理1:四边都相等的四边形是菱形。
5、菱形判定定理2:对角线互相垂直的平行四边形是菱形。
说明:要判定四边形是菱形的方法是:法一:先证出四边形是平行四边形,再证出有一组邻边相等。
(这就是定义证明)。
法二:先证出四边形是平行四边形,再证出对角线互相垂直。
(这是判定定理2)法三:只需证出四边都相等。
(这是判定定理1)三、正方形正方形是特殊的平行四边形,当邻边和内角同时运动时,又能使平行四边形的一个内角为直角且邻边相等,这样就形成了正方形。
1、正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形性质定理1:正方形的四个角都是直角,四条边都相等。
3、正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
2019年中考数学专题练习23《特殊四边形》【知识归纳】一、矩形1.定义:有一个角是的平行四边形叫做矩形2.性质(1)矩形的四个角都是;(2)矩形的对角线互相平分并且(3)矩形是一个轴对称图形,它有条对称轴3.判定(1)根据矩形的定义;(2)有个角是直角的平行四边形是矩形;(3)对角线的平行四边形是矩形二.菱形1.定义有一组邻边相等的平行四边形是菱形2.性质(1)菱形的四条边;(2)菱形的对角线互相平分;(3)每条对角线平分(4)菱形是对称图形,两条对角线所在的直线是它的对称轴,菱形是中心对称图形,它的对称中心是两条对角线的交点3.判定(1)根据菱形的定义;(2)四条边的四边形是菱形;(3)对角线互相的平行四边形是菱形三.正方形1.定义有一组邻边相等,且有一个角是直角的叫做正方形2.性质①正方形对边平行;②正方形四边;③正方形四个角都是;④正方形对角线相等,互相垂直平分,每条对角线平分;⑤正方形既是轴对称图形也是图形,对称轴有条,对称中心是对角线的交点3.判定(1)根据正方形的定义;(2)有一组邻边相等的是正方形;(3)有一个角是直角的是正方形【基础检测】1.(2019•舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.2.(2019•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积()A.2B.4 C.4D.83. (2019·云南昆明)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个4.(2019·黑龙江齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).5. (2019山东烟台)如图,□ABCD的周长为36.对角线AC,BD相交于点O.点E是CD的中点.BO=12.则△DOE的周长为___________.6. (2019四川雅安)在□ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.7.(2019·贵州安顺·10分)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.8.(2019广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【达标检测】一.选择题1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( )A.45° B.55° C.60° D.75°2.(2019·四川攀枝花)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分3.(2019·四川内江)下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形4.(2019·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为()A.30°B.45°C.60°D.75°5.(2019·四川泸州)如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC 上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为()A.B.C.D.6.(2019·湖北荆门)如图,在矩形ABCD中(AD>AB),点E是BC上一点,且DE=DA,AF⊥DE,垂足为点F,在下列结论中,不一定正确的是()A.△AFD≌△DCE B.AF=AD C.AB=AF D.BE=AD﹣DF二.填空题7. (2019·内蒙古包头)如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.8. (2019·陕西)如图,在菱形ABCD中,∠ABC=60°,AB=2,点P是这个菱形内部或边上的一点,若以点P、B、C为顶点的三角形是等腰三角形,则P、D(P、D两点不重合)两点间的最短距离为.9. 如图,在菱形ABCD中,点A在x轴上,点B的坐标为(8,2),点D的坐标为(0,2),则点C的坐标为.10. 如图,矩形ABCD中,AD=5,AB=7. 点E为DC上一个动点,把△ADE沿AE折叠,当点D的对应点D'落在∠ABC的角平分线上时,DE的长为 .11. 如图,正方形ABCD的边长为a,在AB、BC、CD、DA边上分别取点A1、B1、C1、D1,使AA1=BB1=CC1=DD1=13a,在边A1B1、B1C1、C1D1、D1A1上分别取点A2、B2、C2、D2,使A1A2=B1B2=C1C2=D1D2=13A1B2,….依次规律继续下去,则正方形A n B n C n D n的面积为.三.解答题12.(2019·黑龙江哈尔滨)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.13.(2019广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.14.(2019河南)如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE= ;②连接OD,OE,当∠A的度数为时,四边形ODME是菱形.15.(2019·陕西)问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC 上,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.【知识归纳答案】一、矩形1.定义有一个角是直角的平行四边形叫做矩形2.性质(1)矩形的四个角都是直角;(2)矩形的对角线互相平分并且相等(3)矩形是一个轴对称图形,它有 2 条对称轴3.判定(1)根据矩形的定义;(2)有 1 个角是直角的平行四边形是矩形;(3)对角线相等的平行四边形是矩形二.菱形1.定义有一组邻边相等的平行四边形是菱形2.性质(1)菱形的四条边相等;(2)菱形的对角线互相垂直平分;(3)每条对角线平分一组对角(4)菱形是轴对称图形,两条对角线所在的直线是它的对称轴,菱形是中心对称图形,它的对称中心是两条对角线的交点3.判定(1)根据菱形的定义;(2)四条边相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形三.正方形1.定义有一组邻边相等,且有一个角是直角的平行四边形叫做正方形2.性质①正方形对边平行;②正方形四边相等;③正方形四个角都是直角;④正方形对角线相等,互相垂直平分,每条对角线平分一组对角;⑤正方形既是轴对称图形也是中心图形,对称轴有四条,对称中心是对角线的交点3.判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形;(3)有一个角是直角的菱形是正方形【基础检测答案】1.(2019•舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB∥CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【解答】解:过F作FH⊥AE于H,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3﹣DE,∴AE=,∵∠FHA=∠D=∠DAF=90°,∴∠AFH+∠HAF=∠DAE+∠FAH=90°,∴∠DAE=∠AFH,∴△ADE∽△AFH,∴,∴AE=AF,∴=3﹣DE,∴DE=,故选D.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,平行四边形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.2.(2019•兰州)如图,矩形ABCD的对角线AC与BD相交于点O,CE∥BD,DE∥AC,AD=2,DE=2,则四边形OCED的面积()A.2B.4 C.4D.8【分析】连接OE,与DC交于点F,由四边形ABCD为矩形得到对角线互相平分且相等,进而得到OD=OC,再由两组对边分别平行的四边形为平行四边形得到ODEC为平行四边形,根据邻边相等的平行四边形为菱形得到四边形ODEC为菱形,得到对角线互相平分且垂直,求出菱形OCEF的面积即可.【解答】解:连接OE,与DC交于点F,∵四边形ABCD为矩形,∴OA=OC,OB=OD,且AC=BD,即OA=OB=OC=OD,∵OD∥CE,OC∥DE,∴四边形ODEC为平行四边形,∵OD=OC,∴四边形ODEC为菱形,∴DF=CF,OF=EF,DC⊥OE,∵DE∥OA,且DE=OA,∴四边形ADEO为平行四边形,∵AD=2,DE=2,∴OE=2,即OF=EF=,在Rt△DEF中,根据勾股定理得:DF==1,即DC=2,则S菱形O D E C=OE•DC=×2×2=2.故选A【点评】此题考查了矩形的性质,菱形的判定与性质,以及勾股定理,熟练掌握矩形的性质是解本题的关键.3. (2019·云南省昆明市·4分)如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若=,则3S△EDH=13S△DHC,其中结论正确的有()A.1个 B.2个 C.3个 D.4个【考点】正方形的性质;全等三角形的判定与性质.【分析】①根据题意可知∠ACD=45°,则GF=FC,则EG=EF﹣GF=CD﹣FC=DF;②由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,从而∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=180°;③同②证明△EHF≌△DHC即可;④若=,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2.【解答】解:①∵四边形ABCD为正方形,E F∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF﹣GF,DF=CD﹣FC,∴EG=DF,故①正确;②∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),∴∠HEF=∠HDC,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF﹣∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG为等腰直角三角形,H为CG的中点,∴FH=CH,∠GFH=∠GFC=45°=∠HCD,在△EHF和△DHC中,,∴△EHF≌△DHC(SAS),故③正确;④∵=,∴AE=2BE,∵△CFG为等腰直角三角形,H为CG的中点,∴FH=GH,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD,在△EGH和△DFH中,,∴△EGH≌△DFH(SAS),∴∠EHG=∠DHF,EH=DH,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD为等腰直角三角形,过H点作HM垂直于CD于M点,如图所示:设HM=x,则DM=5x,DH=x,CD=6x,则S△DHC=×HM×CD=3x2,S△EDH=×DH2=13x2,∴3S△EDH=13S△DHC,故④正确;故选:D.4.(2019·黑龙江齐齐哈尔·3分)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AC⊥BC或∠AOB=90°或AB=BC 使其成为菱形(只填一个即可).【考点】菱形的判定;平行四边形的性质.【分析】利用菱形的判定方法确定出适当的条件即可.【解答】解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BC或∠AOB=90°或AB=BC使其成为菱形.故答案为:AC⊥BC或∠AOB=90°或AB=BC5. (2019山东烟台)如图,□ABCD的周长为36.对角线AC,BD相交于点O.点E是CD的中点.BO=12.则△DOE的周长为__________________.【答案】15【解题思路】根据平行四边形的性质,对角线互相平分,两组对边分别相等,可以分别求出OD、OE+DE的长,即可求解.∵□ABCD的周长为36,∴BC+CD=18,∵四边形ABCD为平行四边形,∴O是BD的中点,∴OD=6,又∵E是CD的中点,∴OE是△BCD的中位线,∴OE+DE=9,∴△DOE的周长=OD+OE+DE=6+9=15【方法指导】本题考查了平行四边形的性质、三角形的中位线定理以及整体思想的运用.求三角形的周长可以分别求出三边的长,但是本题较新颖,根据对角线的交点是对角线的中点,可以求出其中一边的长,而另外两边运用整体思想,求出这两边的长度和后即可求解.在平行四边形中,由于对角线的交点即为中点,再加上另一中点,所以中位线定理是我们的首选.6. (2019四川雅安)在□ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.【答案】 (1)证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,又∵AE=CF,∴△ADE≌△CBF.(2)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.∵AE=CF,∴BE=DF,BE∥DF,∴四边形DEBF是平行四边形,∵DF=BF,∴□DEBF是菱形.【解析】(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.【方法指导】此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质.7.(2019·贵州安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.【分析】第(1)问要证明三角形全等,由平行四边形的性质,很容易用SAS证全等.第(2)要求菱形的面积,在第(1)问的基础上很快知道△ABE为等边三角形.这样菱形的高就可求了,用面积公式可求得.【解答】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF.∴△ABE≌△CDF.(2)解:∵四边形AECF为菱形时,∴AE=EC.又∵点E是边BC的中点,∴BE=EC,即BE=AE.又BC=2AB=4,∴AB=BC=BE,∴AB=BE=AE,即△ABE为等边三角形,(6分)▱ABCD的BC边上的高为2×sin60°=,(7分)∴菱形AECF的面积为2.(8分)【点评】考查了全等三角形,四边形的知识以及逻辑推理能力.(1)用SAS证全等;(2)若四边形AECF为菱形,则AE=EC=BE=AB,所以△ABE为等边三角形.8.(2019广西南宁)已知四边形ABCD是菱形,AB=4,∠ABC=60°,∠EAF的两边分别与射线CB,DC相交于点E,F,且∠EAF=60°.(1)如图1,当点E是线段CB的中点时,直接写出线段AE,EF,AF之间的数量关系;(2)如图2,当点E是线段CB上任意一点时(点E不与B、C重合),求证:BE=CF;(3)如图3,当点E在线段CB的延长线上,且∠EAB=15°时,求点F到BC的距离.【考点】四边形综合题.【分析】(1)结论AE=EF=AF.只要证明AE=AF即可证明△AEF是等边三角形.(2)欲证明BE=CF,只要证明△BAE≌△CAF即可.(3)过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,根据FH=CF•cos30°,因为CF=BE,只要求出BE 即可解决问题.【解答】(1)解:结论AE=EF=AF.理由:如图1中,连接AC,∵四边形ABCD是菱形,∠B=60°,∴AB=BC=CD=AD,∠B=∠D=60°,∴△ABC,△ADC是等边三角形,∴∠BAC=∠DAC=60°∵BE=EC,∴∠BAE=∠CAE=30°,AE⊥BC,∵∠EAF=60°,∴∠CAF=∠DAF=30°,∴AF⊥CD,∴AE=AF(菱形的高相等),∴△AEF是等边三角形,∴AE=EF=AF.(2)证明:如图2中,∵∠BAC=∠EAF=60°,∴∠BAE=∠CAE,在△BAE和△CAF中,,∴△BAE≌△CAF,∴BE=CF.(3)解:过点A作AG⊥BC于点G,过点F作FH⊥EC于点H,∵∠EAB=15°,∠ABC=60°,∴∠AEB=45°,在RT△AGB中,∵∠ABC=60°AB=4,∴BG=2,AG=2,在RT△AEG中,∵∠AEG=∠EAG=45°,∴AG=GE=2,∴EB=EG﹣BG=2﹣2,∵△AEB≌△AFC,∴AE=AF,EB=CF=2﹣2,∠AEB=∠AFC=45°,∵∠EAF=60°,AE=AF,∴△AEF是等边三角形,∴∠AEF=∠AFE=60°∵∠AEB=45°,∠AEF=60°,∴∠CEF=∠AEF﹣∠AEB=15°,在RT△EFH中,∠CEF=15°,∴∠EFH=75°,∵∠AFE=60°,∴∠AFH=∠EFH﹣∠AFE=15°,∵∠AFC=45°,∠CFH=∠AFC﹣∠AFH=30°,在RT△CHF中,∵∠CFH=30°,CF=2﹣2,∴FH=CF•cos30°=(2﹣2)•=3﹣.∴点F到BC的距离为3﹣.【点评】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.【达标检测答案】一.选择题(每小题4分,满分40分)1.如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为( )A.45° B.55° C.60° D.75°【答案】C.【解析】∵四边形ABCD是正方形,∴AB= AD,∠ABC=∠BAD=90°,∠BAC=∠BCA=45°.∵△ADE是等边三角形,∴AE=AD,∠BCA=45°.∴∠BCE=135°,AB=AD.∴∠ABE=15°.∴∠CBF=75°.∴∠BFC=60°.故选C.2.(2019·四川攀枝花)下列关于矩形的说法中正确的是()A.对角线相等的四边形是矩形B.矩形的对角线相等且互相平分C.对角线互相平分的四边形是矩形D.矩形的对角线互相垂直且平分【考点】矩形的判定与性质.【分析】根据矩形的性质和判定定理逐个判断即可.【解答】解:A、对角线相等的平行四边形才是矩形,故本选项错误;B、矩形的对角线相等且互相平分,故本选项正确;C、对角线互相平分的四边形是平行四边形,不一定是矩形,故本选项错误;D、矩形的对角线互相平分且相等,不一定垂直,故本选项错误;故选B.【点评】本题考查了矩形的性质和判定的应用,能熟记矩形的性质和判定定理是解此题的关键.3.(2019·四川内江)下列命题中,真命题是( )A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形[答案]C[考点]特殊四边形的判定。
第23讲特殊的平行四边形陕西《中考说明》陕西2012~2014年中考试题分析考点归纳考试要求年份题型题号分值考查内容分值比重考点1 矩形1.掌握矩形的概念和性质;2.掌握并探索矩形的有关性质和四边形是矩形的条件2014 解答题25 12 矩形、圆、正方形、三角形结合的综合探究题2013 选择题9 3 矩形与菱形的性质应用4.2%考点2 菱形1.掌握菱形的概念和性质;2.掌握并探索菱形的有关性质和四边形是菱形的条件2014 选择题9 3 菱形的性质2012 选择题7 3 利用菱形的性质求角度数1.7%考点3 正方形3.掌握正方形的概念和性质;2.掌握并探索正方形的有关性质和四边形是正方形的条件2013 解答题25 12 圆、正方形、三角形的性质等探究综合题2012 解答题25 12 以三角形与正方形为基础图形,以问题探究的形式综合考查尺规作图、正方形6.7%性质及最值问题在近几年的陕西中考试题中,特殊的平行四边形是考查的重点,一般考查的是与特殊平行四边形有关的开放性、探索性问题,或是与三角形全等和相似、圆、函数等知识结合构建的综合题,每年都会在选择(填空)和解答题中对本节内容考查.预计2015年对此部分的考查仍会是一个重点,可能会在选择或填空题中考查特殊四边形相关计算,在解答题中结合开放性问题来考查.1.有一个角是__直角__的平行四边形是矩形.矩形的四个角都是__直角__,对角线__相等且互相平分__;既是轴对称图形,又是中心对称图形,有__两__条对称轴.矩形的判定方法:(1)有三个角是__直角__的四边形;(2)是平行四边形且有一个角是__直角__;(3)__对角线相等__的平行四边形;(4)__对角线相等且互相平分__的四边形.2.有一组__邻边相等__的平行四边形叫做菱形.菱形的四条边都__相等__,对角线__互相垂直平分__,且每一条对角线__平分一组对角__;既是轴对称图形,又是中心对称图形,有__两__条对称轴.菱形的判定方法:(1)四条边都__相等__;(2)有一组__邻边相等__的平行四边形;(3)对角线__互相垂直__的平行四边形;(4)对角线__互相垂直平分__的四边形.3.有一组邻边相等且有一个角是直角的平行四边形叫做正方形.正方形的四个角都是__直角__,四条边都__相等__,两条对角线__相等__,并且__互相垂直平分__,每一条对角线__平分一组对角__;既是轴对称图形,又是中心对称图形,有__四__条对称轴.正方形的判定方法:(1)邻边相等的__矩形__;(2)有一角是直角的__菱形__.一个防范在判定矩形、菱形或正方形时,要明确是在“四边形”还是在“平行四边形”的基础之上来求证的.要熟悉各判定定理的联系和区别,解题时要认真审题,通过对已知条件的分析、综合,最后确定用哪一种判定方法.三种联系(1)平行四边形与矩形的联系:在平行四边形的基础上,增加“一个角是直角”或“对角线相等”的条件可为矩形;若在四边形的基础上,则需有三个角是直角(第四个角必是直角)则可判定为矩形.(2)平行四边形与菱形的联系:在平行四边形的基础上,增加“一组邻边相等”或“对角线互相垂直”的条件可为菱形;若在四边形的基础上,需有四边相等则可判定为菱形.(3)菱形、矩形与正方形的联系:正方形的判定可简记为:菱形+矩形=正方形,其证明思路有两个:先证四边形是菱形,再证明它有一个角是直角或对角线相等(即矩形);或先证四边形是矩形,再证明它有一组邻边相等或对角线互相垂直(即菱形).总结:平行四边形、矩形、菱形、正方形之间的关系归纳如下:注:学好本部分内容的方法是:弄清楚平行四边形,矩形、菱形和正方形之间的联系和区别,以整体的的观点看待本部分内容.1.(2014·陕西)如图,在菱形ABCD 中,AB =5,对角线AC =6.若过点A 作AE⊥BC ,垂足为E ,则AE 的长为( C )A .4B .125C .245D .5,第1题图 ) ,第2题图)2.(2013·陕西)如图,在矩形ABCD 中,AD =2AB ,点M ,N 分别在边AD ,BC 上,连接BM ,DN ,若四边形MBND 是菱形,则AMMD等于( C )A .38B .23C .35D .453.(2012·陕西)如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ⊥AB ,垂足为E ,若∠ADC=130°,则∠AOE 的大小为( B )A .75°B .65°C .55°D .50° 4.(2014·陕西)问题探究(1)如图①,在矩形ABCD 中,AB =3,BC =4,如果BC 边上存在点P ,使△APD 为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP 的长;(2)如图②,在△ABC 中,∠ABC =60°,BC =12,AD 是BC 边上的高,E ,F 分别为边AB ,AC 的中点,当AD =6时,BC 边上存在一点Q ,使∠EQF=90°,求此时BQ 的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB =270 m ,AE =400 m ,ED =285 m ,CD =340 m ,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长,若不存在,请说明理由.解:(1)①作AD 的垂直平分线交BC 于点P ,如图①,则PA =PD.∴△PAD 是等腰三角形.∵四边形ABCD 是矩形,∴AB =DC ,∠B =∠C=90°.∵PA =PD ,AB =DC ,∴Rt △ABP ≌Rt △DCP(HL ).∴BP=CP.∵BC=4,∴BP =CP =2 ②以点D 为圆心,AD 为半径画弧,交BC 于点P′,如图①,则DA =DP′.∴△P′AD 是 等腰三角形.∵四边形ABCD 是矩形,∴AD =BC ,AB =DC ,∠C =90°.∵AB =3,BC =4,∴DC =3,DP ′=4.∴CP′=42-32=7.∴BP′=4-7.③点A 为圆心,AD 为半径画弧,交BC 于点P″,如图①,则AD =AP″.∴△P″AD 是等腰三角形.同理可得:BP″=7.综上所述:在等腰三角形△ADP 中,若PA =PD ,则BP =2;若DP =DA ,则BP =4-7;若AP =AD ,则BP =7(2)∵E,F 分别为边AB ,AC 的中点,∴EF ∥BC ,EF =12BC.∵BC =12,∴EF =6.以EF 为直径作⊙O,过点O 作OQ⊥BC,垂足为Q ,连接EQ 、FQ ,如图②.∵AD⊥BC,AD =6,∴EF 与BC 之间的距离为3.∴OQ=3∴OQ=OE =3.∴⊙O 与BC 相切,切点为Q.∵EF 为⊙O 的直径,∴∠EQF =90°.过点E 作EG⊥BC,垂足为G ,如图②.∵EG⊥BC,OQ ⊥BC ,∴EG ∥OQ.∵EO ∥GQ ,EG ∥OQ ,∠EGQ =90°,OE =OQ ,∴四边形OEGQ 是正方形.∴GQ=EO =3,EG =OQ =3.∵∠B=60°,∠EGB =90°,EG =3,∴BG =3.∴BQ=GQ +BG =3+3.∴当∠EQF =90°时,BQ 的长为3+ 3 (3)在线段CD 上存在点M ,使∠AMB=60°.理由如下:以AB 为边,在AB 的右侧作等边三角形ABG ,作GP⊥AB,垂足为P ,作AK⊥BG,垂足为K.设GP 与AK 交于点O ,以点O 为圆心,OA 为半径作⊙O,过点O 作OH⊥CD,垂足为H ,如图③.则⊙O 是△ABG的外接圆,∵△ABG 是等边三角形,GP ⊥AB ,∴AP=PB =12AB.∵AB =270,∴AP =135.∵ED=285,∴OH =285-135=150.∵△ABG 是等边三角形,AK ⊥BG ,∴∠BAK =∠GAK=30°.∴OP =AP·tan 30°=135×33=45 3.∴OA =2OP =903.∴OH<OA.∴⊙O 与CD 相交,设交点为M ,连接MA 、MB ,如图③.∴∠AMB=∠AGB=60°,OM =OA =903.∵OH⊥CD,OH =150,OM =903,∴HM =OM 2-OH 2=(903)2-1502=302.∵AE=400,OP =453,∴DH =400-45 3.若点M 在点H 的左边,则DM =DH +HM =400-453+302.∵400-453+302>340,∴DM >CD.∴点M 不在线段CD 上,应舍去.若点M 在点H 的右边,则DM =DH -HM =400-453-30 3.∵400-453-302<340,∴DM <CD.∴点M 在线段CD 上.综上所述:在线段CD 上存在唯一的点M ,使∠AMB=60°,此时DM 的长为(400-453-302)米5.(2013·陕西)问题探究(1)请在图①中作出两条直线,使它们将圆面积四等分;(2)如图②,M 是正方形ABCD 内一定点,请在图②中作出两条直线(要求其中一条直线必须过点M)使它们将正方形ABCD 的面积四等分,并说明理由.问题解决(3)如图③,在四边形ABCD 中,AB ∥CD ,AB +CD =BC ,点P 是AD 的中点,如果AB =a ,CD =b ,且b >a ,那么在边BC 上是否存在一点Q ,使PQ 所在直线将四边形ABCD 的面积分成相等的两部分?如若存在,求出BQ 的长;若不存在,说明理由.解:(1)如图1所示(2)连接AC ,BD 交于O ,作直线OM ,分别交AD 于P ,交BC 于Q ,过O 作EF⊥OM 交DC 于F ,交AB 于E ,则直线EF 、OM 将正方形的面积四等份,理由是:∵点O 是正方形ABCD 的对称中心,∴AP =CQ ,EB =DF ,在△AOP 和△EOB 中,∵∠AOP =90°-∠AOE,∠BOE =90°-∠AOE,∴∠AOP =∠BOE,∵OA =OB ,∠OAP =∠EBO=45°,∴△AOP ≌△EOB ,∴AP =BE=DF =CQ ,设O 到正方形ABCD 一边的距离是d ,则12(AP +AE)d =12(BE +BQ)d =12(CQ +CF)d=12(PD +DF)d, ∴S 四边形AEOP =S 四边形BEOQ =S 四边形CQOF =S 四边形DPOF ,直线EF ,OM 将正方形ABCD 面积四等份(3)存在,当BQ =CD =b 时,PQ 将四边形ABCD 的面积二等份,理由是:如图③,连接BP 并延长交CD 的延长线于点E ,∵AB ∥CD ,∴∠A =∠EDP,∵在△ABP 和△DEP 中,⎩⎪⎨⎪⎧∠A=∠EDP,AP =DP ,∠APB =∠DPE,∴△ABP ≌△DEP(ASA ),∴BP =EP ,连接CP ,∵△BPC 的边BP 和△EPC 的边EP 上的高相等,又∵BP =EP ,∴S △BPC =S △EPC ,作PF⊥CD,PG ⊥BC ,则BC =AB +CD =DE +CD =CE ,由三角形面积公式得:PF =PG ,在CB 上截取CQ =DE =AB =a ,则S △CQP =S △DEP =S △ABP ,∴S △BPC -S △CQP +S △ABP =S △CPE -S △DEP +S △CQP ,即:S 四边形ABQP =S 四边形CDPQ ,∵BC =AB +CD =a +b ,∴BQ =b ,∴当BQ =b 时,直线PQ 将四边形ABCD 的面积分成相等的两部分矩形【例1】 (2014·枣庄)如图,四边形ABCD 的对角线AC ,BD 交于点O ,已知O 是AC 的中点,AE =CF ,DF ∥BE.(1)求证:△BOE≌△DOF;(2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论.证明:(1)∵DF∥BE,∴∠FDO =∠EBO,∠DFO =∠BEO,∵O 为AC 的中点,即OA =OC ,又∵AE =CF ,∴OA -AE =OC -CF ,即OE =OF ,在△BOE 和△DOF 中,⎩⎪⎨⎪⎧∠FDO=∠EBO,∠DFO=∠BEO,OE =OF ,∴△BOE ≌△DOF(AAS )(2)若OD =12AC ,则四边形ABCD 是矩形,理由为:∵△BOE≌△DOF,∴OB =OD ,∴OA =OB =OC =OD ,即BD =AC ,∴四边形ABCD 为矩形【点评】 利用平行线的相关性质找到对应角相等,再结合已知条件来证三角形的全等,是常用的方法;矩形的判定不要忽略了对角线的判定方法,有时会比边与角更直接简便.1.(2013·聊城)如图,四边形ABCD 中,∠A =∠BCD=90°,BC =CD ,CE ⊥AD ,垂足为E.求证:AE =CE.证明:过点B 作BF⊥CE 于F ,∵CE ⊥AD ,∴∠D +∠DCE =90°,∵∠BCD =90°,∴∠BCF +∠DCE =90°,∴∠BCF =∠D,在△BCF 和△CDE 中,⎩⎪⎨⎪⎧∠BCF=∠D,∠CED =∠BFC=90°,BC =CD ,∴△BCF≌△CDE(AAS ),∴BF =CE ,又∵∠A=90°,CE ⊥AD ,BF ⊥CE ,∴四边形AEFB 是矩形,∴AE =BF ,∴AE =CE菱形【例2】 (2013·黄冈)如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,求证:∠DHO=∠DCO.证明:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∵DH ⊥AB ,∴OH =OB ,∴∠OHB =∠OBH,又∵AB∥CD,∴∠OBH =∠ODC ,在Rt △COD 中,∠ODC +∠DCO =90°,在Rt △DHB 中,∠DHO +∠OHB=90°,∴∠DHO =∠DCO【点评】 本题考查了菱形的对角线互相垂直平分的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及等角的余角相等,熟记各性质并理清图中角度的关系是解题的关键.2.(2014·厦门)如图,在四边形ABCD 中,AD ∥BC ,AM ⊥BC ,垂足为M ,AN ⊥DC ,垂足为N ,若∠BAD=∠BCD,AM =AN ,求证:四边形ABCD 是菱形.证明:∵AD∥BC,∴∠B +∠BAD=180°,∠D +∠C=180°,∵∠BAD =∠BCD,∴∠B =∠D,∴四边形ABCD 是平行四边形,∵AM ⊥BC ,AN ⊥DC ,∴∠AMB =∠AND=90°,在△ABM 和△ADN 中,⎩⎪⎨⎪⎧∠B=∠D,∠AMB =∠AND=90°,AM =AN ,∴△ABM ≌△ADN(AAS ),∴AB =AD ,∴四边形ABCD 是菱形正方形【例3】 (2013·毕节)如图,四边形ABCD 是正方形,E ,F 分别是DC 和CB 的延长线上的点,且DE =BF ,连接AE ,AF ,EF.(1)求证:△ADE≌△ABF;(2)填空:△ABF 可以由△ADE 绕旋转中心__A__点,按顺时针方向旋转__90__度得到; (3)若BC =8,DE =6,求△AEF 的面积.(1)证明:∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC=90°,而F 是CB 的延长线上的点,∴∠ABF =90°,在△ADE 和△ABF 中⎩⎪⎨⎪⎧AB =AD ,∠ABF =∠ADE,BF =DE ,∴△ADE ≌△ABF(SAS )(2)A ;90 解析:∵△ADE≌△ABF,∴∠BAF =∠DAE,而∠DAE+∠EAB=90°,∴∠BAF +∠EAB=90°,即∠FAE=90°,∴△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90度得到,故答案为:A ,90(3)解:∵BC=8,∴AD =8,在Rt △ADE 中,DE =6,AD =8,∴AE =AD 2+DE 2=10,∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90度得到,∴AE =AF ,∠EAF =90°,∴△AEF 的面积=12AE 2=12×100=50【点评】 正方形具有四边形、平行四边形、矩形及菱形的一切性质,它们之间既有联系又有区别,其各自的性质和判定是中考的热点.3.(2014·扬州)如图,已知Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线平移至△FEG,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形.解:(1)FG⊥ED.理由如下:∵△ABC 绕点B 顺时针旋转90°至△DBE 后,∴∠DEB =∠ACB,∵把△ABC 沿射线平移至△FEG,∴∠GFE =∠A,∵∠ABC =90°,∴∠A +∠ACB =90°,∴∠DEB +∠GFE =90°,∴∠FHE =90°,∴FG ⊥ED(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE =90°,CG ∥EB ,CB =BE ,∵CG ∥EB ,∴∠BCG +∠CBE =180°,∴∠BCG =90°,∴四边形BCGE 是矩形,∵CB =BE ,∴四边形CBEG 是正方形特殊平行四边形综合题【例4】 (2014·牡丹江)如图,在Rt △ABC 中,∠ACB =90°,过点C 的直线MN∥AB,D 为AB 边上一点,过点D 作DE⊥BC,交直线MN 于E ,垂足为F ,连接CD ,BE.(1)求证:CE =AD ;(2)当D 在AB 中点时,四边形BECD 是什么特殊四边形?说明你的理由;(3)若D 为AB 中点,则当∠A 的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.(1)证明:∵DE⊥BC,∴∠DFB =90°,∵∠ACB =90°,∴∠ACB =∠DFB ,∴AC ∥DE ,∵MN ∥AB ,即CE∥AD,∴四边形ADEC 是平行四边形,∴CE =AD (2)解:四边形BECD 是菱形,理由是:∵D 为AB 中点,∴AD =BD ,∵CE =AD ,∴BD =CE ,∵BD ∥CE ,∴四边形BECD 是平行四边形,∵∠ACB =90°,D 为AB 中点,∴CD =BD ,∴四边形BECD 是菱形 (3)当∠A =45°时,四边形BECD 是正方形,理由是:∵∠ACB=90°,∠A =45°,∴∠ABC =∠A=45°,∴AC =BC ,∵D 为BA 中点,∴CD ⊥AB ,∴∠CDB =90°,∵四边形BECD 是菱形,∴四边形BECD 是正方形,即当∠A=45°时,四边形BECD 是正方形【点评】 在判定矩形、菱形或正方形时,要弄清是在“四边形”,还是在“平行四边形”的基础上来求证的,要熟悉各判定定理之间的联系与区别,解答此类问题要认真审题,通过对已知条件的分析、综合,确定一种解决问题的方法.4.(2014·随州)如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E ,F 分别是线段BM ,CM 的中点.(1)求证:△ABM≌△DCM;(2)填空:当AB∶AD=__1∶2__时,四边形MENF 是正方形.(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,∠A =∠D=90°,∵M 为AD 的中点,∴AM =DM ,在△ABM 和△DCM 中⎩⎪⎨⎪⎧AM =DM ,∠A =∠D,AB =DC ,∴△ABM ≌△DCM(SAS )(2)1∶2 解析:当AB∶AD =1∶2时,四边形MENF 是正方形,理由是:∵AB∶AD=1∶2,AM =DM ,AB =CD ,∴AB =AM =DM =DC ,∵∠A =∠D=90°,∴∠ABM =∠AMB=∠DMC =∠DCM =45°,∴∠BMC =90°,∵四边形ABCD 是矩形,∴∠ABC =∠DCB=90°,∴∠MBC =∠MCB =45°,∴BM =CM ,∵N ,E ,F 分别是BC ,BM ,CM 的中点,∴BE =CF ,ME =MF ,NF ∥BM ,NE ∥CM ,∴四边形MENF 是平行四边形,∵ME =MF ,∠BMC =90°,∴四边形MENF 是正方形,即当AB ∶AD =1∶2时,四边形MENF 是正方形,故答案为:1∶2试题在△ABC的两边AB,AC上向形外作正方形ABEF,ACGH,过点A作BC的垂线分别交BC于点D,交FH于点M,求证:FM=MH.错解证明:如图,∵四边形ABEF与四边形ACGH都是正方形,∴AF=AB,AH=AC.又∵∠FAH =∠BAC,∴△AFH≌△ABC,∴∠5=∠2.∵∠3+∠1=90°,∠3+∠2=90°,∴∠1=∠2,∴∠1=∠5.∵∠1=∠4,∴∠4=∠5.∴AM=FM.同理,AM=MH,故FM=MH.剖析上述解法错在将∠BAC画成了直角(题中没有这个条件),从而导致∠FAH,∠BAC 和∠1,∠4分别成为对顶角,不认真画图,匆匆忙忙进行推理,就很容易犯错误.正解证明:分别过F,H画FK⊥MD,HL⊥MD,垂足为K,L.∵四边形ACGH是正方形,∴AC =AH,∠CAH=90°,∴∠1+∠2=90°,∵AD⊥BC,∴∠2+∠3=90°,∴∠1=∠3.又∵∠HL A=∠ADC=90°,∴△A HL≌△CAD,∴HL=AD.同理:△AFK≌△BAD,∴FK=AD,∴FK=HL.又∵∠FMK=∠HML,∠FKM=∠HL M=90°,∴△FMK≌△HML,∴FM=MH.。
特殊的平行四边形——矩形、菱形、正方形专题培优、能力提升复习讲义中考考点梳理一、矩形1、矩形的概念有一个角是直角的平行四边形叫做矩形。
2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形4、矩形的面积:S矩形=长×宽=ab二、菱形1、菱形的概念有一组邻边相等的平行四边形叫做菱形。
2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、正方形1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等。
3、正方形的判定(1)判定一个四边形是正方形的主要依据是定义,途径有两种:先证它是矩形,再证有一组邻边相等。
先证它是菱形,再证有一个角是直角。
(2)判定一个四边形为正方形的一般顺序如下:第一步:先证明它是平行四边形;第二步:再证明它是菱形(或矩形);第三步:最后证明它是矩形(或菱形)4、正方形的面积: 设正方形边长为a ,对角线长为b ,S 正方形=222b a 中考典例精选考点典例一、矩形的性质与判定【例1】如图,矩形ABCD 的对角线AC 、BD 相交于点O ,若AB =AO , 求∠ABD 的度数.图6A B 【答案】∠ABD =60°.【解析】考点:矩形的性质;等边三角形的判定及性质.【点睛】此题考查了等边三角形的判定与性质,矩形的性质,熟练掌握等边三角形的判定与性质是解本题的关键.【举一反三】1.已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF,求证:BF=CD.【答案】详见解析.【解析】试题分析:由四边形ABCD为矩形,得到四个角为直角,再由EF与FD垂直,利用平角定义得到一对角互余,利用同角的余角相等得到一对角相等,利用ASA得到△BEF≌△CFD,利用全等三角形对应边相等即可得证.考点:矩形的性质;全等三角形的判定与性质.2. 如图,将矩形ABCD 沿GH 对折,点C 落在Q 处,点D 落在E 处,EQ 与BC 相交于F .若AD=8cm ,AB=6cm ,AE=4cm .则△EBF 的周长是 cm .【答案】8.【解析】试题分析:BE=AB-AE=2.设AH=x ,则DH=AD ﹣AH=8﹣x ,在Rt △AEH 中,∠EAH=90°,AE=4,AH=x ,EH=DH=8﹣x ,∴EH 2=AE 2+AH 2,即(8﹣x )2=42+x 2,解得:x=3.∴AH=3,EH=5.∴C △AEH =12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH .又∵∠EAH=∠FBE=90°,∴△EBF ∽△HAE ,∴32==∆∆AH BE C C HAE EFB . ∴C △EBF =23=C △HAE =8.考点:1折叠问题;2勾股定理;3相似三角形.考点典例二、菱形的性质与判定【例2】如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】(2)四边形ABEF是菱形;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB,由(1)得:AF=AB,∴BE=AF,又∵BE ∥AF ,∴四边形ABEF 是平行四边形,∵AF=AB ,∴四边形ABEF 是菱形.考点:角平分线的画法;平行四边形的性质;菱形的判定.【点睛】本题考查了平行四边形的性质,菱形的判定,熟记各性质与平行四边形和菱形的判定方法是解题的关键.在利用菱形计算或证明时,应充分利用菱形的性质,如“菱形的四条边都相等”“菱形的对角线互相垂直且平分,并且每一组对角线平分一组对角”等.对于菱形的判定,若可证出四边形为平行四边形,则可证一组邻边相等或对角线互相垂直;若相等的边较多,则可证四条边都相等.【举一反三】1. 如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于A .524 B .512 C .5 D .4【答案】A.【解析】 考点:菱形的性质.2. 如图,菱形ABCD 的边AB=8,∠B=60°,P 是AB 上一点,BP=3,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点为A ′,当CA ′的长度最小时,CQ 的长为( )A. 5B. 7C. 8D. 213 CD H【答案】B.【解析】考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.考点典例三、正方形的性质与判定【例3】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【答案】证明见解析.【解析】考点:正方形的判定;全等三角形的判定与性质.【点睛】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.正方形是特殊的矩形又是特殊的菱形,具有矩形和菱形的所有性质.证明一个四边形是正方形,可以先判定为矩形,再证邻边相等或对角线互相垂直;或先判定为菱形,再证有一个角是直角或对角线相等.【举一反三】1.如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2 C.D.10﹣5【答案】B.【解析】考点:正方形的性质;全等三角形的判定及性质;勾股定理.考点典例四、特殊平行四边形综合题【例4】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE ⊥BC,交直线MN于E,垂足为F,连接CD,BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【答案】(1)证明见解析;(2)四边形BECD是菱形,(3)当∠A=45°时,四边形BECD是正方形.理由见解析.【解析】(3)当∠A=45°时,四边形BECD是正方形,理由是:考点:正方形的判定;平行四边形的判定与性质;菱形的判定.【点睛】本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力. 【举一反三】如图,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5F EH G BA【答案】①②③. 【解析】试题分析:由旋转的性质可得HD=BD=2 ∴HA=12-考点:旋转的性质;全等三角形的判定及性质;菱形的判定.课后巩固、提高自测小练习一、选择题1.关于ABCD的叙述,正确的是()A.若AB⊥BC ABCD是菱形B.若AC⊥BD ABCD是正方形C.若AC=BD,则ABCD是矩形D.若AB=AD ABCD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.2. 下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.一组对边平行的四边形是平行四边形D.四边相等的四边形是菱形【答案】D.【解析】考点:1菱形的判定;2矩形的性质;3平行四边形的判定.3.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C.【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.此时,EP+FP的值最小,值为EF′.∵四边形ABCD为菱形,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.考点:1轴对称;2菱形.4.如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是( )A .AB =AD B .AC ⊥BD C .AC =BD D .∠BAC =∠DAC 【答案】C . 【解析】考点:菱形的判定;平行四边形的性质.5. 如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CE =2DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③EG =DE +BG ;④AG ∥CF ;⑤S △FGC =3.6.其中正确结论的个数是( )A .2B .3C .4D .5 【答案】D . 【解析】试题分析:∵正方形ABCD 的边长为6,CE =2DE ,∴DE =2,EC =4,∵把△ADE 沿AE 折叠使△ADE 落在△AFE 的位置,∴AF =AD =6,EF =ED =2,∠AFE =∠D =90°,∠FAE =∠DAE ,在Rt △ABG 和Rt △AFG 中,∵AB =AF ,AG =AG ,∴Rt △ABG ≌Rt △AFG (HL ),∴GB =GF ,∠BAG =∠FAG ,∴∠GAE =∠FAE +∠FAG =12∠BAD =45°,所以①正确; 设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x-+=+,解得x=3,∴BG=3,CG=6﹣3=3,∴BG=CG,所以②正确;∵EF=ED,GB=GF,∴GE=GF+EF=BG+DE,所以③正确;∵GF=GC,∴∠GFC=∠GCF,又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,而∠BGF=∠GFC+∠GCF,∴∠AGB+∠AGF=∠GFC+∠GCF,∴∠AGB=∠GCF,∴CF∥AG,所以④正确;过F作FH⊥DC.∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴EH EFGC EG=,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:EH EFGC EG==25,∴S△FGC=S△GCE﹣S△FEC=12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D.考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.6.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了()A.1次B.2次C.3次D.4次【答案】B.【解析】考点:翻折变换(折叠问题).7.菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】考点:菱形的性质;平行四边形的性质.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.故选B.考点:菱形的判定;平移的性质.二、填空题1.如图,四边形ABCD是轴对称图形,且直线AC是对称轴,AB∥CD,则下列结论:①AC⊥BD;②AD∥BC;③四边形ABCD是菱形;④△ABD≌△CDB.其中正确的是(只填写序号)【答案】①②③④.【解析】考点:1菱形的性质和判定;2轴对称;3平行线的性质.2. 如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE⊥BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=度.【答案】22.5°.【解析】试题分析:已知四边形ABCD是矩形,由矩形的性质可得AC=BD,OA=OC,OB=OD,即可得OA=OB═OC,由等腰三角形的性质可得∠OAC=∠ODA,∠OAB=∠OBA,即可得∠AOE=∠OAC+∠OCA=2∠OAC,再由∠EAC=2∠CAD,可得∠EAO=∠AOE,因AE⊥BD,可得∠AEO=90°,所以∠AOE=45°,所以∠OAB=∠OBA=67.5°,即∠BAE=∠OAB ﹣∠OAE=22.5°.考点:矩形的性质;等腰三角形的性质.3. 如图,边长为1的正方形ABCD的对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G,则下列结论中正确的是.(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)BE+BF=OA;(4)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(5)OG•BD=AE2+CF2.【答案】(1),(2),(3),(5).【解析】1(2)∵S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD,4∴S四边形OEBF:S正方形ABCD=1:4;故正确;(3)∴BE+BF=BF+CF=BC=2OA;故正确;(5)∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=12BD,OE=22EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.考点:四边形综合题.4.如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.【答案】24. 【解析】试题分析:根据菱形面积等于两条对角线的长度的乘积的一半即可得,菱形的面积=21×6×8=24. 考点:菱形的性质.5.将矩形ABCD 纸片按如图所示的方式折叠,EF ,EG 为折痕,试问∠AEF +∠BEG = .【答案】90°. 【解析】考点:翻折变换(折叠问题).6. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(4,3),∠CAO 的平分线与y 轴相交于点D ,则点D 的坐标为 .【答案】(0,43).【解析】考点:矩形的性质;坐标与图形性质.三、解答题1.如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=22,∠AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.【解析】考点:矩形的性质;全等三角形的判定与性质.2.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;(2)由矩形的性质找出∠D=∠B=90°,再结合对边互相平行即可证出四边形PEDH和四边形PFBG都是矩形,通过角的正切值,在直角三角形中表示出直角边的关系,利用矩形的面积公式即可得出两矩形面积相等.考点:矩形的判定与性质;全等三角形的判定与性质.3.如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AE F=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC 的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.考点:正方形的性质;全等三角形的判定与性质.4. 如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.【答案】详见解析.【解析】∵CE∥BD,∴四边形CEDB是平行四边形,∵BC=BD,∴四边形CEDB是菱形.考点:全等三角形的性质;菱形的判定.。
2019年中考数学一轮复习第23讲《特殊四边形》【考点解析】知识点一、矩形的性质及判定的应用【例1】(2019·四川宜宾)如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2【考点】矩形的性质.【分析】首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=5,△AOD的面积,然后由S△A O D=S△A O P+S△D O P=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形A B C D=AB•BC=48,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△A C D=S矩形A B C D=24,∴S△A O D=S△A C D=12,∵S△A O D=S△A O P+S△D O P=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故选:A.【变式】(2019·四川眉山·3分)如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个 B.3个 C.2个 D.1个【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.【解答】解:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△E OA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∴BF=EF,∵DF∥BE且DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,∴DE=EF,故③正确;④在直角△BOE中∵∠3=30°,∴BE=2OE,∵∠OAE=∠AOE=30°,∴AE=OE,∴BE=2AE,∴S△AOE:S△BCM=S△AOE:S△BOE=1:2,故④错误;所以其中正确结论的个数为3个;故选B【点评】本题综合性比较强,既考查了矩形的性质、等腰三角形的性质,又考查了全等三角形的性质和判定,及线段垂直平分线的性质,内容虽多,但不复杂;看似一个选择题,其实相当于四个证明题,属于常考题型.知识点二、菱形的性质及判定的应用【例2】(2019辽宁朝阳)如图,在△ABC中,点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC,从中选择一个条件使四边形BECF是菱形,并给出证明,你选择的条件是(只填写序号).【答案】③,证明见解析.【分析】由点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可得到四边形BECF是平行四边形,由AF是BC的中垂线,得到BE=CE,从而得到结论.【解析】∵BD=CD,DE=DF,∴四边形BECF是平行四边形,①BE⊥EC时,四边形BECF是矩形,不一定是菱形;②四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;③AB=AC时,∵D是BC的中点,∴AF是BC的中垂线,∴BE=CE,∴平行四边形BECF是菱形.故答案为:③..【点评】此题主要考查了菱形的判定以及等腰三角形的性质,能根据已知条件来选择让问题成立的条件是解题关键.【变式】(2019·青海西宁·2分)如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是16 .【考点】菱形的性质;三角形中位线定理.【分析】先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.【解答】解:∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=16.故答案为16.知识点三、正方形的性质及判定的应用【例3】(2019·四川眉山·3分)把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是()A. B.6 C. D.【分析】由边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,利用勾股定理的知识求出BC′的长,再根据等腰直角三角形的性质,勾股定理可求BO,OD′,从而可求四边形ABOD′的周长.【解答】解:连接BC′,∵旋转角∠BAB′=45°,∠BAD′=45°,∴B在对角线AC′上,∵B′C′=AB′=3,在Rt△AB′C′中,AC′==3,∴B′C=3﹣3,在等腰Rt△OBC′中,OB=BC′=3﹣3,在直角三角形OBC′中,OC=(3﹣3)=6﹣3,∴OD′=3﹣OC′=3﹣3,∴四边形ABOD′的周长是:2AD′+OB+OD′=6+3﹣3+3﹣3=6.故选:A.【点评】本题考查了旋转的性质、正方形的性质以及等腰直角三角形的性质.此题难度适中,注意连接BC′构造等腰Rt△OBC′是解题的关键,注意旋转中的对应关系.【变式】(2019·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为()A.2 B.3 C.4 D.5【考点】四边形综合题.【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数;②由AE=EF<BE,可得AD>2AE;③由AG=GF>OG,可得△AGD的面积>△OGD的面积;④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF;⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG;⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论.【解答】解:∵四边形ABCD是正方形,∴∠GAD=∠ADO=45°,由折叠的性质可得:∠ADG=∠ADO=22.5°,故①正确.∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°,∴AE=EF<BE,∴AE<AB,∴>2,故②错误.∵∠AOB=90°,∴AG=FG>OG,△AGD与△OGD同高,∴S△AGD>S△OGD,故③错误.∵∠EFD=∠AOF=90°,∴EF∥AC,∴∠FEG=∠AGE,∵∠AGE=∠FGE,∴∠FEG=∠FGE,∴EF=GF,∵AE=EF,∴AE=GF,故④正确.∵AE=EF=GF,AG=GF,∴AE=EF=GF=AG,∴四边形AEFG是菱形,∴∠OGF=∠OAB=45°,∴EF=GF=OG,∴BE=EF=×OG=2OG.故⑤正确.∵四边形AEFG是菱形,∴AB∥GF,AB=GF.∵∠BAO=45°,∠GOF=90°,∴△OGF时等腰直角三角形.∵S△OG F=1,∴OG2=1,解得OG=,∴BE=2OG=2,GF===2,∴AE=GF=2,∴AB=BE+AE=2+2,∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误.∴其中正确结论的序号是:①④⑤.故选B.【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.知识点四、特殊平行四边形的综合应用【例4】(2019辽宁铁岭)如图,矩形ABCD中,AB=8,AD=6,点E、F分别在边CD、AB上.(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长.【答案】(1)证明见解析;(2)25.【分析】(1)由四边形ABCD为矩形,得到AB=CD,AB∥CD,由DE=BF,得到AF=CE,AF∥CE,即可证明四边形AFCE是平行四边形;(2)由四边形AFCE是菱形,得到AE=CE,然后设DE=x,表示出AE,CE的长度,根据相等求出x的值,继而可求得菱形的边长及周长.【解析】(1)∵四边形ABCD为矩形,∴AB=CD,AB∥CD,∵DE=BF,∴AF=CE,AF∥CE,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是菱形,∴AE=CE,设DE=x,则,CE=8﹣x8x=-,解得:x=74,则菱形的边长为:784-=254,周长为:4×254=25,故菱形AFCE的周长为25.【点评】本题考查了矩形的性质、平行四边形的判定、菱形的性质以及勾股定理等知识,能正确地分析图形的特点是解决此类问题的关键.【变式】(2019·四川内江)如图所示,△ABC 中,D 是BC 边上一点,E 是AD 的中点,过点A 作BC 的平行线交CE 的延长线于F ,且AF =BD ,连接BF .(1)求证:D 是BC 的中点;(2)若AB =AC ,试判断四边形AFBD 的形状,并证明你的结论.[考点]三角形例行,特殊四边形的性质与判定。