考点27 排列 组合二项式定理
- 格式:doc
- 大小:150.50 KB
- 文档页数:4
高考数学总复习------排列组合与概率统计【重点知识回顾】1.排列与组合⑴ 分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计 数原理和分步有关,分类计数原理与分类有关.⑵ 排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.⑶排列与组合的主要公式①排列数公式:An m(n n! n(n1) (nm1) (m ≤n)m)!A n n=n!=n(n―1)(n ―...2)21.·②组合数公式:Cn mn! n(n 1) (n m 1) (m ≤n).m!(n m)! m (m 1) 2 1③组合数性质:①C n mC n nm(m ≤n). ②C n 0C n 1C n 2C n n2n③Cn 0C n 2C n 4C n 1C n 32n12.二项式定理⑴二项式定理(a+b)n=C n 0a n+C 1n a n -1b+⋯+C n ra n -rb r+⋯+C n n b n,其中各项系数就是组合数C n r,展开r - r b r . 式共有n+1项,第r+1项是T r+1=C n a n⑵二项展开式的通项公式二项展开式的第r+1 项Tr+1=C n r a n -r b r(r=0,1, ⋯叫n)做二项展开式的通项公式。
⑶二项式系数的性质①在二项式展开式中,与首末两端“等距离”的两个二项式系数相等, r n r (r=0,1,2, ⋯,n). 即C n =C n②若n 是偶数,则中间项 (第n n项)的二项公式系数最大,其值为 C n 2;若n 是奇数, 12则中间两项(第n 1项和第n3 n1 n1项)的二项式系数相等,并且最大,其值为C n 2 =C n 2. 2 2③所有二项式系数和等于 2n,即C 0n +C 1n +C 2n +⋯+C nn =2n.④奇数项的二项式系数和等于偶数项的二项式系数和,10213n ―1 即C n +C n +⋯=C n +C n +⋯=2 . 3.概率(1)事件与基本事件:随机事件: 在条件下, 可能发生也可能不发生的事件S事件不可能事件:在条件下,一定不会发生的事件 确定事件 S必然事件:在条件下,一定会发生的事件 S基本事件:试验中不能再分的最简单的 “单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的; 试验中的任意事件都可以用基本事件或其和的形式来表示.( 2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件 的概率是一个常数,不随具体的实验次数的变化而变化.(3)互斥事件与对立事件:事件定义集合角度理解 关系事件 A 与B 不可能同时两事件交集为空事件A 与B 对立,则A互斥事件与B 必为互斥事件;发生事件 A 与B 不可能同时两事件互补 事件A 与B 互斥,但不对立事件一是对立事件 发生,且必有一个发生(4)古典概型与几何概型:古典概型:具有“等可能发生的有限个基本事件 ”的概率模型.几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.两种概型中每个基本事件出现的可能性都是相等的, 但古典概型问题中所有可能出现的 基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.(5)古典概型与几何概型的概率计算公式:古典概型的概率计算公式:P(A)A 包含的基本事件的个数 .基本事件的总数构成事件A 的区域长度(面积或体积) 几何概型的概率计算公式: P (A ).试验全部结果构成的区域长度(面积或体积)两种概型概率的求法都是 “求比例”,但具体公式中的分子、分母不同.(6)概率基本性质与公式①事件A 的概率P(A)的X 围为:0≤P(A)≤1.②互斥事件A 与B 的概率加法公式: P(AB)P(A) P(B).③对立事件A与B的概率加法公式:P(A) P(B) 1.(7)如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是p kkn―kn的展开式的第k+1 项.n (1 ―p).实际上,它就是二项式[(1 ―p)+p] (k)=C n p2(8)独立重复试验与二项分布①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为( X k )k k (1)nk(012 )P Cp p,k ,,,,nn.此时称随机变量X服从二项分布,记作X~B(n,p),并称p为成功概率.4、统计(1)三种抽样方法①简单随机抽样简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,⋯,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.②系统抽样系统抽样适用于总体中的个体数较多的情况.系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔k,当N(N为总体中的个体数,n为样本容量)是整数时,nk N;当N不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,n n这时k N;第三步,在第一段用简单随机抽样确定起始个体编号l,再按事先确定的规则n抽取样本.通常是将l加上间隔 k得到第2个编号(l k),将(l k)加上k,得到第3个编号(l 2k),这样继续下去,直到获取整个样本.③分层抽样当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.(2)用样本估计总体样本分布反映了样本在各个X围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.3①用样本频率分布估计总体频率分布时, 通常要对给定一组数据进行列表、作图处理.作 频率分布表与频率分布直方图时要注意方法步骤. 画样本频率分布直方图的步骤: 求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.②茎叶图刻画数据有两个优点: 一是所有的信息都可以从图中得到; 二是茎叶图便于记录和表示,但数据位数较多时不够方便.③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程1 n 2.有时也用标准差的平方———方差来代替标准差,度,其计算公式为s(x i x)ni1两者实质上是一样的.(3)两个变量之间的关系变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值, 获得对这两个变量之间的整体关系的了解. 分析两个变量的相关关系 时 ,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估 计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系: 如果这些点大致分布在通过散点图中心的一条直线附近, 那么就说这两个变量之间具有线性相关关系, 这 条直线叫做回归直线, 其对应的方程叫做回归直线方程. 在本节要经常与数据打交道, 计算量大,因此同学们要学会应用科学计算器. (4)求回归直线方程的步骤:n n 2;第一步:先把数据制成表,从表中计算出 ,, x i y i , xy x ii1 i1 第二步:计算回归系数的 a ,b ,公式为n n nn x i y i ( x i )( y i ) b i 1 i1 i 1 , n 2 n x i )2n x i (i 1 i 1a y ;bx第三步:写出回归直线方程y bxa . (4)独立性检验①22 列联表:列出的两个分类变量 X 和Y ,它们的取值分别为{x 1,x 2}和{y 1,y 2}的 样本频数表称为 2 2列联表1分类y1 y2 总计x1 a b a bx2cdc d总计 a c b da bcd构造随机变量K2(an(ad bc)2d)(其中n ab cd)b)(c d)(a c)b4得到K2的观察值k常与以下几个临界值加以比较:如果k 2.706,就有9000的把握因为两分类变量X和Y是有关系;如果k 3.841 就有9500的把握因为两分类变量如果k 6.635 就有9900的把握因为两分类变量如果低于k 2.706,就认为没有充分的证据说明变量【典型例题】考点一:排列组合【方法解读】1、解排列组合题的基本思路:X和Y是有关系;X和Y是有关系;X和Y是有关系.①将具体问题抽象为排列组合问题,是解排列组合应用题的关键一步②对“组合数”恰当的分类计算是解组合题的常用方法;③是用“直接法”还是用“间接法”解组合题,其前提是“正难则反”;2、解排列组合题的基本方法:①优限法:元素分析法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;②排异法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
排列组合与二项式定理一、排列与组合简介在概率论和组合数学中,排列和组合是两个重要的概念。
排列和组合通常被用来描述从给定的有限集合中选择若干元素的方式。
排列指的是从一组元素中选择若干不同的元素并按照一定的顺序排列的方式。
对于一个有n个元素的集合,从中选择r个元素进行排列的方式数目记作P(n, r)。
排列主要有两种情况:1.重复元素情况下的排列,即元素可重复使用。
此时,P(n, r) = n^r.2.不重复元素情况下的排列,即元素不可重复使用。
此时,P(n, r) = n(n-1)(n-2)…(n-r+1) = n!/(n-r)!.组合指的是从一组元素中选择若干不同的元素,而不考虑元素的顺序的方式。
对于一个有n个元素的集合,从中选择r个元素进行组合的方式数目记作C(n, r)。
组合的计算公式为:C(n, r) = n!/[(n-r)!*r!].二、二项式定理的概念与展开二项式定理是高中数学中非常重要的一个定理,也是排列组合理论的重要应用。
它用于展开一个二项式的幂。
二项式定理的公式为:(x+y)^n = C(n,0)x ny^0 + C(n,1)x(n-1)y^1 + C(n,2)x(n-2)y^2 + … + C(n,n-1)x1y^(n-1) +C(n,n)x^0y^n.其中,C(n,r)表示从n个元素中选择r个元素进行组合的方式数目。
三、二项式定理的解读与应用二项式定理可以用来求解(x+y)^n的展开式中的各项系数。
在展开式中,每一项的系数就是对应的组合数。
举例说明,当n=3时,展开式为:(x+y)^3 = C(3,0)x3y^0 + C(3,1)x2y^1 + C(3,2)x1y^2 + C(3,3)x0y^3.展开后,得到:(x+y)^3 = x^3 + 3x^2y + 3x y^2 + y^3.可以看出,展开式中的每一项系数正好是对应的组合数。
二项式定理在概率论、组合数学、代数等领域具有广泛的应用。
2008年高考数学新课标复习资料——排列、组合和二项式定理1.两个原理.(1)分类计数原理和分步计数原理是排列组合的基础和核心,既可用来推导排列数、组合数公式,也可用来直接解题。
它们的共同点都是把一个事件分成若干个分事件来进行计算。
只不过利用分类计算原理时,每一种方法都可能独立完成事件;如需连续若干步才能完成的则是分步。
利用分类计数原理,重在分“类”,类与类之间具有独立性和并列性;利用分步计数原理,重在分步;步与步之间具有相依性和连续性。
比较复杂的问题,常先分类再分步,分类相加,分步相乘. (2)一个模型: 影射B A f →:个数若A 有年n 个元素,B 有m 个元素,则从A 到B 能建立nm 个不同的影射①n 件不同物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种) ②四人去争夺三项冠军,有多少种方法?③从集合A={1,2,3}到集合B={3,4}的映射f 中满足条件f (3)=3的影射个数是多少? ④求一个正整数的约数的个数 (3)含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n=.如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .2.排列数mnA 中1,n m n m ≥≥∈N 、、组合数m n C 中,1,0,n m n m n m ≥≥≥∈、N . (1)排列数公式!(1)(2)(1)()()!mn n A n n n n m m n n m =---+=≤-;!(1)(2)21n n A n n n n ==--⋅。
如(1)1!+2!+3!+…+n !(*4,n n N ≥∈)的个位数字为 (答:3); (2)满足2886xx A A -<的x = (答:8)(2)组合数公式()(1)(1)!()(1)21!!m mn n mm A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01!=,01n C =.如已知16mn mnm n C C A +++=,求 n ,m 的值(答:m =n =2)(3)排列数、组合数的性质: ①mn m nn C C -=;②111mm m nn n C C C ---=+;从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m nC C C--=⋅一类是不含红球的选法有mn C )根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有m n m n m n C C C11+-=+.③11kk nn kC nC --=;111111+++=+k n k n C n C k④1121++++=++++r n r n r r r r rrC C C C C ;⑤!(1)!!n n n n ⋅=+-;⑥11(1)!!(1)!n n n n =-++. (4)常用的证明组合等式方法. ① 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-)n.n!=(n+1)!-n! ② 导数法. ③ 数学归纳法. ④倒序求和法. 1321232-=++++n nn n n n n nC C C C一般地:已知等差数列{a n }的首项a 1,公差为d ,a 1C 0n+a 2C 1n+a 3C 2n+…+a n +1C nn=(2a 1+nd )·2n -1.⑤ 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C .⑥ 构造二项式. 如:n nn n n n C C C C 222120)()()(=+++ 证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中nx 的系数,左边为22110nn n n n n n n n n n n C C C C C C C C ⋅++⋅+⋅+⋅-- ,22120)()()(n n n n C C C +++= 而右边n n C 2=. 更一般地:rnm r n m n r m n r m C C C C C C C +-=+++01103.解排列组合问题的依据是:分类相加(每类方法都能独立地完成这件事,它是相互独立的,一次的且每次得出的是最后的结果,只需一种方法就能完成这件事),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序排列,无序组合. 如(1)将5封信投入3个邮筒,不同的投法共有 种(答:53);(2)从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有 种(答:70);(3)从集合{}1,2,3和{}1,4,5,6中各取一个元素作为点的坐标,则在直角坐标系中能确定不同点的个数是___(答:23);(4)72的正约数(包括1和72)共有 个(答:12);(5)A ∠的一边AB 上有4个点,另一边AC 上有5个点,连同A ∠的顶点共10个点,以这些点为顶点,可以构成_____个三角形(答:90);(6)用六种不同颜色把右图中A 、B 、C 、D 四块区域分开,允许同一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有 种不同涂法(答:480);(7)同室4人各写1张贺年卡,然后每人从中拿1张别人送出的贺年卡,则4张贺年卡不同的分配方式有 种(答:9);(8)f是集合{},,M a b c =到集合{}1,0,1N =-的映射,且()()f a f b +()f c =,则不同的映射共有 个(答:7);(9)满足}4,3,2,1{=C B A 的集合A 、B 、C 共有 组(答:47)3.解排列组合问题的方法有:一般先选再排,即先组合再排列,先分再排。
排列:表达的是事件中元素是有顺序的或有区分的例如(1)在袋子中逐个取出。
排队有先后之分。
表达式:!()!n m n nn m n m A n A A n m --==-(表达n 个中选m 个进行排序)计算:1.解方程:3322126xx x A A A +=+ 2. 解不等式:2996x x AA -> (1)已知101095mA =⨯⨯⨯,那么m = ; (2)已知9!362880=,那么79A = ;(3)已知256n A =,那么n = ; (4)已知2247n n A A -=,那么n = .情况次数讨论:互斥分类——分类法 先后有序——位置法 反面明了——排除法相邻排列——捆绑法 分离排列——插空法 排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”例1求不同的排法种数:(1)6男2女排成一排,2女相邻; (2)6男2女排成一排,2女不能相邻; (3)4男4女排成一排,同性者相邻; (4)4男4女排成一排,同性者不能相邻.例2 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法? (4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法? (6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?例3 7位同学站成一排(1)甲、乙两同学必须相邻的排法共有多少种? (2)甲、乙和丙三个同学都相邻的排法共有多少种?(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种? (4例4 (1)一个火车站有8股岔道,停放4列不同的火车,有多少种不同的停放方法(假定每股岔道只能停放1列火车)?(2)将4位司机、4位售票员分配到四辆不同班次的公共汽车上,每一辆汽车分别有一位司机和一位售票员,共有多少种不同的分配方案?组合:表达事件中元素没有顺序或相互之间没有区分 例如(1)在袋子中一次拿出3个小球(没有顺序)(2)将三个相同的黄色小球排成一列(没有区分)表达式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+== 规定: 01n C =.m n nmnC C -=. m n C 1+=m n C +1-m n C 计算:(1)设,+∈N x 求321132-+--+x x x x C C (2)解方程:3213113-+=x x C C ; (3)解方程:333222101+-+-+=+x x x x x A C C . 情况次数讨论:例1 (1)平面内有10 个点,以其中每2 个点为端点的线段共有多少条?(2)平面内有 10 个点,以其中每 2 个点为端点的有向线段共有多少条?例2 在 100 件产品中,有 98 件合格品,2 件次品.从这 100 件产品中任意抽出 3 件 .(1)有多少种不同的抽法?(2)抽出的 3 件中恰好有 1 件是次品的抽法有多少种? (3)抽出的 3 件中至少有 1 件是次品的抽法有多少种?例3 (1)6本不同的书分给甲、乙、丙3同学,每人各得2本,有多少种不同的分法?(2)从5个男生和4个女生中选出4名学生参加一次会议,要求至少有2名男生和1名女生参加,有多少种选法?】例4 4名男生和6名女生组成至少有1个男生参加的三人社会实践活动小组,问组成方法共有多少种?1注意区别“恰好”与“至少”从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种 2特殊元素(或位置)优先安排将5列车停在5条不同的轨道上,其中a 列车不停在第一轨道上,b 列车不停在第二轨道上,那么不同的停放方法有种3“相邻”用“捆绑”,“不邻”就“插空”七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种 4、混合问题,先“组”后“排”对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能? 5、分清排列、组合、等分的算法区别(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?(2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法? 6、分类组合,隔板处理从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?二项式定理:⑴22202122222()2a b a ab b C a C ab C b +=++=++;⑵33223031222333333()33a b a a b ab b C a C a b C ab C b +=+++=+++二项式定理:01()()nn nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈(1)右边的多项式叫()na b +的二项展开式, (2)它有1n +项,各项的系数(0,1,)rn C r n =叫二项式系数,(3)rn rr n C ab -叫二项展开式的通项,用1r T +表示,即通项1r n r rr nT C a b -+=. (4)二项式定理中,设1,ab x ==,则1(1)1n r rnn n x C x C x x +=+++++计算:(1)展开41(1)x+. 展开6. (2)求12()x a +的展开式中的倒数第4 求9(3x +的展开式常数项; 求9(3x +求7(12)x +的展开式的第4项的系数;求91()x x-的展开式中3x求60.998的近似值,使误差小于0.001. 解:66011666660.998(10.002)(0.002)(0.002)C C C =-=+-++-,展开式中第三项为2260.0020.00006C =,小于0.001,以后各项的绝对值更小,可忽略不计,∴66011660.998(10.002)(0.002)0.998C C =-≈+-=,一般地当a 较小时(1)1na na +≈+二项式定理的性质:(1)对称性.与首末两端“等距离”的两个二项式系数相等(∵mn mn nC C -=). 直线2nr=是图象的对称轴. (2)增减性与最大值.∵1(1)(2)(1)1!kk nn n n n n k n k C C k k----+-+==⋅,∴k n C 相对于1k n C -的增减情况由1n k k -+决定,1112n k n k k -++>⇔<,当12n k +<时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的,且在中间取得最大值;当n 是偶数时,中间一项2n n C 取得最大值;当n 是奇数时,中间两项12n nC -,12n nC+取得最大值.(3)各二项式系数和: ∵1(1)1nr rn n n x C x C x x +=+++++,令1x =,则0122n r nn n n n nC C C C C =++++++例1 在()na b +证明:在展开式01()()n n nr n r rn nn n n n a b C a C a b C a b C b n N -*+=+++++∈中,令1,1a b ==-,则0123(11)(1)n n nn n n n nC C C C C -=-+-++-, 即02130()()n n n n C C C C =++-++,∴0213n n n n C C C C ++=++,例2.已知7270127(12)x a a x a x a x -=++++,求:(1)127a a a +++; (2)1357a a a a +++; (3)017||||||a a a +++.解:(1)当1x=时,77(12)(12)1x -=-=-,展开式右边为0127a a a a ++++∴0127a a a a ++++1=-,当0x =时,01a =,∴127112a a a +++=--=-,(2)令1x =, 0127a a a a ++++1=- ①令1x=-,7012345673a a a a a a a a -+-+-+-= ②①-② 得:713572()13a a a a +++=--,∴ 1357a a a a +++=7132+-.(3)由展开式知:1357,,,a a a a 均为负,0248,,,a a a a 均为正, ∴由(2)中①+② 得:702462()13a a a a +++=-+,∴ 70246132a a a a -++++=,∴017||||||a a a +++=01234567a a a a a a a a -+-+-+-702461357()()3a a a a a a a a =+++-+++= 例3 设()()()()231111nx x x x ++++++++=2012n n a a x a x a x ++++,当012254n a a a a ++++=时,求n例4 (江西卷)已知n展开式中,各项系数的和与其各项二项式系数的和之比为64,则n 等于( ) A.4B.5C.6D.7(安徽卷)若(2x 3+x1)a的展开式中含有常数项,则最小的正整数n 等于 .例5 在10)32(y x -的展开式中,求:①二项式系数的和; ②各项系数的和;③奇数项的二项式系数和与偶数项的二项式系数和; ④奇数项系数和与偶数项系数和; ⑤x 的奇次项系数和与x 的偶次项系数和.分析:因为二项式系数特指组合数rn C ,故在①,③中只需求组合数的和,而与二项式y x 32-中的系数无关.解:设10102829110010)32(y a y x a y x a x a y x ++++=- (*),各项系数和即为1010a a a +++ ,奇数项系数和为0210a a a +++,偶数项系数和为9531a a a a ++++ ,x 的奇次项系数和为9531a a a a ++++ ,x 的偶次项系数和10420a a a a ++++ .由于(*)是恒等式,故可用“赋值法”求出相关的系数和. ①二项式系数和为1010101100102=+++C C C .②令1==y x ,各项系数和为1)1()32(1010=-=-.③奇数项的二项式系数和为910102100102=+++C C C ,偶数项的二项式系数和为99103101102=+++C C C .④设10102829110010)32(y a y x a y x a x a y x ++++=- ,令1==y x ,得到110210=++++a a a a …(1),令1=x ,1-=y (或1-=x ,1=y )得101032105=++-+-a a a a a (2)(1)+(2)得10102051)(2+=+++a a a ,∴奇数项的系数和为25110+;(1)-(2)得1093151)(2-=+++a a a ,∴偶数项的系数和为25110-.⑤x 的奇次项系数和为251109531-=++++a a a a ;x 的偶次项系数和为2511010420+=++++a a a a .。
专题26 排列组合二项式定理命题规律内 容典 型1 求两个二项式相乘展开式中的指定项问题 2020年高考全国Ⅰ卷理数8 2 求二项式展开式的指定项或指定项系数 2020年高考全国Ⅲ卷理数14 3 求二项式展开式中奇数项系数 2020年高考浙江卷12 4 利用计数原理计算组合问题2020年高考山东卷3 5利用计数原理计算排列组合的综合问题2020年高考全国Ⅱ卷理数14命题规律一 求两个二项式相乘展开式中的指定项问题【解决之道】利用二项式定理展开式的通项,列出关于所求项的指定项指数的方程,通过解不定方程,即可确定指定项,利用通项公式即可求出指定项系数,注意分类讨论. 【三年高考】1.【2020年高考全国Ⅰ卷理数8】()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为( )A .5B .10C .15D .20 【答案】C【解析】5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),∴2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积可表示为:56155rrrr rr r xT xC xy C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==,在615r r rr xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5,∴33x y 的系数为10515+=,故选C . 2.【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .24【答案】A【解析】由题意得x 3的系数为3144C 2C 4812+=+=,故选A .命题规律二 求二项式展开式的指定项或指定项系数【解决之道】解决此类问题,设指定项为二项式展开式的第r 项,利用通项公式,列出关于r 的方程,解出r ,即可求出指定的系数.【三年高考】1.【2020年高考北京卷3】在)52的展开式中,2x 的系数为( )A .5-B .5C .10-D .10 【答案】C【解析】由题意展开式的通项为T r+1=C 5r(x 12)5−r(−2)r ==C 5r (−2)r x5−r2,令r=1得x 2的系数为-10,故选C .2.【2020年高考全国Ⅲ卷理数14】622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是 (用数字作答). 【答案】240【解析】622x x ⎛⎫+ ⎪⎝⎭,其二项式展开通项:()62612rr rr C x x T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r r r r xC x --⋅=⋅1236(2)r r r C x -=⋅,当1230r -=,解得4r =,∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.3.【2020年高考天津卷11】在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r r r r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.4.【2018年高考全国Ⅲ卷理数】522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80【答案】C【解析】由题可得522x x ⎛⎫+ ⎪⎝⎭的展开式的通式为()521031552C C 2rr r r r rr T x x x --+⎛⎫⋅⋅== ⎪⎝⎭,令1034r -=,得2r =,所以展开式中4x 的系数为225C 240⨯=.故选C .5.【2019年高考浙江卷理数】在二项式9)x 的展开式中,常数项是__________;系数为有理数的项的个数是__________.【答案】 5【解析】由题意,9)x的通项为919C (0,1,29)r r r r T x r -+==,当0r =时,可得常数项为919C T ==;若展开式的系数为有理数,则1,3,5,7,9r =,有246810T , T , T , T , T 共5个项.6.【2018年高考浙江卷】二项式81)2x的展开式的常数项是__________. 【答案】7【解析】二项式812x ⎫⎪⎭的展开式的通项公式为848318811C C 22rr rrrr r T xx --+⎛⎫==⋅⋅ ⎪⎝⎭, 令8403r -=得2r =,故所求的常数项为2821C =72⋅.故答案为:7. 7.【2018年高考天津卷理数】在5(x 的展开式中,2x 的系数为__________.【答案】52【解析】二项式5(x -的展开式的通项公式为35521551C C 2r rr r r r r T x x --+⎛⎛⎫==- ⎪ ⎝⎭⎝,令3522r -=可得:2r =,则2x 的系数为:225115C 10242⎛⎫-=⨯= ⎪⎝⎭.故答案为:52.命题规律三 求二项式展开式中奇数项系数【解决之道】解决此类问题,要熟记二项式展开式的系数性质,利用赋值法,即可列出二项式系数的方程(组),系数和即赋值1x =,偶数项系数和减去奇数项系数和即赋值1x =-,通过解方程即可求出偶数项(奇数项)系数和.【三年高考】1.【2020年高考浙江卷12】设()2345123455612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= .【答案】80;51【解析】由题意可知5a 表示4x 的系数,即4455280a C =⋅=,11a =,125210a C =⋅=,2235240a C =⋅=,∴12351a a a ++=.命题规律四 利用计数原理计算组合问题【解决之道】排列组合问题常见解法:(1)元素分析法:在解有限定元素的排列问题时,首先考虑特殊元素的安排方法,再考虑其他元素的排法。
可编辑修改精选全文完整版排列与组合一、两个根本计数原理:〔排列与组合的根底〕1、分类加法计数原理:做一件事,完成它可以有类方法,在第一类方法中有种不同的方法,在第二类方法中有种不同的方法,……,在第类方法中有种不同的方法,那么完成这件事共有种不同方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第步有种不同的方法,那么完成这件事共有种不同的方法.二、排列与组合〔1〕排列定义:一般地,从个不同元素中取出个元素,按照一定顺序排成一列。
排列数公式:我们把正整数由1到的连乘积,叫做的阶乘,用表示,即,并规定。
全排列数公式可写成.〔主要用于化简、证明等〕(二)组合定义:一般地,从个不同元素中取出个元素合成一组,叫做从个不同元素中取出个元素的一个组合;组合数用符号表示组合数公式:变式:组合数的两个性质:1、三、二项式定理1、二项式定理:n n n r r n r n n n n n n b a C b a C b a C b a C b a 01100)(+++++=+-- .展开式具有以下特点:① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n r n n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.2、二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b a C T r r n r n r ∈≤≤=-+.3、二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等;②二项展开式的中间项二项式系数最大.I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2n n C 最大; II. 当n是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C 最大.③系数和: 1314201022-=++=+++=+++n n n n n n n n nn n C C C C C C C C。
第十章 排列、组合与概率1. 分类计数原理和分步计数原理 (1) 分类计数原理:做一件事,完成它可以有n 类办法,(是对完成这件事的所有方法的一个分类),在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法,那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.说明:分类时,首先要根据问题的特点确定一个分类的标准,然后在确定的分类标准下进行分类;其次分类时要注意满足一个基本要求:完成这件事的任何一种方法必属于某一类,并且分别属于不同两类的两种方法都是不同的方法,即不重复也不遗漏.只有满足这些条件,才能用分类计数原理. (2)分步计数原理:做一件事情,完成它需要分成n 个步骤,(是指完成这件事的任何一种方法,都要分成n 个步骤),做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有n m m m N ⨯⋅⋅⋅⨯⨯=21 种不同的方法.说明:分步时首先要根据问题的特点确定一个分步的标准;其次分步时还要注意满足完成一件事必须并且只需连续完成这n 个步骤后这件事才算完成,只有满足这些条件,才能用分步计数原理.(3)“分类”与“分步”的相同点和不同点分类计数原理和分步计数原理的共同点是它们完成一件事情,共有多少种不同的方法.区别在于完成一件事情的方式不同:分类计数原理是“分类完成”,即任何一种办法中用任何一个方法都能独立完成这件事;分步计数原理是“分步完成”,即这些方法需要分步骤顺次相依,且每一个步骤都完成了,才能完成这件事情.区分分类还是分步的关键..是看经.过这个过程,有没有完成整个事情................ 2.排列(1) 排列的概念:从n 个不同元素中,任取m (m n ≤)个不同元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个不同元素的一个排列.说明:○1不同元素;○2排列有序性;○3相同排列:元素相同,顺序相同. (2)排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 个不同元素的排列数,用符号mn A 表示.(3)排列数公式:)1()2)(1(+-⋅⋅⋅--=m n n n n A m n (,,m n N m n *∈≤).(4)阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘.规定0!1=. (5)排列数的另一个计算公式:mn A =!()!n n m -.3.组合(1)组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个不同元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.说明:○1不同元素;○2“只取不排”——无序性;○3相同组合:元素相同. 说明:○1不同元素;○2“只取不排”——无序性;○3相同组合:元素相同. (2)组合数的概念:从n 个不同元素中取出m ()m n ≤个不同元素的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数....用符号mn C 表示. (3)组合数公式:(1)(2)(1)!mmn nm mA n n n n m C Am ---+==;或)!(!!m n m n C m n-=),,(n m N m n ≤∈*且.(4)组合数的性质1:m n n m n C C -=,规定:10=n C ; 组合数的性质2:m n C 1+=m n C +1-m n C .4.排列与组合的区分根据排列与组合的定义,前者是从n 个不同元素中选取m 个不同元素后,还要按照一定的顺序排成一列,而后者只要从n 个不同元素中选取m 个不同的元素并成一组,所以区分某一问题是排列还是组合问题.关键看选出的元素与顺序是否有关,若交换某两个元素的位置对结果产生影响,则是排列问题,而交换任意两个元素的位置对结果没有影响,则是组合问题.也就是说排列与选取元素的顺序有关,组合与选取元素的顺序无关.排列与组合的共同点,就是都要“从n 个不同元素中,任取m 个元素”,而不同点在于元素取出以后,是“排成一排”,还是‘“组成一组”,其实质就是取出的元素是否存在顺序上的差异.因此,区分排列问题和组合问题的主要标志是:是否与元素的排列顺序有关.............有顺序的是排列问题,无顺序的则是组合问题.例如123和321,132是不同的排列,但它们都是相同的组合.再如两人互通一次信是排列问题,互握一次手则是组合问题.5.解排列、组合应用题的途径与思路解排列组合应用题时主要应抓住是排列问题还是组合问题,其次要搞清需要分类,还是需要分步.切记:排组分清(有序排列、无序组合),加乘明确(分类为加、分步为乘). 具体说,解排列组合的应用题,通常有以下途径:①以元素为主,即先满足特殊元素的要求,再考虑其他元素. ②以位置为主,即先满足特殊位置的要求,再考虑其地位置.③先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数. 排列、组合应用题的解题思路:排组分清,加乘明确;有序排列,无序组合;分类为加,分步为乘.6.解排列、组合混合应用题的基本方法排列组合综合题的求解,要合理进行分类、分步.基本方法是:先“组”后“排”,即先分类,再分步.排列组合应用题大致可分为三大类:不带限制条件的排列或组合题;带有约束条件的排列或组合题;排列与组合的综合题.解此类问题常用的方法有: ①相邻元素的排列应用题,一般采用“捆绑法”. ②元素间隔排列应用题,一般采用“插空法”.③含有特殊元素和特殊位置的排列,组合应用题,常采用“特殊元素法”,从元素为主出发,先安排特殊元素;从位置为主出发,先安排好特殊位置上元素,结合排除法解决此类问题.④指标问题采用“隔板法”.⑤有关“分堆”与“到位”应用问题常采用“分组法”与“分配法”.若只分堆,不指定到具体位置,则需注意平均分的情况;所谓“到位”是指分堆后给某人或指定到某些位置. 总之,排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:①以元素为主,应先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数. 前两种方法叫直接解法,后一种方法叫间接解法,求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答.其中蕴涵有:分类讨论思想,转化思想和对称方法等数学思想方法,具体的解题策略有: ①特殊元素优先安排策略; ②合理分类与准确分类策略; ③先选后排策略;④正难则反,等价转化的策略; ⑤相邻问题捆绑处理的策略;⑥间隔问题插空处理的策略;⑦定序问题除法处理的策略; ⑧分排问题直排处理的策略;⑨“小团体”排列问题中先整体后局部策略;⑩构造模型的策略. 7.二项式定理(1)二项式定理:01()()n n n r n r r n n n n n n a b C a C a b C a b C b n N -*+=+++++∈ ,特例:1(1)1n r r nn n x C x C x x +=+++++ .(2)二项展开式的通项公式:1r n r rr n T C a b -+=.(3)二项展开式的通项公式,反映出展开式在指数、项数、系数等方面的内在联系,因此能运用二项展开式的通项公式求特定项、特定项系数、常数项、有理项及系数最大、绝对值最大的项.求常数项、有理项和系数最大的项时,要根据通项公式讨论对r 的限制;求有理项时要注意到指数及项数的整数性. (4)二项式系数的性质()na b +展开式的二项式系数是0n C ,1n C ,2n C ,…,nn C .rn C 可以看成以r 为自变量的函数()f r ,定义域是{0,1,2,,}n .二项式系数的性质有:○1对称性.与首末两端“等距离”的两个二项式系数相等(∵m n mn n C C -=;直线2n r =是图象的对称轴).○2增减性与最大值:当n 是偶数时,中间一项2nn C 取得最大值;当n 是奇数时,中间两项12n n C -,12n n C +取得最大值.○3各二项式系数和:n n n r n n n nC C C C C 2210=+⋅⋅⋅++⋅⋅⋅+++ 在1(1)1n r r n n n x C x C x x +=+++++ 中,令1x =,则0122n r n n n n n n C C C C C =++++++8.随机事件的概率(1)必然事件、不可能事件、随机事件:必然事件是指在一定条件下必然发生的事件;不可能事件指在一定条件下不可能发生的事件;随机事件指在一定条件下可能发生也可能不发生的事件.(2)随机事件概率:指大量重复进行同一试验,随机事件A 发生的频率nm (n 是试验的总次数,m 是事件A 发生的次数)接近的常数.记作P (A ).它反映的是,这个事件发生可能性的大小.即一个随机事件的发生既有随机性(对单次试验来说)又有规律性(对大量重复试验来说).规律性体现在nm 的值具有稳定性.当随机试验的次数不断增多,nm 的值总在这个常数附近摆动且摆动的幅度越来越小.所以,概率可以看作是频率在理论上的期值.由于n m ≤≤0,故10≤≤nm ,于是可得1)(0≤≤A P .9. 等可能性事件及其概率基本事件:一次试验连同其中可能出现的每一个结果,即每个结果对应每一个基本事件,如果这次试验中可能出现的结果有n 个,而且所有这些结果出现的可能性都相等,那么每一个结果所对应的基本事件的概率都是n1.等可能性事件:一次试验中所有可能出的n 个基本结果出现的可能性都相等,这n 个结果对应着n 个基本事件,如果某事件A 包含着这n 个等可能基本事件中的m 个基本事件,称事件A 为等可能随机事件,由于每个等可能基本事件的概率为n1,事件A 中的m 个事件有一个发生则事件A 就发生了,故事件A 发生的概率n m A P =)(.10. 互斥事件(1)互斥事件:不可能同时发生的两个事件叫做互斥事件.一般地,如果事件n A A A ,,,21 中的任何两个都是互斥的,那么就说n A A A ,,,21 彼此互斥.从集合的角度看,n 个事件彼此互斥,是指各个事件所含的结果组成的集合彼此不相交.(2)互斥事件有一个发生的概率设A 、B 是两个互斥事件,那么B A +表示这样一个事件:在同一试验中,A 与B 中有一个发生就表示它发生.事件B A +的概率是)()()(B P A P B A P +=+,这就是说,如果事件B A ,互斥,那么事件B A +发生(即B A ,中有一个发生)的概率,等于事件B A ,分别发生的概率的和.(3)一般地,如果事件n A A A ,,,21 ,彼此互斥,那么事件n A A A +++ 21发生(即n A A A ,,,21 中有一个发生)的概率,等于这n 个事件分别发生的概率的和,即 )()()(),,,(2121n n A P A P A P A A A P ++==(4)对立事件对立事件:两个互斥事件在一次试验中必有一个发生时,这样的两个互斥事件叫做对立事件.事件A 的对立事件通常记作:A .说明:在一次试验中,两个互斥的事件有可能都不发生,只有两个互斥事件在一次试验中必有一个发生时,这样的两个互斥事件才叫做对立事件.也就是说,两个互斥事件不一定是对立事件,而两个对立事件必是互斥事件,即两个事件对立是这两个事件互斥的充分不必要条件.从集合的角度看,由事件A 所含的结果组成的集合,是全集中由事件A 所含的结果组成的集合的补集.(5)对立事件概率公式:)(1)(A P A P -=说明:这个公式的作用是,当直接求某一事件的概率较为复杂时,可先转而求其对立事件的概率,使概率的计算得到简化. 11.相互独立事件(1)相互独立事件:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件.两个事件相互独立是指其中一个事件的发生与否对另一个事件发生的概率没有影响.一般地,如果事件A 与B 相互独立,那么A 与B ,A 与B ,A 与B 也都是相互独立的. (2)独立事件同时发生:事件A 、B 同时发生,记作B A ⋅. (3)独立事件同时发生的概率()()()B P A P B A P ⋅=⋅这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积. (4)一般地,如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即:()()()()n n A P A P A P A A A P 2121⋅=⋅12. 独立重复试验(1)独立重复试验:在相同条件下,重复地各次之间相互独立地进行的一种试验,称为独立重复试验.在独立重复试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.(2)n 次独立重复试验中某事件恰好发生k 次的概率如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中,这个事件恰好发生k 次的概率为 ()()kn kkn n P P C k P --=1【考点梳理】1.排列、组合、二项式知识相互关系表2.两个基本原理(1)分类计数原理中的分类。
高中数学高考总复习---排列组合、二项式定理知识讲解及考点梳理【高考展望】命题角度:该部分的命题就是围绕两个点展开.第一个点是围绕排列,组合展开,设计利用排列组合和两个基本原理求解的实际计数问题的试题,目的是考查对排列组合基本方法的掌握程度,考查分类与整合的思想方法,试题都是选择题或者填空题,难度中等或者偏易;第二点是围绕二项式定理展开,涉及利用二项式的通项公式计算二项式中特定项的系数、常数项、系数和等试题,目的是考查对二项式定理的掌握程度和基本的运算求解能力,试题也都是选择题或者填空题,难度中等.预计高考对该部分的考查基本方向不变,即考查简单的计数问题、二项式定理的简单应用,但由于排列,组合试题的特点,也不排除出现难度稍大的试题的可能.复习建议:该部分的复习以基本问题为主,要点有两个:一个是引导学生掌握解决排列,组合问题的基本思想,即分类与分步的思想,使学生在解题时有正确的思维方向;一个是掌握好二项展开式的通项公式的应用,这是二项式定理的考查核心.【知识升华】一、排列与组合1、分类计数原理与分步计数原理是关于计数的两个基本原理,两者的区别在于分步计数原理和分步有关,分类计数原理与分类有关.2、排列与组合主要研究从一些不同元素中,任取部分或全部元素进行排列或组合,求共有多少种方法的问题.区别排列问题与组合问题要看是否与顺序有关,与顺序有关的属于排列问题,与顺序无关的属于组合问题.3、排列与组合的主要公式①排列数公式:)1()1()!(!+-⋅⋅⋅-=-=mnnnmnnA mn(m≤n)A nn=n! =n(n―1)(n―2) ·…·2·1.②组合数公式:12)1()1()1()!(!!⨯⨯⋅⋅⋅⨯-⨯+-⋅⋅⋅-=-=mmmnnnmnmnC mn(m≤n).③组合数性质:①mnnmnCC-=(m≤n). ②nnnnnnCCCC2210=+⋅⋅⋅+++③1314202-=⋅⋅⋅++=⋅⋅⋅++nnnnnnCCCCC4、分类应在同一标准下进行,确保“不漏”、“不重”,分步要做到“步骤连续”和“步骤独立”,并能完成事项.5、界定“元素与位置”要辩证地看待,“特殊元素”、“特殊位置”可直接优先安排,也可间接处理.6、解排列组合综合问题注意先选后排的原则,复杂的排列、组合问题利用分类思想转化为简单问题求解.7、常见的解题策略有以下几种:(1)特殊元素优先安排的策略;(2)合理分类与准确分步的策略;(3)排列、组合混合问题先选后排的策略;(4)正难则反、等价转化的策略;(5)相邻问题捆绑处理的策略;(6)不相邻问题插空处理的策略;(7)定序问题除法处理的策略;(8)分排问题直排处理的策略;(9)“小集团”排列问题中先整体后局部的策略;(10)构造模型的策略.二、二项式定理1、二项式定理(a +b)n =C 0n an +C1n an-1b+…+Crn an-rbr +…+Cnn bn,其中各项系数就是组合数Crn,展开式共有n+1项,第r+1项是Tr+1 =C rn an-rbr.2、二项展开式的通项公式二项展开式的第r+1项Tr+1=C rn an-rbr(r=0,1,…n)叫做二项展开式的通项公式。
温馨提示:高考题库为word 版,请按住ctrl,滑动鼠标滚轴,调节合适的 观看比例,点击右上角的关闭按钮可返回目录。
考点27 排列 组合二项式定理1.(2010·陕西高考理科·T4)5()ax x+(x R ∈)展开式中3x 的系数为10,则实数a 等于( )(A )-1 (B )12(C) 1 (D) 2 【命题立意】本题考查二项式定理的通项公式的应用及运算能力,属保分题。
【思路点拨】5()ax x+⇒5215r r r r T a C x -+=⇒523r -=⇒11510 2.a C a =⇒= 【规范解答】选D 552155,(0,1,2,3,4,5)rr r r r r r a T C x a C x r x --+⎛⎫=== ⎪⎝⎭ ,令523r -=,所以1r =,所以11510 2.a C a =⇒=2.(2010·北京高考理科·T4)8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( )(A )8289A A (B )8289A C (C ) 8287A A (D )8287A C【命题立意】本题考查排列组合的相关知识。
所用技巧:有序排列无序组合、不相邻问题插空法。
【思路点拨】先排8名学生,再把老师插入到9个空中去。
【规范解答】选A 。
8名学生共有88A 种排法,把2位老师插入到9个空中有29A 种排法,故共有8289A A 种排法。
【方法技巧】解决排列组合问题常用的方法与技巧:(1)有序排列无序组合;(2)不相邻问题插空法:可以把要求不相邻的元素插入到前面元素间的空中;(3)相邻问题捆绑法。
3.(2010·山东高考理科·T8)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有( ) (A )36种(B )42种(C)48种(D )54种【命题立意】本题考查排列组合的基础知识,考查分类与分步计数原理,考查了考生的分析问题解决问题的能力和运算求解能力.【思路点拨】根据甲的位置分类讨论.【规范解答】选B ,分两类:第一类:甲排在第一位,共有44A =24种排法;第二类:甲排在第二位,共有1333A A =18⋅种排法,所以共有编排方案241842+=种,故选B. 【方法技巧】排列问题常见的限制条件及对策1、有特殊元素或特殊位置,先满足特殊元素或特殊位置的要求,再考虑其他元素或位置.2、元素必须相邻的排列,将必须相邻的的元素捆绑,作为一个整体,但要注意其内部元素的顺序.3、元素不相邻的排列,先排其他元素,然后“插空”.4、元素有顺序限制的排列.4.(2010·天津高考理科·T10)如图,用四种不同颜色给图中的A,B,C,D,E,F 六个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法用( ) (A )288种 (B )264种 (C )240种 (D )168种【命题立意】本题考查分类计数原理,排列组合等基础知识,考查分析问题、解决问题的能力。
【思路点拨】先分步再排列【规范解答】先涂色点E ,有4种涂法,再涂点B ,有两种可能: 1、B 与E 相同时,依次涂点F,C,D,A ,涂法分别有3,2,2,2种;2、B 与E 不相同时有3种涂法,再依次涂F 、C 、D 、A 点,涂F 有2种涂法,涂C 点时又有两种可能:(1)C 与E 相同,有1种涂法,再涂点D ,有两种可能: ①D 与B 相同,有1种涂法,最后涂A 有2种涂法; ②D 与B 不相同,有2种涂法,最后涂A 有1种涂法。
(2)C 与E 不相同,有1种涂法,再涂点D ,有两种可能:①D 与B 相同,有1种涂法,最后涂A 有2种涂法; ②D 与B 不相同,有2种涂法,最后涂A 有1种涂法。
所以不同的涂色方法有4{322232[1(1212)1(1211)]}4(2442)264⨯⨯⨯⨯+⨯⨯⨯⨯+⨯+⨯⨯+⨯=⨯+=。
【方法技巧】解题的关键是处理好相交线端点的颜色问题,解决排列组合应用题,要做到合理的分类,准确的分类,才能正确的解决问题。
5.(2010·广东高考理科·T8)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定,每个彩灯彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯商量的颜色各不相同。
记这这5个彩灯有序地闪亮一次为一个闪烁,在每个闪烁中,每秒钟有且仅有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5妙。
如果要实现所有不同的闪烁,那么需要的时间至少是( ) A 、 1205秒 B.1200秒 C.1195秒 D.1190秒 【命题立意】本题考察排列的综合问题。
【思路点拨】先用排列算出闪烁个数55A 120=,还要考虑每个闪烁间的时间。
【规范解答】选C 每次闪烁时间为5秒,共5120600s ⨯=,每两次闪烁之间的间隔为5s ,共5(1201)595s ⨯-=,总共就有6005951195.s +=6.(2010·湖南高考理科·T4)在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10B.11C.12D.15【命题立意】以排列组合为依托,考查学生严谨的逻辑思维能力. 【思路点拨】象这种至多或至少的问题,常常用正难则反法.【规范解答】选B.用0和1进行排列,允许数字重复共有16种排法.与0110有三个位置上的数字相同的排法有四种:1110、0010、0100、0111,与0110有四个位置上的数字相同的有一种,因此答案是:16-4-1=11. 【方法技巧】1、排列组合问题要熟练几种常见方法:正难则反,树形图和分类讨论.2、要学会几个基本问题的处理:投信模型或映射模型,相邻问题捆绑法,不相邻问题插空法,特殊元素或特殊位置优先考虑法,物品分发等.7.(2010·辽宁高考理科·T13)261(1)()x x x x++-的展开式中的常数项为_______. 【命题立意】考查了二项式的展开式,【思路点拨】展开式中的常数项只可能是21x x ++中的常数项与1-x x6()中的常数项的积和21x x ++中的一次 项与1-x x6()中的1x -项的积以及21x x ++中的二次项与1-x x6()中的2x -项积的和 【规范解答】66-62166633446611(-)1(-)(1)1(-)1(1)1(1)55k k k k k k k x k T C x C x x xx C C x-++==-⨯-+⨯---2展开式中第项为。
(1+x+x )的常数项为=故填【方法技巧】1、分清常数项是如何产生的。
展开式中的常数项并不是21x x ++中的常数项与1-x x6()中的常数项的积,而是21x x ++中的各项与1-x x6()的展开式中的项的乘积中各常数项的和。
2、1-x x6()展开式中第k+1项Tk+1=666266611()(1)()(1)k kk k k k k k k k C x C x C x x x----=-=-,不要漏掉负号。
8.(2010·安徽高考理科·T12)6⎛⎫展开式中,3x 的系数等于________。
【命题立意】本题主要考查二项式定理,考查考生对二项式定理理解认知的水平。
【思路点拨】方法1:写出展开式的通项,进而确定3x 的项及其系数。
方法2:要得到3x出现4出现2次,即4426C ,这样直观快捷。
【规范解答】方法1:6⎛⎫展开式的通项为:3363622166r r r r r r r T C C x y ---+==,当且仅当2r =时,能得到3x 的项,此时3315T x =,所以3x 的系数等于15。
方法2:4423615C x =所以3x 的系数等于15。
答案:159. (2010·浙江高考理科·T17)有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复. 若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测试一人. 则不同的安排方式共有______________种(用数字作答).【命题立意】本题考查排列组合的相关知识,考查数学的应用能力。
【思路点拨】可以先安排上午的测试项目,再安排下午。
【规范解答】记4位同学分别为:A 、B 、C 、D 。
则上午共有44A =24种安排方式。
不妨先假定上午如表格所示安排方式,则下午可如下安排:BADC 、BCAD 、BCDA 、BDAC 、CABD 、CADB ,CDAB 、CDBA ,DABC 、DCAB 、DCBA ,共11种安排方式。
因此,全天共有2411⨯=264种安排方式。
答案:264。
【方法技巧】解决排列组合问题时,常用的技巧:(1)特殊位置优先安排;(2)合理分类与准确分步。