函数的单调性与最值教案
- 格式:doc
- 大小:199.00 KB
- 文档页数:8
函数的单调性与最大最小值的教案一、教学目标1. 让学生理解函数的单调性的概念,掌握判断函数单调性的方法。
2. 让学生了解函数的最大值和最小值的概念,掌握求函数最大值和最小值的方法。
3. 培养学生运用函数的单调性和最值解决实际问题的能力。
二、教学内容1. 函数的单调性1.1 单调增函数和单调减函数的定义1.2 判断函数单调性的方法1.3 单调性在实际问题中的应用2. 函数的最大值和最小值2.1 最大值和最小值的定义2.2 求函数最大值和最小值的方法2.3 最大值和最小值在实际问题中的应用三、教学重点与难点1. 教学重点:函数的单调性的概念及判断方法,函数最大值和最小值的求法及应用。
2. 教学难点:函数单调性的判断方法,求函数最大值和最小值的方法。
四、教学方法1. 采用讲解法,引导学生理解函数的单调性和最值的概念。
2. 采用案例分析法,让学生通过实际问题体验函数单调性和最值的应用。
3. 采用小组讨论法,培养学生合作解决问题的能力。
五、教学准备1. 教学课件:函数单调性和最值的定义、判断方法和求法。
2. 教学案例:实际问题涉及函数单调性和最值的解答。
3. 练习题:针对本节课内容的练习题,巩固所学知识。
六、教学过程1. 导入:通过复习上一节课的内容,引导学生回顾函数的概念和性质,为新课的学习做好铺垫。
2. 讲解:讲解函数的单调性,通过示例让学生理解单调增函数和单调减函数的定义,介绍判断函数单调性的方法。
3. 案例分析:分析实际问题,让学生运用函数的单调性解决实际问题,体会函数单调性的重要性。
4. 讲解:讲解函数的最大值和最小值的概念,介绍求函数最大值和最小值的方法。
5. 案例分析:分析实际问题,让学生运用函数的最值解决实际问题,体会函数最值的重要性。
6. 练习:让学生独立完成练习题,巩固所学知识。
7. 总结:对本节课的内容进行总结,强调函数的单调性和最值在实际问题中的应用。
七、课堂练习1. 判断下列函数的单调性:1. y = x^22. y = -x^23. y = 2x + 32. 求下列函数的最大值和最小值:1. y = x^2 4x + 52. y = -x^2 + 4x 53. 运用函数的单调性和最值解决实际问题。
高中数学教案函数的单调性与最值高中数学教案:函数的单调性与最值一、引言函数是数学中的一个重要概念,它描述了数值之间的关系。
而函数的单调性以及最值则是我们研究函数性质时的关键内容。
本教案将重点介绍函数的单调性以及最值的概念、性质和计算方法,帮助学生更好地理解和掌握这一知识点。
二、函数的单调性1. 定义函数的单调性指的是在定义域上的变化趋势。
具体而言,若函数在其定义域上递增,则称为函数的单调递增;若函数在其定义域上递减,则称为函数的单调递减。
2. 判断方法(1)对于函数y=f(x),当x1 < x2时,比较f(x1)与f(x2)的大小关系: - 若f(x1) < f(x2),则函数递增;- 若f(x1) > f(x2),则函数递减;- 若f(x1) = f(x2),则函数不单调。
(2)对于一阶导数存在的函数,可以通过导函数的正负性判断函数的单调性:- 若导函数f'(x) > 0,则函数递增;- 若导函数f'(x) < 0,则函数递减;- 若导函数f'(x) = 0,可以进一步分析。
3. 经典例题(1)求函数f(x)=x^2的单调性。
解:由f'(x) = 2x,当x > 0时,f'(x) > 0;当x < 0时,f'(x) < 0。
因此,函数f(x)=x^2在x > 0时单调递增,在x < 0时单调递减。
(2)求函数f(x)=3x^4-4x^3的单调性。
解:由f'(x) = 12x^3-12x^2 = 12x^2(x-1),可知当x < 0时,f'(x) < 0;当0 < x < 1时,f'(x) > 0;当x > 1时,f'(x) > 0。
因此,函数f(x)=3x^4-4x^3在x < 0时单调递减,在0 < x < 1时单调递增,在x > 1时单调递增。
函数单调性与最值教案教案标题:函数单调性与最值教案教案目标:1. 了解函数的单调性及其在数学和实际问题中的应用。
2. 掌握求解函数最值的方法和技巧。
3. 能够分析和解决与函数单调性和最值相关的问题。
教案步骤:步骤一:引入概念(15分钟)1. 引导学生回顾函数概念,并解释函数的单调性。
2. 通过示例图像展示函数的单调递增和单调递减的特点。
3. 提出问题:如何判断一个函数的单调性?步骤二:函数单调性的判断(20分钟)1. 介绍函数导数的概念,并解释导数与函数单调性的关系。
2. 讲解判断函数单调性的方法:a. 对函数求导,判断导数的正负性;b. 利用函数的图像和定义域的特点进行判断。
3. 通过练习题让学生巩固判断函数单调性的方法。
步骤三:函数最值的求解(20分钟)1. 引导学生思考如何求解函数的最值。
2. 解释求解函数最值的方法:a. 对函数求导,找出导数为零或不存在的点;b. 利用函数的图像和定义域的特点进行判断。
3. 通过练习题让学生掌握求解函数最值的方法和技巧。
步骤四:综合应用(15分钟)1. 提供一些实际问题,要求学生分析问题并应用函数单调性和最值的概念解决问题。
2. 引导学生讨论解决问题的思路和步骤。
3. 鼓励学生展示解决问题的过程和答案,并进行讨论和评价。
步骤五:总结与拓展(10分钟)1. 总结函数单调性和最值的概念和判断方法。
2. 引导学生思考函数单调性和最值在其他学科和实际问题中的应用。
3. 提供一些拓展问题,鼓励学生继续思考和研究相关概念。
教案评估:1. 在步骤二和步骤三的练习中,检查学生对函数单调性和最值的判断和求解能力。
2. 在步骤四的综合应用中,评估学生对函数单调性和最值在实际问题中的应用能力。
3. 在课堂讨论和总结中,评估学生对函数单调性和最值概念的理解和思考能力。
教案延伸:1. 鼓励学生独立研究更复杂的函数单调性和最值问题,拓展思维能力。
2. 引导学生探索函数单调性和最值在其他数学领域的应用,如微积分、优化问题等。
函数的单调性与最值教案一、教学目标:1. 理解函数单调性的概念,能够判断简单函数的单调性。
2. 掌握利用单调性求函数的最值的方法。
3. 能够运用函数的单调性和最值解决实际问题。
二、教学内容:1. 函数单调性的定义与判断方法。
2. 利用单调性求函数的最值。
3. 函数单调性和最值在实际问题中的应用。
三、教学重点与难点:1. 函数单调性的判断方法。
2. 利用单调性求函数的最值。
四、教学方法与手段:1. 采用讲授法,讲解函数单调性的定义与判断方法。
2. 利用数形结合法,结合图形讲解函数的单调性和最值。
3. 运用实例法,分析实际问题中的函数单调性和最值。
五、教学过程:1. 引入:通过举例,让学生感受函数的单调性和最值在实际问题中的重要性。
2. 讲解:讲解函数单调性的定义与判断方法,结合图形进行分析。
3. 练习:让学生练习判断一些简单函数的单调性。
4. 讲解:讲解如何利用单调性求函数的最值,结合实例进行分析。
5. 练习:让学生练习求解一些函数的最值。
6. 总结:总结本节课的主要内容,强调函数单调性和最值在实际问题中的应用。
7. 作业布置:布置一些有关函数单调性和最值的练习题,巩固所学知识。
六、教学拓展:1. 引导学生思考函数单调性与其他数学概念的联系,如导数、极限等。
2. 探讨函数单调性在高等数学中的应用,如微分方程、最优化问题等。
七、案例分析:1. 分析实际问题,引导学生运用函数的单调性和最值解决实际问题。
2. 举例说明函数单调性和最值在经济学、物理学、工程学等领域的应用。
八、课堂互动:1. 组织学生进行小组讨论,分享各自在练习中的心得体会。
2. 邀请学生上台展示自己的解题过程,互相学习和交流。
九、教学评价:1. 课堂讲解:评价学生对函数单调性和最值的理解程度。
2. 练习作业:评价学生运用函数单调性和最值解决实际问题的能力。
十、教学反思:1. 反思本节课的教学内容、教学方法是否适合学生的学习需求。
2. 针对学生的学习情况,调整教学策略,提高教学效果。
四、教学过程
教学
环节
教学内容设计意图
情境引入
课堂探究通过观察生活中熟悉的事物,引入本节新课。
提高学生概括、推理的能力。
通过思考,观察函数的图象,从特殊到一般,归纳总结最值的定义,提高学生的解决问题、分析问题的能力。
得出定义
类比定义类比得出最小值定义
函数最值的几何意义
常见题型
通过实际问题让学生明白怎样求二次函数在整个定义域上的最值以及利用函数的单调性求函数的最值,提高学生解决问题的能力,进一步掌握单调性与最值的关系。
课堂
小结
通过总结,
让学生进
一步巩固
本节所学
内容,提高
概括能力,
板书设计
课后练习
、
课后提高学生的数学运算能力和逻辑推理能力。
通过练习。
函数的单调性与最大最小值的教案一、教学目标1. 知识与技能:(1)理解函数单调性的概念,能够判断函数的单调性;(2)掌握利用导数研究函数的单调性,能够求解函数的单调区间;(3)了解函数的最大最小值的概念,能够利用导数求解函数的最大最小值。
2. 过程与方法:(1)通过实例引导学生理解函数单调性的概念,培养学生的抽象思维能力;(2)利用导数研究函数的单调性,培养学生的逻辑推理能力;(3)通过实例引导学生掌握利用导数求解函数的最大最小值,提高学生的解决问题的能力。
3. 情感态度与价值观:(1)培养学生对数学的兴趣,激发学生学习函数的积极性;(2)培养学生克服困难的意志,提高学生解决问题的能力;(3)培养学生团队合作的精神,提高学生的沟通能力。
二、教学内容1. 函数单调性的概念;2. 利用导数研究函数的单调性;3. 函数的最大最小值的概念;4. 利用导数求解函数的最大最小值。
三、教学重点与难点1. 教学重点:(1)函数单调性的判断;(2)利用导数研究函数的单调性;(3)利用导数求解函数的最大最小值。
2. 教学难点:(1)函数单调性的证明;(2)利用导数求解函数的最大最小值的过程。
四、教学过程1. 导入:通过生活中的实例,引导学生理解函数单调性的概念,激发学生的学习兴趣。
2. 新课导入:讲解函数单调性的定义,引导学生掌握判断函数单调性的方法。
3. 实例分析:利用导数研究函数的单调性,让学生通过实例体会导数在研究函数单调性中的作用。
4. 方法讲解:讲解如何利用导数求解函数的最大最小值,让学生掌握求解方法。
5. 练习与讨论:布置练习题,让学生巩固所学知识,并通过讨论培养学生的团队合作精神。
五、课后作业1. 复习本节课所学内容,整理笔记;2. 完成课后练习题,加深对函数单调性和最大最小值的理解;3. 准备下一节课的内容,提前预习。
六、教学评价1. 知识与技能:(1)学生能准确判断函数的单调性;(2)学生能利用导数研究函数的单调性;(3)学生能利用导数求解函数的最大最小值。
函数的单调性与最值教案一、教学目标:1. 知识与技能:(1)理解函数的单调性的概念,掌握判断函数单调性的方法;(2)了解函数的最值概念,学会求解函数的最值;(3)能够运用单调性和最值解决实际问题。
2. 过程与方法:(1)通过实例分析,引导学生发现函数的单调性与最值之间的关系;(2)利用数形结合,让学生掌握函数单调性和最值的求解方法;(3)培养学生的数学思维能力和解决问题的能力。
3. 情感态度与价值观:(1)激发学生对函数单调性和最值的兴趣,提高学习数学的积极性;(2)培养学生勇于探索、合作学习的良好品质;(3)使学生感受到数学在生活中的应用,培养学生的数学素养。
二、教学重点与难点:1. 教学重点:(1)函数单调性的判断方法;(2)函数最值的求解方法;(3)单调性和最值在实际问题中的应用。
2. 教学难点:(1)函数单调性在复杂函数中的判断;(2)多变量函数最值的求解;(3)实际问题中单调性和最值的运用。
三、教学准备:1. 教师准备:(1)熟练掌握函数单调性和最值的相关知识;(2)准备典型的例题和习题;(3)制作PPT或黑板课件。
2. 学生准备:(1)预习函数单调性和最值的相关内容;(2)掌握基本函数的单调性和最值;(3)准备笔记本,做好笔记。
四、教学过程:1. 导入新课:(1)复习上节课的内容,回顾函数的性质;(2)提问:同学们认为函数有哪些重要的性质呢?(3)引导学生思考函数的单调性和最值在实际问题中的应用。
2. 知识讲解:(1)讲解函数单调性的定义和判断方法;(2)通过实例分析,让学生理解函数单调性与最值之间的关系;(3)讲解函数最值的概念和求解方法。
3. 课堂互动:(1)让学生举例说明函数的单调性;(2)分组讨论:如何求解函数的最值;(3)教师点评并总结。
4. 巩固练习:(1)出示典型习题,让学生独立解答;(2)讲解习题,分析解答过程;(3)让学生上台板演,互相评价。
5. 课堂小结:(1)回顾本节课所学内容,总结函数单调性和最值的关系;(2)强调单调性和最值在实际问题中的应用;(3)提醒学生做好课后复习。
公开课《函数的单调性与最值》教学设计(建阳一中市级公开周)函数的单调性是函数应用中最基本、最重要的知识点,求函数的最值都离不开单调性,而单调性的基础数形结合,这类题型是历年高考的热点,也是难点,针对这类基础薄弱的学生,起点不宜太高,只能从最基础的部分拾起,以题目贯穿内容,逐级而上.教学方法:提示练习探讨法教学过程一、复习引入1.函数的单调性 (1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的2.函数的最值前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足条件 (1)对于任意的x ∈I ,都有f (x )≤M ; (2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ; (4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值二、新课讲授典例讲解问题一:不含参数的函数的单调性例1.求函数 12-=x y 在区间[2,6]上的最大值和最小值..求函数 []10,2,16)(∈+=x xx x f 的最大值.例2.求下列函数的最值. (1)2)(x x f =(2)[)3,0,12)(2∈--=x x x x f2(3)()21[1,1]f x x ax =---求函数在上的最小值。
【题后感悟】(1)如何求二次函数在闭区间[m,n]上的最值? 确定二次函数的对称轴,如x=a;根据对称轴与给定区间的位置关系分类讨论; 结合图象明确函数的单调区间进而求解.(2)二次函数在闭区间上的最值只可能在区间的端点处及二次函数图象的对称轴处取得.跟踪练习.][)[][).()(1,3)(3,22)(0,2)1(,32)(2t g x f t t x x f x x f x x x f x的最小值时,求)当(的最值;时,求)当(的最值;时,求当已知二次函数+∈-∈-∈+-=课堂小结利用函数单调性判断函数的最大(小)值的方法 1. 利用图象求函数的最大(小)值2.利用二次函数的性质(配方法)求函数的最大(小)值3.利用函数单调性判断函数的最大(小)值 (1)如果函数y=f(x)在区间[a ,b]上单调递增,则函数y=f(x)在x=a 处有最小值f(a),在x=b 处有最大值f(b) ;(2)如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b);若函数f(x)=ax2-(2a+1)x+a+1对于x∈[-1,1]时恒有f(x)≥0,则实数a的取值范围是________.。
函数的单调性教案(获奖)第一章:引言1.1 现实生活中的单调性1.引入概念:单调性是指函数在定义域内的变化趋势。
2.举例说明:(1)商品价格随时间的变化;(2)物体的高度随时间的变化。
1.2 函数单调性的意义1.函数单调性在实际生活中的应用:(1)优化问题;(2)经济决策。
2.函数单调性在数学领域的应用:(1)导数的定义;(2)最值问题的求解。
第二章:函数单调性的定义与性质2.1 函数单调性的定义1.单调递增函数:若对于定义域内的任意x1<x2,都有f(x1)<f(x2),则函数f(x)为单调递增函数。
2.单调递减函数:若对于定义域内的任意x1<x2,都有f(x1)>f(x2),则函数f(x)为单调递减函数。
2.2 函数单调性的性质1.若函数f(x)在定义域内单调递增,则在任意子区间内也单调递增;2.若函数f(x)在定义域内单调递减,则在任意子区间内也单调递减;3.单调递增函数的导数大于等于0;4.单调递减函数的导数小于等于0。
第三章:函数单调性的判断与证明3.1 函数单调性的判断1.利用导数判断:若函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则函数f(x)在定义域内单调递增(或单调递减)。
2.利用图像判断:观察函数图像,若图像随着x的增大而上升,则为单调递增函数;若图像随着x的增大而下降,则为单调递减函数。
3.2 函数单调性的证明1.利用导数证明:假设函数f(x)在定义域内可导,且导数f'(x)≥0(或≤0),则对于定义域内的任意x1<x2,有f(x1)<f(x2)(或f(x1)>f(x2)),从而证明函数f(x)单调递增(或单调递减)。
2.利用数学归纳法证明:对于定义域内的任意x1<x2,证明f(x1)<f(x2)(或f(x1)>f(x2)),从而得出函数f(x)单调递增(或单调递减)。
第四章:函数单调性与最值问题4.1 函数单调性与最值的关系1.若函数f(x)在定义域内单调递增,则函数在定义域内的最小值出现在定义域的左端点;2.若函数f(x)在定义域内单调递减,则函数在定义域内的最大值出现在定义域的左端点。
函数的单调性和最值【第一课时】 【教材分析】函数的单调性和最值的第一课时,主要学习用数学语言刻画函数的变化趋势(单调性的定义)及简单的应用,是学习函数概念后研究的第一个、也是最基本的一个性质,对于分析函数性质、求函数最值、比较大小、解不等式、函数零点的判定以及其他函数综合问题等,都有重要的应用,掌握函数单调性的定义和应用,为学习幂函数、指数函数、对数函数,包括导函数等做好准备。
【教学目标与核心素养】1.知识目标:利用图象判断函数的单调性、寻找函数的单调区间;掌握函数的单调性的定义,用定义证明函数的单调性,及作差结果符号的判断方法;熟悉常见函数(绝对值函数、二次函数、分段函数等)的单调性及简单应用。
2.核心素养目标:通过函数单调性的概念的学习和简单的应用,体会数形结合、分类讨论等基本的数学思想方法,提高学生的数学运算和直观想象能力。
【教学重难点】(1)利用函数的图象判断单调性、寻找函数单调区间;(2)函数的单调性的定义,用定义证明函数的单调性的方法,及作差结果符号的判断方法; (3)常见函数(绝对值函数、二次函数、分段函数等)的单调性及简单应用。
【课前准备】多媒体课件【教学过程】一、知识引入初中学习了一次函数y kx b =+的图象和性质,当0k >时,直线是向右上,即函数值y 随x 的增大而增大,当0k <时,直线向右下,即函数值y 随x 的增大而减小。
同样二次函数、反比例函数等,也有类似的性质。
思考讨论:(1)如图,是某位同学从高一到高三上学期的考试成绩的统计图,从图中,你可以得出该同学成绩是怎样变化的呢?提示:高一时成绩在下降,高一下期期末降到最低名次32名,以后各次考试成绩逐步提高,到高三上期时已经进入前五名。
(2)如图,是函数()[] 6,9f x x ∈-()的图象,说出在各个区间函数值()f x 随x 的值的变化情况。
提示:在区间[][][][]6,52,13,4.57,8---、、、上,函数值()f x 都是随x 的值的增大而增大; 在区间[][][][]5,21,3 4.5,78,9--、、、上,函数值f (x )都是随x 的值的增大而减小。
第2讲函数的单调性与最值【2013年高考会这样考】1.考查求函数单调性和最值的基本方法.2.利用函数的单调性求单调区间.3.利用函数的单调性求最值和参数的取值范围.【复习指导】本讲复习首先回扣课本,从“数”与“形”两个角度来把握函数的单调性和最值的概念,复习中重点掌握:(1)函数单调性的判断及其应用;(2)求函数最值的各种基本方法;对常见题型的解法要熟练掌握.基础梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I.如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f (x )在区间D上是减函数图象描述自左向右图象是上升的自左向右图象是下降的(2)单调区间的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D叫做f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件①对于任意x∈I,都有①对于任意x∈I,都有.f (x )≤M ;f (x )≥M ;②存在x 0∈I ,使得f (x 0)=M②存在x 0∈I ,使得f (x 0)=M . 结论M 为最大值M 为最小值一个防范函数的单调性是对某个区间而言的,所以要受到区间的限制.例如函数y =1x分别在(-∞,0),(0,+∞)内都是单调递减的,但不能说它在整个定义域即(-∞,0)∪(0,+∞)内单调递减,只能分开写,即函数的单调减区间为(-∞,0)和(0,+∞),不能用“∪”连接. 两种形式设任意x 1,x 2∈[a ,b ]且x 1<x 2,那么 ①f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是增函数;f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是减函数.②(x 1-x 2)[f (x 1)-f (x 2)]>0⇔f (x )在[a ,b ]上是增函数;(x 1-x 2)[f (x 1)-f (x 2)]<0⇔f (x )在[a ,b ]上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值. 四种方法 函数单调性的判断(1)定义法:取值、作差、变形、定号、下结论.(2)复合法:同增异减,即内外函数的单调性相同时,为增函数,不同时为减函数. (3)导数法:利用导数研究函数的单调性. (4)图象法:利用图象研究函数的单调性.双基自测1.设f (x )为奇函数,且在(-∞,0)内是减函数,f (-2)=0,则xf (x )<0的解集为( ).A .(-2,0)∪(2,+∞)B .(-∞,-2)∪(0,2)C .(-∞,-2)∪(2,+∞)D .(-2,0)∪(0,2)答案 C2.(2011·湖南)已知函数f (x )=e x -1,g (x )=-x 2+4x -3.若有f (a )=g (b ),则b 的取值范围为( ). A .[2-2,2+2] B .(2-2,2+2) C .[1,3]D .(1,3)解析 函数f (x )的值域是(-1,+∞),要使得f (a )=g (b ),必须使得-x 2+4x -3>-1.即x 2-4x +2<0,解得2-2<x <2+ 2. 答案 B3.(2012·保定一中质检)已知f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)的实数x 的取值范围是( ). A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析 由已知条件:⎪⎪⎪⎪⎪⎪1x >1,不等式等价于⎩⎪⎨⎪⎧|x |<1,x ≠0,解得-1<x <1,且x ≠0.答案 C4.(2011·江苏)函数f (x )=log 5(2x +1)的单调增区间是______.解析 要使y =log 5(2x +1)有意义,则2x +1>0,即x >-12,而y =log 5u 为(0,+∞)上的增函数,当x >-12时,u =2x +1也为增函数,故原函数的单调增区间是⎝ ⎛⎭⎪⎫-12,+∞. 答案 ⎝ ⎛⎭⎪⎫-12,+∞5.若x >0,则x +2x的最小值为________.解析 ∵x >0,则x +2x≥2x ·2x=2 2 当且仅当x =2x,即x = 2时,等号成立,因此x +2x的最小值为2 2.答案 2 2考向一 函数的单调性的判断【例1】►试讨论函数f (x )=xx 2+1的单调性.[审题视点] 可采用定义法或导数法判断.解 法一 f (x )的定义域为R ,在定义域内任取x 1<x 2,都有f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=x 1-x 2-x 1x 2x 21+x 22+,其中x 1-x 2<0,x 21+1>0,x 22+1>0.①当x 1,x 2∈(-1,1)时,即|x 1|<1,|x 2|<1,∴|x 1x 2|<1,则x 1x 2<1,1-x 1x 2>0,f (x 1)-f (x 2)<0,f (x 1)<f (x 2),∴f (x )为增函数. ②当x 1,x 2∈(-∞,-1]或[1,+∞)时, 1-x 1x 2<0,f (x 1)>f (x 2),∴f (x )为减函数.综上所述,f (x )在[-1,1]上是增函数,在(-∞,-1]和[1,+∞)上是减函数.法二 ∵f ′(x )=⎝ ⎛⎭⎪⎫x x 2+1′=x 2+1-x x 2+x 2+2=x 2+1-2x 2x 2+2=1-x 2x 2+2,∴由f ′(x )>0解得-1<x <1.由f ′(x )<0解得x <-1或x >1,∴f (x )在[-1,1]上是增函数,在(-∞,-1]和[1,+∞)上是减函数.判断(或证明)函数单调性的主要方法有:(1)函数单调性的定义;(2)观察函数的图象;(3)利用函数和、差、积、商和复合函数单调性的判断法则;(4)利用函数的导数等. 【训练1】 讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. 解 设-1<x 1<x 2<1,f (x )=a x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=ax 2-x 1x 1-x 2-当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.考向二 利用已知函数的单调区间求参数的值(或范围)【例2】►已知函数f (x )=x 2+ax(a >0)在(2,+∞)上递增,求实数a 的取值范围.[审题视点] 求参数的范围转化为不等式恒成时要注意转化的等价性.解 法一 设2<x 1<x 2,由已知条件f (x 1)-f (x 2)=x 21+a x 1-x 22+ax 2=(x 1-x 2)+a x 2-x 1x 1x 2=(x 1-x 2)x 1x 2-ax 1x 2<0恒成立.即当2<x 1<x 2时,x 1x 2>a 恒成立.又x 1x 2>4,则0<a ≤4.法二 f (x )=x+a x ,f ′(x )=1-a x2>0得f (x )的递增区间是(-∞,-a ),(a ,+∞),根据已知条件a ≤2,解得0<a ≤4.已知函数的解析式,能够判断函数的单调性,确定函数的单调区间,反之已知函数的单调区间可确定函数解析式中参数的值或范围,可通过列不等式或解决不等式恒成立问题进行求解. 【训练2】 函数y =x -5x -a -2在(-1,+∞)上单调递增,则a 的取值范围是( ).A .a =-3B .a <3C .a ≤-3D .a ≥-3解析 y =x -5x -a -2=1+a -3x -a +,需⎩⎪⎨⎪⎧a -3<0,a +2≤-1,即⎩⎪⎨⎪⎧a <3,a ≤-3,∴a ≤-3.答案 C考向三 利用函数的单调性求最值【例3】►已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.[审题视点] 抽象函数单调性的判断,仍须紧扣定义,结合题目作适当变形. (1)证明 法一 ∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数. 法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2), ∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2.对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f x 1f x 2与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等.【训练3】 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1, 由于当x >1时,f (x )<0,所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在[0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.规范解答2——如何解不等式恒成立问题【问题研究】 在恒成立的条件下,如何确定参数的范围是历年来高考考查的重点内容,近年来在新课标地区的高考命题中,由于三角函数、数列、导数知识的渗透,使原来的分离参数法、根的分布法增添了思维难度,因而含参数不等式的恒成立问题常出现在综合题的位置. 【解决方案】 解决这类问题的关键是将恒成立问题进行等价转化,使之转化为函数的最值问题,或者区间根的分布问题,进而运用最值原理或者区间根原理使问题获解,常用方法还有函数性质法,分离参数法等.【示例】►(本题满分12分)已知函数f (x )=x 2-2ax +2,当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.利用函数性质求f (x )的最值,从而解不等式f (x )min ≥a ,得a 的取值范围.解题过程中要注意a 的范围的讨论.[解答示范] ∵f (x )=(x -a )2+2-a 2,∴此二次函数图象的对称轴为x =a (1分) (1)当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增, ∴f (x )min =f (-1)=2a +3.(3分)要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a , 解得a ≥-3,即-3≤a <-1.(6分)(2)当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2.(8分) 要使f (x )≥a 恒成立,只需f (x )min ≥a , 即2-a 2≥a (10分)解得-2≤a ≤1,即-1≤a ≤1.(11分) 综上所述,实数a 的取值范围为[-3,1](12分)本题是利用函数的性质求解恒成立问题,主要的解题步骤是研究函数的性质,由于导数知识的运用,拓展了这类问题深度和思维的广度,因此,解答问题时,一般的解题思路是先通过对函数求导,判断导函数的符号,从而确定函数在所给区间上的单调性,得到区间上对应的函数最值.【试一试】 当x ∈(1,2)时,不等式x 2+mx +4<0恒成立,则m 的取值范围是________.解析 法一 当x ∈(1,2)时,不等式x 2+mx +4<0可化为:m <-⎝⎛⎭⎪⎫x +4x ,又函数f (x )=-⎝⎛⎭⎪⎫x +4x 在(1,2)上递增,则f (x )>-5, 则m ≤-5.法二 设g (x )=x 2+mx +4当-m 2≤32,即m ≥-3时,g (x )<g (2)=8+2m ,当-m 2>32,即m <-3时,g (x )<g (1)=5+m由已知条件可得:⎩⎪⎨⎪⎧m ≥-3,8+2m ≤0,或⎩⎪⎨⎪⎧m <-3,5+m ≤0.解得m ≤-5 答案 (-∞,-5]。