信息论试题
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
一.填空1.设X的取值受限于有限区间[a,b ],则X 服从 均匀 分布时,其熵达到最大;如X 的均值为μ,方差受限为2σ,则X 服从 高斯 分布时,其熵达到最大。
2.信息论不等式:对于任意实数0>z ,有1ln -≤z z ,当且仅当1=z 时等式成立。
3.设信源为X={0,1},P (0)=1/8,则信源的熵为 )8/7(log 8/78log 8/122+比特/符号,如信源发出由m 个“0”和(100-m )个“1”构成的序列,序列的自信息量为)8/7(log )100(8log22m m -+比特/符号。
4.离散对称信道输入等概率时,输出为 等概 分布。
5.根据码字所含的码元的个数,编码可分为 定长 编码和 变长 编码。
6.设DMS 为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡03.007.010.018.025.037.0.654321u u u u u u P U U ,用二元符号表}1,0{21===x x X 对其进行定长编码,若所编的码为{000,001,010,011,100,101},则编码器输出码元的一维概率=)(1x P 0.747 , =)(2x P 0.253 。
12设有DMC,其转移矩阵为[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2/16/13/13/12/16/16/13/12/1|XY P ,若信道输入概率为[][]25.025.05.0=X P ,试确定最佳译码规则和极大似然译码规则,并计算出相应的平均差错率。
解:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=8/124/112/112/18/124/112/16/14/1][XYP最佳译码规则:⎪⎩⎪⎨⎧===331211)()()(ab F a b F a b F ,平均差错率为1-1/4-1/6-1/8=11/24;极大似然规则:⎪⎩⎪⎨⎧===332211)()()(ab F a b F a b F ,平均差错率为1-1/4-1/8-1/8=1/2。
信息论基础考试试题一、信息论基础考试试题考试试题内容如下:1. 简述信息论的定义和基本原理。
信息论是由克劳德·香农提出的一门数学理论,主要研究信息的量和信息传输的可靠性。
其基本原理包括信源编码、信道编码和信道容量三个方面。
其中,信源编码是将信息源的符号序列编码为短码字节,减少信息传输的冗余;信道编码是为了在承载信息传输的信道中降低传输过程中的错误率和噪声干扰;信道容量则是指在给定的信道条件下,能够传输的最大信息速率。
2. 请定义信息熵,并给出其计算公式。
信息熵是用来衡量一个随机变量的不确定性或者信息量的多少。
假设一个离散随机变量X,其取值的概率分布为P(X),那么信息熵的计算公式为:H(X) = -Σ[P(x)log2P(x)]其中,Σ表示求和运算,x为随机变量X的所有取值。
3. 解释条件熵和联合熵的概念。
条件熵是指在给定某个随机变量的取值条件下,另一个随机变量的不确定性或信息量。
设有两个离散随机变量X和Y,X的条件熵H(X|Y)即为在已知Y的条件下,X的信息熵。
联合熵是指同时考虑两个或多个随机变量的不确定性或信息量。
对于随机变量X和Y,它们的联合熵H(X,Y)表示同时考虑X和Y的信息熵。
4. 请解释互信息的概念,并给出其计算公式。
互信息是用来衡量两个随机变量之间的相关程度或者依赖关系。
对于离散随机变量X和Y,互信息的计算公式为:I(X;Y) = ΣΣ[P(x,y)log2(P(x,y)/(P(x)P(y)))]其中,ΣΣ表示双重求和运算,P(x,y)表示X和Y同时发生的概率,P(x)和P(y)分别为X和Y的边缘概率。
5. 请简要介绍信道编码理论中的三个重要概念:纠错码、检测码和调制。
纠错码是一种用于在传输过程中恢复误差的编码技术。
通过添加冗余信息,可以在接收端检测和纠正传输过程中产生的错误。
检测码是用于在传输过程中检测错误的编码技术。
它可以发现传输中是否存在错误,但无法纠正错误。
调制是指将数字信号转换为模拟信号或者模拟信号转换为数字信号的过程。
信息论习题集第一章、判断题1、信息论主要研究目的是找到信息传输过程的共同规律,提高信息传输的可靠性、有效性、保密性和认证性,以达到信息传输系统的最优化。
(√)2、同一信息,可以采用不同的信号形式来载荷;同一信号形式可以表达不同形式的信息。
(√)3、通信中的可靠性是指使信源发出的消息准确不失真地在信道中传输;(√)4、有效性是指用尽量短的时间和尽量少的设备来传送一定量的信息。
(√)5、保密性是指隐蔽和保护通信系统中传送的消息,使它只能被授权接收者获取,而不能被未授权者接收和理解。
(√)6、认证性是指接收者能正确判断所接收的消息的正确性,验证消息的完整性,而不是伪造的和被窜改的。
(√)7、在香农信息的定义中,信息的大小与事件发生的概率成正比,概率越大事件所包含的信息量越大。
(×)第二章一、判断题1、通信中获得的信息量等于通信过程中不确定性的消除或者减少量。
(√)2、离散信道的信道容量与信源的概率分布有关,与信道的统计特性也有关。
(×)3、连续信道的信道容量与信道带宽成正比,带宽越宽,信道容量越大。
(×)4、信源熵是信号符号集合中,所有符号的自信息的算术平均值。
(×)5、信源熵具有极值性,是信源概率分布P的下凸函数,当信源概率分布为等概率分布时取得最大值。
(×)6、离散无记忆信源的N次扩展信源,其熵值为扩展前信源熵值的N倍。
(√)7、互信息的统计平均为平均互信息量,都具有非负性。
(×)8、信源剩余度越大,通信效率越高,抗干扰能力越强。
(×)9、信道剩余度越大,信道利用率越低,信道的信息传输速率越低。
(×)10、信道输入与输出之间的平均互信息是输入概率分布的下凸函数。
(×)11、在信息处理过程中,熵是不会增加的。
(√)12、熵函数是严格上凸的。
(√)13、信道疑义度永远是非负的。
(√)14、对于离散平稳信源,其极限熵等于最小平均符号熵。
信息论基础试题及答案信息论基础试题及答案填空题(每题2分)1、信息论研究的目的就是要找到信息传输过程的共同规律,以提高信息传输的(可靠性)﹑(有效性)﹑保密性和认证性,使信息传输系统达到最优化。
(考点:信息论的研究目的)2、电视屏上约有500×600=3×105个格点,按每点有10个不同的灰度等级考虑,则可组成103?10个不同的画面。
按等概计算,平均每个画面可提供的信息量约为(106bit/画面)。
(考点:信息量的概念及计算)3、按噪声对信号的作用功能来分类信道可分为(加性信道)和(乘性信道)。
(考点:信道按噪声统计特性的分类)4、英文电报有32个符号(26个英文字母加上6个字符),即q=32。
若r=2,N=1,即对信源S的逐个符号进行二元编码,则每个英文电报符号至少要用(5)位二元符号编码才行。
(考点:等长码编码位数的计算)5、如果采用这样一种译码函数,它对于每一个输出符号均译成具有最大后验概率的那个输入符号,则信道的错误概率最小,这种译码规则称为(最大后验概率准则)或(最小错误概率准则)。
(考点:错误概率和译码准则的'概念)6、按码的结构中对信息序列处理方式不同,可将纠错码分为(分组码)和(卷积码)。
(考点:纠错码的分类)7、码C={(0,0,0,0),(0,1,0,1),(0,1,1,0),(0,0,1,1)}是((4,2))线性分组码。
(考点:线性分组码的基本概念)8、和离散信道一样,对于固定的连续信道和波形信道都有一个最大的信息传输速率,称之为(信道容量)。
(考点:连续信道和波形信道的信道容量)9、对于一个(n,k)分组码,其最小距离为d,那么,若能纠正t 个随机错误,同时能检测e(e≥t)个随机错误,则要求(d≥t+e+1)。
(考点:线性分组码的纠检错能力概念)判断题(每题2分)1、信源剩余度的大小能很好地反映离散信源输出的符号序列中符号之间依赖关系的强弱,剩余度越大,表示信源的实际熵越小。
第一天:
1、请问什么是信息
答案:消除不确定因素
2、信息论的奠基人是谁,为什么?
答案:香农,香农三大定律
3、单个信源符号的自信息量的计算方法
答案:概率的倒数的对数
4、信源的离散熵怎么计算,熵的物理含义是什么
答案:熵代表离散程度,离散程度越大,熵值越大。
第二天:
1、请问一个随机变量在什么概率分布的时候,它的熵值最大?怎么和生活中进行对接
答案:概率分布均匀的时候熵值最大
2、请问互信息熵的计算和物理含义是什么?想想一条河流
3、数据处理定理是什么?在数据处理当中,丢失了什么?获得了什么?为什么要数据处理呢?(从通信系统的角度来考虑)沙里淘金
第三天:
1、离散的无记忆信源序列的熵值该怎么计算,它又有什么作用呢?
2、离散的有记忆序列的熵值该怎样计算?
3、极限熵的物理含义是什么?
4、编码的一些基本概念(等长和变长,奇异和非奇异,唯一可译码、平均编码长度、码树、前缀码和非前缀码等)
5、仔细体会从等长编码和变长编码,针对什么样的信源,有什么优缺点
第四天:
1、请问香农第一定理是什么?其含义是什么?如何理解?(信源符号的个数和码字个数之间的关系)
2、。
一、选择题1、下列那位创立了信息论.(C)A.牛顿B.高斯C.香农D.哈夫曼2、下列不属于消息的是。
(B)A.文字B.信号C.图像D.语言3、同时扔两个正常的骰子,即各面呈现的概率都是1/6,若点数之和为2,则得到的自信息量为(B)。
A.-log36 bitB.log36 bitC.-log18 bitD.log18 bit4、下列说法不正确的是(C)A.异字头码肯定是唯一可译的B.逗点码是唯一可译的C.唯一可译码不必满足Kraft 不等式D.无逗点码可以唯一可译5、下述编码中那个可能是任何概率分布对应的Huffman编码(A)A.{0,10,11}B.{00,01,10,110}C.{01,10}D.{001,011,100,101}6、下列物理量不满足非负性的是(D)A.H(X)B.I(X;Y)C.H(Y|X)D.I(x j;y j)7、信源的输出与信道的输入匹配的目的不包括(D)A.符号匹配B.信息匹配C.降低信道剩余度D.功率匹配8、在串联系统中,有效信息量的值(B)A.趋于变大B.趋于变小C.不变D.不确定二、判断题1、信息论研究的主要问题是在通信系统设计中如何实现信息传输、存储和处理的有效性和可靠性。
(T)2、信息是先验概率和后验概率的函数,信息量是事件数目的指数函数。
(F)提示:对数函数3、两个事件之间的互信息量可正,可负,也可能为0。
(T)4、在通讯系统中,无论对接收到的信息怎样处理,信息只会减少,绝不可能增加。
(T )5、Huffman 编码是唯一的.(F)提示:不唯一6、概率大的事件自信息量大。
(F )提示:小7、在事件个数相同条件下,事件等概率出现情况下的熵值最大。
(T)8、平稳的离散无记忆信道不可用一维概率描述。
(F)提示:可以三、填空题1、必然事件的自信息是 0 .2、根据码字所含的码元的个数,编码可分为 等长 编码和 不等长 编码。
3、不等长D 元码,码字最长限定为N,则至多有 D(D N - 1)/(D — 1) 个码字。
信息论试题一、选择题1. 信息论的创始人是()。
A. 克劳德·香农B. 艾伦·图灵C. 约翰·冯·诺伊曼D. 阿兰·麦席森2. 下列哪个选项是信息论中信息熵的计算公式?()。
A. H(X) = -ΣP(x)log_2P(x)B. H(X) = ΣP(x)xC. H(X) = 1/ΣP(x)D. H(X) = log_2(1/P(x))3. 在信息论中,互信息用于衡量两个随机变量之间的()。
A. 独立性B. 相关性C. 非线性D. 周期性4. 以下哪个不是信息论的应用领域?()。
A. 通信系统B. 密码学C. 机器学习D. 生物遗传学5. 香农极限是指()。
A. 信息传输的最大速率B. 信息压缩的最小冗余度C. 信道容量的理论上限D. 编码长度的最优解二、填空题1. 信息论中的信息熵是衡量信息的不确定性或________的度量。
2. 互信息表示两个随机变量之间共享的信息量,它是衡量两个变量之间________的指标。
3. 香农在1948年发表的论文《________》奠定了信息论的基础。
4. 在数字通信中,信道容量可以通过公式________来计算。
5. 信息论不仅在通信领域有广泛应用,它还对________、数据分析等产生了深远影响。
三、简答题1. 简述信息论的基本原理及其在现代通信中的作用。
2. 描述香农信息论中的主要概念及其相互之间的关系。
3. 说明信息论如何应用于数据压缩技术,并给出一个实际例子。
4. 讨论信息论对于密码学和信息安全的贡献。
四、论述题1. 论述信息论对于人工智能和机器学习领域的影响及其潜在的应用前景。
2. 分析信息论在生物信息学中的应用,以及如何帮助我们更好地理解生物系统的复杂性。
3. 探讨信息论在社会网络分析中的应用,以及它如何帮助我们理解和预测社会行为模式。
4. 评述信息论在量子通信和量子计算中的潜在作用及其对未来科技发展的意义。
一、设X 、Y 是两个相互统计独立的二元随机变量,其取-1或1的概率相等。
定义另一个二元随机变量Z ,取Z=YX (一般乘积)。
试计算:1.H (Y )、H (Z );2.H (YZ );3.I (X;Y )、I (Y;Z ); 二、如图所示为一个三状态马尔科夫信源的转移概率矩阵1. 绘制状态转移图;2. 求该马尔科夫信源的稳态分布;3. 求极限熵;三、在干扰离散对称信道上传输符号1和0,已知P (0)=1/4,P(1)=3/4,试求:1. 信道转移概率矩阵P2.信道疑义度3.信道容量以及其输入概率分布 四、某信道的转移矩阵⎥⎦⎤⎢⎣⎡=1.006.03.001.03.06.0P ,求信道容量,最佳输入概率分布。
五、求下列各离散信道的容量(其条件概率P(Y/X)如下:)六、求以下各信道矩阵代表的信道的容量答案一、设X 、Y 是两个相互统计独立的二元随机变量,其取-1或1的概率相等。
定义另一个二元随机变量Z ,取Z=YX (一般乘积)。
试计算:1.H (Y )、H (Z );2.H (XY )、H (YZ );3.I (X;Y )、I (Y;Z ); 解:1. 2i 11111H Y P y logP y log log 2222i i =⎡⎤=-+⎢⎥⎣⎦∑()=-()()=1bit/符号 Z=YX 而且X 和Y 相互独立∴ 1(1)(1)(1)PP X P Y P X ⋅=+=-⋅=-(Z =1)=P(Y=1)= 1111122222⨯+⨯= 2(1)(1)(1)P P X P Y P X ⋅=-+=-⋅=(Z =-1)=P(Y=1)= 1111122222⨯+⨯=故H(Z)= i2i1(z )log (z )i P P =-∑=1bit/符号2.从上式可以看出:Y 与X 的联合概率分布为:H(YZ)=H(X)+H(Y)=1+1=2bit/符号 3.X 与Y 相互独立,故H(X|Y)=H(X)=1bit/符号∴I (X;Y )=H(X)-H(X|Y)=1-1=0bit/符号I(Y;Z)=H(Y)-H(Y|Z)=H(Y)-[H(YZ)-H(Z)]=0 bit/符号二、如图所示为一个三状态马尔科夫信源的转移概率矩阵2. 绘制状态转移图; 2. 求该马尔科夫信源的稳态分布;3. 求极限熵;解:1.状态转移图如右图 2.由公式31()()(|)j iji i p E P E P EE ==∑,可得其三个状态的稳态概率为:1123223313123111()()()()22411()()()2211()()()24()()()1P E P E P E P E P E P E P E P E P E P E P E P E P E ⎧=++⎪⎪⎪=+⎪⎨⎪=+⎪⎪⎪++=⎩1233()72()72()7P E P E P E ⎧=⎪⎪⎪⇒=⎨⎪⎪=⎪⎩3.其极限熵:3i i 13112112111H = -|E =0+0+72272274243228=1+1+ 1.5=bit/7777i P H H H H ∞=⨯⨯⨯⨯⨯⨯∑(E )(X )(,,)(,,)(,,)符号三、在干扰离散对称信道上传输符号1和0,已知P (0)=1/4,P(1)=3/4,试求:2. 信道转移概率矩阵P 2.信道疑义度3.信道容量以及其输入概率分布解:1.该转移概率矩阵为 P=0.90.10.10.9⎡⎤⎢⎥⎣⎦2.根据P (XY )=P (Y|X )⋅P (X ),可得联合概率由P (X|Y )=P(X|Y)/P(Y)可得H(X|Y)=-i jiji j(x y )log x |y =0.09+0.12+0.15+0.035=0.4bit/P P∑,()符号 3.该信道是对称信道,其容量为:C=logs-H=log2-H (0.9,0.1)=1-0.469=0.531bit/符号这时,输入符号服从等概率分布,即01 11()22XP X⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎣⎦四、某信道的转移矩阵⎥⎦⎤⎢⎣⎡=1.06.03.01.03.06.0P,求信道容量,最佳输入概率分布。
信息类专业试题及答案详解一、选择题1. 信息论的创始人是:A. 爱因斯坦B. 图灵C. 香农D. 冯·诺依曼答案:C2. 以下哪个不是计算机网络的拓扑结构?A. 星型拓扑B. 环型拓扑C. 总线拓扑D. 树型拓扑答案:D3. 在数据库系统中,用于存储数据的软件是:A. 数据库管理系统(DBMS)B. 操作系统(OS)C. 编译器D. 应用软件答案:A二、填空题1. 在信息安全领域,_______是用来保护数据传输过程中的安全性。
答案:加密2. 计算机病毒是一种_______,它可以在计算机系统中自我复制并传播。
答案:恶意软件3. 网络协议中的TCP和UDP分别代表传输控制协议和_______。
答案:用户数据报协议三、简答题1. 简述什么是云计算,并说明其主要特点。
答案:云计算是一种通过网络(通常是互联网)提供按需访问计算资源(如服务器、存储、数据库、网络、软件等)的服务模式。
其主要特点包括:- 弹性:资源可以根据需求动态扩展或缩减。
- 可访问性:用户可以通过任何设备,任何地点访问云服务。
- 按需服务:用户仅支付他们使用的服务。
- 多租户:多个用户可以共享相同的物理硬件资源。
- 服务化:云服务提供商负责维护基础设施和软件。
2. 解释什么是大数据,并阐述其“4V”特性。
答案:大数据是指传统数据处理应用软件难以处理的海量、高增长率和多样化的信息资产。
其“4V”特性包括:- 体量(Volume):数据量巨大。
- 速度(Velocity):数据生成和处理的速度非常快。
- 多样性(Variety):数据类型多样,包括结构化、半结构化和非结构化数据。
- 价值(Value):数据中蕴含着巨大的潜在价值。
四、计算题1. 假设有一个二进制文件,大小为1MB。
如果使用哈夫曼编码对其进行压缩,平均每个字符压缩后的大小为1.5比特,请计算压缩后的文件大小。
答案:1MB = 1024 * 1024比特。
压缩后的文件大小 = (1024 * 1024) / 1.5 = 725 * 1024比特。
通信02级信息论基础试题
姓名班级学号(100分钟)
一填空题(10分)
1、信息论是应用近代数理统计方法研究信息的传输、存储与处理的科学,故称为 1 ;1948年香农在贝尔杂志上发表了两篇有关的“通信的数学理论”文章,该文用 2 对信源的不确定性的度量,是衡量信息量大小的一个尺度;用 3 来度量两事件的依赖程度,表现在通信领域就是输入和输出两事件的相互的信息量,若把它取最大值,就是通信线路的 4 。
2、香农的信息理论缺陷是 5 .,後來
苏联学者 A.N.Kolmogorov提出信息度量的三种方法是 6 、7 、8 。
3、信号功率谱估计原理是9 ,信息盲分离原理是10 。
二计算题(共75分)
1 从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%,如果你问一位男士:“你是否是色盲?”他的回答可能是“是”,可能是“否”,问这两个回答中各含多少信息量,平均每个回答中含有多少信息量?如果问一位女士,则答案中含有的平均自信息量是多少?
2、每帧电视图像可以认为是由3 105个像素组成的,所有像素均是独立变化,且每像素又取128个不同的亮度电平,并设亮度电平是等概出现,问每帧图像含有多少信息量?若有一个广播员,在约10000个汉字中选出1000个汉字来口述此电视图像,试问广播员描述此图像所广播的信息量是多少(假设汉字字汇是等概率分布,并彼此无依赖)?若要恰当的描述此图像,广播员在口述中至少需要多少汉字?
3、离散无记忆信源P(x1)=1/2;P(x2)=1/4;P(x3)=1/8;P(x4)=1/8;(15分)
(1) 计算对信源的逐个符号进行二元定长编码
码长和编码效率;
(2) 对信源编二进制哈夫曼码,并计算平均码长和编码效率。
(3) 你做出一个结论。
4、有一个二元对称信道,其信道矩阵为⎥⎦
⎤⎢⎣⎡98.002.002.098.0。
设该信源以1500二元符号/秒的速度传输输入符号。
现有一消息序列共有14000个二元符号,并设P(0) = P(1) = 1/2,问从消息传输的角度来考虑,10秒钟内能否将这消息序列无失真的传递完?
5、一个四元对称信源⎭
⎬⎫⎩⎨⎧=⎥⎦⎤⎢⎣⎡4/14/1324/14/110)(X P X ,接收符号Y = {0, 1, 2, 3},其失真矩阵为⎥⎥⎥⎥⎦
⎤⎢⎢⎢⎢⎣⎡0111101111011110,求D max 和D min 及信源的R(D)函数,并画出其曲线(取4至5个点),并分析该曲线。
三 用信息论的理论简单解释下列现象(15分)
1我们知道,“猫”(调制解调器的俗称)是在模拟链路上传输数字数据的设备,它可以在一个音频电话线上传输二进制数据,并且没有太高的错误率。
现在,我们上网用的“猫”的速度已可达到56Kbps 了,但是,如果你用网络蚂蚁或其它软件从网上下载东西时,你会发现很多时候网络传输的速度都很低,远低于56Kbps (而一般链路典型的信噪比是30dB)
2 一个最古老的问题:已知12个球中有一个球的重量与其它球不同,其它球均等重。
用无砝码的天平至少须称3次才能找出此球。
3 中新网3月23日电 据路透社报道,美国联邦法院今天裁决:特莉·夏沃的进食管已于18日被移除,即被执行安乐死。
法院今日的裁决意味着,这名因心脏病而导致脑部瘫痪,卧床15年之久的美国植物人走到了生命的尽头。