【精品】基于MATLAB的二进制移相键控402PSK41调制与解调毕业论文任务书
- 格式:doc
- 大小:487.00 KB
- 文档页数:25
前言相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
传统的2PSK (二进制相位键控)调制可采用直接调相法即双极性数字基带信号与载波直接相乘的方法,也可以采用相位选择法即由振荡器和反相器电路来实现调制的方法。
对数字信息进行调制可以便于信号的传输;实现信道复用;改变信号占据的带宽;改善系统的性能。
相移键控在数据传输中,尤其是在中速和中高速的数传机中得到了广泛的应用。
相移键控有很好的抗干扰性,在有衰落的信道中也能获得很好的效果。
二进制移相键控(2PSK)方式是载波相位按基带脉冲序列的规律而改变的一种数字调制方式,和模拟调制不同的是,由于数字基带信号具有离散取值的特点,所以调制后的载波参量只有有限的几个数值,因而数字调制在实现的过程中常采用键控的方法,就像用数字信息去控制开关一样,根据数字基带信号的两个电平,使载波相位在两个不同的数值之间切换的一种相位调制方式。
当两个载波相位相差180度时,此时称为反向键控,也称为绝对相移方式。
本次设计实验旨在将理论和实践地结合。
依据所学知识,利用Multisim软件进行实验电路设计和仿真。
目录一、设计实验目的 (1)1.掌握二进制相移键控调制的概念。
(1)二、设计指标 (1)三、原理框图介绍 (1)四、单元电路设计 (2)1.载波发生器模块—555脉冲发生电路 (2)2.载波倒相器 (5)3.信码反相器 (5)4.模拟开关CD4066 (5)五、整体电路图设计与仿真 (6)1.整体电路图设计说明 (6)2.总电路图及仿真结果 (6)六、设计总结 (8)参考文献 (8)附件二:元器件清单 (9)一、设计实验目的1.掌握二进制相移键控调制的概念。
2.实现二进制相移键控(2PSK)调制电路的设计。
二、设计指标1.设计一个2PSK调制器,用键控法产生2PSK伪随机序列1110010周期信号。
2.要求调制器的载波频率为100KHz。
三、原理框图介绍在PSK调制时,载波的相位随调制信号状态不同而改变。
摘要文章开篇对现有的一些调制、解调技术原理进行了系统地概括与归纳,例如说AM、FM、2ASK、2PSK等一些模拟或数字信号的产生与解调。
在此基础上创造性的提出了基于CPLD的16QAM调制解调器的方案,同时简要阐述了各个模块的组成及其原理。
至此,利用MATLAB对16QAM的性能进行了仿真,绘制了星座图、信号轨迹图、眼图以及误码率曲线,并对它们进行了简要的分析,16QAM可以合理的安排各个矢量端点,使它们间的最小距离最大,从而使系统达到最佳的误码率。
所以说,QAM调制解调技术能够实现在提高信息传输速率的同时降低误译码率,从而改善通信质量。
关键词:调制解调;载波恢复;QAMABSTRACTAt first,article introduces the existing modulation demodulation principle, such as AM、FM、2ASK、2PSK signal generation and demodulation principle。
we proposed the 16 qam modem based on CPLD, and expounds the composition and principle of each module. At this basis,Using MATLAB simulation to the performance of 16 QAM map of the constellation diagram, signal path, eye diagram and bit error rate curve, and carried on the brief analysis.16 qam can reasonable arrangement each endpoint vector, the minimum distance between them is the largest,which make the system achieve the best bit error rate.QAM modulation demodulation technology can be achieved in improving information transmission rate and reduce the decoding error rate。
竭诚为您提供优质文档/双击可除2psk调制与解调实验报告篇一:2psK解调实验报告实验二:2psK和QpsK(院、系)专业班课学号20XX20214420姓名谢显荣实验日期1、2psK实验一、实验目的运用mATLAb编程实现2psK调制过程,并且输出其调制过程中的波形,讨论其调制效果。
二、实验内容编写2psK调制仿真程序。
2psK二进制相移键控,简记为2psK或bpsK。
2psK信号码元的“0”和“1”分别用两个不同的初始相位0和π来表示,而其振幅和频率保持不变。
故2psK信号表示式可写为:s(t)=Acos(w0t+θ)式中,当发送“0”时,θ=0;当发送“1”时,θ=π。
或者写成:╱Acos(w0t)发送“0”时s(t)=╲Acos(w0t+π)发送“1”时由于上面两个码元的相位相反,故其波形的形状相同,但极性相反。
因此,2psK信号码元又可以表示成:╱Acosw0t发送“0”时s(t)=╲-Acosw0t发送“1”时任意给定一组二进制数,计算经过这种调制方式的输出信号。
程序书写要规范,加必要的注释;经过程序运行的调制波形要与理论计算出的波形一致。
三、实验原理数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(psK)基本的调制方式。
图1相应的信号波形的示例101调制原理数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于"同相"状态;如果其中一个开始得迟了一点,就可能不相同了。
基于MATLAB的PSK调制与解调的仿真一、课题说明现代社会发展要求通信系统功能越来越强,性能越来越高,构成越来越复杂;另一方面,要求通信系统技术研究和产品开发缩短周期,降低成本,提高水平。
这样尖锐对立的两个方面的要求,只有通过使用强大的计算机辅助分析设计技术和工具才能实现。
通信系统仿真贯穿通信系统工程设计的全过程,对通信系统的发展起着举足轻重的作用。
本报告针对通信系统仿真的探讨主要做了以下的工作:(1)介绍了通信系统仿真的相关内容,包括通信系统仿真的一般步骤。
(2)对通信系统中的主要环节,如模拟信号的数字传输系统进行了详细的阐述。
(3)在理解通信系统理论的基础上,利用Simulink强大的仿真功能,对PSK通信系统进行了模型构建、系统设计、仿真演示、结果显示,并且给出了具体的分析。
二、原理介绍1、通信系统仿真的一般步骤通信系统仿真一般分成3个步骤,即仿真建模、仿真实验和仿真分析。
应该注意的是,通信系统仿真是一个螺旋式发展的过程,因此,这3个步骤可能需要循环执行多次之后才能够获得令人满意的仿真结果。
图1 数字调制系统的基本结构2、数字频带传输系统在数字基带传输系统中,为了使数字基带信号能够在信道中传输,要求信道应具有低通形式的传输特性。
然而,在实际信道中,大多数信道具有带通传输特性,数字基带信号不能直接在这种带通传输特性的信道中传输。
必须用数字基带信号对载波进行调制,产生各种已调数字信号。
图2 数字调制系统的基本结构3、PSK调制系统3.1 2PSK数字调制原理在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号. 通常用已调信号载波的0°和180°分别表示二进制数字基带信号的 1 和0.3.2 2PSK原理图图32PSK信号的调制原理图图42PSK信号的解调原理图三、数字通信2PSK系统建模1、建模基本步骤通信系统仿真的基本步骤如下:(1)建立数学模型:根据通信系统的基本原理,确定总的系统功能,并将各部分功能模块化,找出各部分之间的关系。
2PSK调制与解调系统的MATLAB实现及性能分析学生姓名:指导老师:摘要:在数字传输系统中,数字信号对高频载波进行调制,变为频带信号,通过信道传输,在接收端解调后恢复成数字信号,由于大多数实际信号都是带通型的,所以必须先用数字频带信号对载波进行调制,形成数字调制信号再进行传输,因此,调制解调技术是实现现代通信的重要手段。
数字调制地实现,促进了通信的飞速发展。
研究数字通信调制理论,提供有效调制方法有着重要意义。
实现调试解调的方法有很多种,本文应用了键控法产生调制与解调信号。
数字相位调制又称相移键控记作PSK(Phase Shift Keying),二进制相移键控记作2PSK,它们是利用载波振荡相位的变化来传送数字信号的,在二进制数字解调中,当正弦载波的相位随二进制数字基带信号离散变化,则就产生二进制移相键控2PSK信号。
重点介绍了2PSK的调制与解调的工作原理,以及Simulink 进行设计和仿真。
关键词:调制与解调;2PSK;Simulink;MATLAB;1 引言本课程设计主要是学会运用MATLAB中的Simulink来实现数字基带信号的模拟传输。
在知道其传输原理的情况下,将仿真电路到Simulink之中。
并且对正交振幅调制、解调过程的频谱和波形的分析,同时在无噪声和有噪声的进行分析,加入高斯白噪声,瑞利噪声,莱斯噪声分析调制解调后的频谱、波形,观察其误码率。
1.1 课程设计的目的首先了解和掌握MATLAB中Simulink平台的使用;其次了解正交振幅基本电路的调制与解调的仿真,加入噪声后观察其频谱和波形的变化,同时检测其误码率。
1.2 课程设计的要求熟悉MATLAB 环境下的Simulink 仿真平台,熟悉2PSK 系统的调制解原理,构建2PSK 调制解调电路图.用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号的频谱的变化。
并观察解调前后频谱有何变化以加深对该信号调制解调原理的理解。
学士学位毕业设计(论文)基于MATLAB的PSK调制和解调及仿真摘要Psk调制是通信系统中最为重要的环节之一,Psk调制技术的改进也是通信系统性能提高的重要途径。
本文首先分析了数字调制系统的基本调制解调方法,然后,运用Matlab及附带的图形仿真工具——Simulink设计了这几种数字调制方法的仿真模型。
通过仿真,观察了调制解调过程中各环节时域和频域的波形,并结合这几种调制方法的调制原理,跟踪分析了各个环节对调制性能的影响及仿真模型的可靠性。
最后,在仿真的基础上分析比较了各种调制方法的性能,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。
另外,本文还利用Matlab的图形用户界面(GUI)功能为仿真系统设计了一个便于操作的人机交互界面,使仿真系统更加完整,操作更加方便。
关键词:数字调制;分析与仿真;Matlab;Simulink;GUI图形界面ABSTRACTIn this paper, methods of psk modulation are introduced firstly. Then their simulation models are bu ilt by using MATLAB’s simulation tool, SIMULINK. Through observing the results of simulation, the factors that affect the capability of the psk modulation system and the reliability of the simulation models are analyzed. And then, the capability of three digital modulation simulation models, 2-PSK, 4-PSK and , have been compared, as well as comparing the results of simulation and theory. At last, the conclusion is gotten: The simulation models are reasonable. In addition, an operation interface is designed, which can simplify the manipulation of the simulation system, by mean of the Graphical User Interface, which short for GUI.Keywords:PSK modulation; analysis; simulation; MATLAB; SIMULINK; GUI目录摘要 (II)ABSTRACT (III)目录 (IV)前言 (1)1绪论 (2)1.1通信技术的历史和发展 (2)1.2数字调制技术 (3)1.3数字调制的发展现状和趋势 (4)1.4本章小结 (5)2 MATLAB仿真技术 (6)2.1通信仿真 (6)2.2 MATLAB简介 (9)2.3 Simulink简介 (12)2.4 本章小结 (14)3 PSK 调制系统 (15)3.1 2PSK数字调制原理 (15)3.2 4PSK的调制和解调 (19)3.3 本章小结 (23)4 PSK调制解调系统的仿真 (24)4.1 2PSK调制解调系统的仿真 (24)4.2 4PSK调制解调系统的仿真 (25)4.3利用MATLAB研究4PSK信号 (27)4.4 本章小结 (29)结论 (30)参考文献 (31)致谢 (32)附录 (33)前言现代通信的发展趋势为数字化,随着现代通信技术的不断开发,数字调制技术已日趋成熟,在各个领域都得到了广泛的应用和认同。
基于MATLAB数字信号2PSK调制与解调及其仿真本论文将对2PSK(二进制移相键控)波形的产生和仿真过程进行详细的介绍。
利用MATLAB实验平台实现对数字信号二进制移相键控(2PSK)的调制与解调的模拟。
具体是使用键控法来产生信号的调制和解调。
这对2PSK信号波形的调制可以有一个更好的理解。
同时也将会加深对数字信号调制与解调的认知。
目录1. 引言 (1)2. 设计依据及框图 (2)2.1 设计任务 (2)2.2设计平台 (2)2.3 设计原理 (2)3. 基于MATLAB的2PSK系统仿真 (5)3.1 MATLAB仿真代码 (6)3.2仿真波形图 (8)4. 结论 (11)5. 心得体会 (11)1. 引言随着社会经济的进步电子技术产业有了飞快的发展,同时通信技术也从原先的模拟通信朝向数字化、宽带化、网络化、和智能化的方向发展;随着高科技的研发电子产品的不断更新,人们在对各种通信的要求将会变得更高,也会有越来越多的新技术将不断地运用到通信领域之中,一些更先进的通信业务将会不断地被开发出来[1]。
在数字基带的传输系统中,由于数字基带信号不能够在带通传输信道正常传输,为了让数字基带信号可以在信道中有效的传输,所以信道传输特性应该为低通形式。
但在实际的信道传输中,绝大部分的信道有着带通传输特性。
而在带通传输特性的信道中数字基带信号不可以直接传输。
为了能够得到信号同信道相匹配的特性,数字基带信号要对载波信号进行相关的调制。
[2]利用数字基带信号来控制信号的载波,数字调制过程是:把数字基带信号转换成数字带通信号。
而数字解调的过程是:在信号接收端,利用解调器把带通信号恢复成数字基带信号[3]。
一般情况下人们把调制与解调过程的数字的传输系统称之为数字频带的传输系统。
频带传输也称为带通传输(band-pass transmission)、载波传输(carrier transmission)[1]。
其中数字调制的基本结构如下图:图1-1数字调制系统基本结构图[1]数字和模拟调制有着一样的原理,通常数字调制信号可以利用模拟的调制方法来实现。
江西农业大学通信原理课程设计报告题目基于Matlab的相移键控仿真设计专业电子信息工程学生姓名曾凡文学号 201212062015年6月基于Matlab的2PSK,2DPSK仿真摘要:现代通信系统要求通信距离远、通信容量大、传输质量好,作为其关键技术之一的调制技术一直是研究的一个重要方向。
本设计主要叙述了数字信号的调制方式,介绍了2PSK数字调制方式的基本原理,功率谱密度,并运用MATLAB软件对数字调制方式2PSK进行了编程仿真实现,在MATLAB平台上建立2PSK和2DPSK调制技术的仿真模型。
进一步学习了MATLAB编程软件,将MATLAB与通信系统中数字调制知识联系起来,为以后在通信领域学习和研究打下了基础在计算机上,运用MATLAB软件来实现对数字信号调制技术的仿真。
关键词:数字调制与解调;MATLAB;2PSK;2DPSK;第1章绪论1.1 调制方式数字通信系统, 按调制方式可以分为基带传输和带通传输。
数字基带信号的功率一般处于从零开始到某一频率(如0~6M)低频段,因而在很多实际的通信(如无线信道)中就不能直接进行传输,需要借助载波调制进行频谱搬移,将数字基带信号变换成适合信道传输的数字频带信号进行传输,这种传输方式,称为数字信号的频带传输或调制传输、载波传输。
所谓调制,是用基带信号对载波波形的某参量进行控制,使该参量随基带信号的规律变化从而携带消息。
对数字信号进行调制可以便于信号的传输;实现信道复用;改变信号占据的带宽;改善系统的性能。
数字基带通信系统中四种基本的调制方式分别称为振幅键控(ASK,Amplitude-Shift keying)、移频键控( FSK,Frequency-Shift keying)、移相键控(PSK,Phase-Shift keying )和差分移相键(DPSK,Different Phase-Shift keying)。
本次课程设计对PSK,DPSK这两种调制方式进行了仿真。
实验报告(一)一、实验名称:基于MATLAB 的2ASK 、2FSK 和2PSK 的调制仿真 二、实验目的:(1)熟悉2ASK 、2FSK 和2PSK 的调制原理。
(2)学会运用Matlab 编写2ASK 、2FSK 和2PSK 调制程序。
(3)会画出原信号和调制信号的波形图。
(4)掌握数字通信的2ASK 、2FSK 和2PSK 的调制方式。
三、实验原理分析3.1二进制振幅键控(2ASK )振幅键控是利用载波的幅度变化来传递数字信息,而其频率和初始相位保持不变。
在2ASK 中,载波的幅度只有两种变化状态,分别对应二进制信息“0”或“1”。
二进制振幅键控的表达式为:s(t) = A(t)cos(w 0+θ) 0<t ≤T式中,w 0=2πf 0为载波的角频率;A(t)是随基带调制信号变化的时变振幅,即A(t) = ⎩⎨⎧0A 典型波形如图所示:2ASK 信号的产生方法通常有两种:相乘法和开关法,相应的调制器如图2。
图2(a )就是一般的模拟幅度调制的方法,用乘法器实现;图2(b )是一种数字键控法,其中的开关电路受s(t)控制。
在接收端,2ASK 有两种基本的解调方法:非相干解调(包络检波法)和相干解调(同步检测法),相应的接收系统方框图如图:3.2、二进制频移键控(2FSK )二进制频移键控信号码元的“1”和“0”分别用两个不同频率的正弦波形来传送,而其振幅和初始相位不变。
故其表达式为:=)(s t ⎪⎩⎪⎨⎧++时"0发送“),cos(”时1发送“),cos21(ϕωϕωn n t A t A图4 2FSK 信号时间波形由图可见,2FSK 信号的波形(a )可以分解为波形(b )和波形(c ),也就是说,一个2FSK 信号可以看成是两个不同载频的2ASK 信号的叠加。
2FSK 信号的调制方法主要有两种。
第一种是用二进制基带矩形脉冲信号去调制一个调频器,使其能够输出两个不同频率的码元。
课程设计任务书学生姓名:专业班级:指导教师:工作单位:题目:信号分析处理课程设计-基于MATLAB的二进制移相键控(2PSK)调制与解调分析初始条件:1.Matlab6.5以上版本软件;2.先修课程:通信原理等;要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)1、利用MATLAB中的simulink工具箱中的模块进行二进制移相键控(2PSK)调制与解调,观察波形变化;2、画出程序设计框图,编写程序代码,上机运行调试程序,记录实验结果(含计算结果和图表等),并对实验结果进行分析和总结;3、课程设计说明书按学校统一规范来撰写,具体包括:⑴目录;⑵理论分析;⑶程序设计;⑷程序运行结果及图表分析和总结;⑸课程设计的心得体会(至少800字,必须手写。
);⑹参考文献(不少于5篇)。
时间安排:周一、周二查阅资料,了解设计内容;周三、周四程序设计,上机调试程序;周五、整理实验结果,撰写课程设计说明书。
指导教师签名:年月日系主任(或责任教师)签名:年月日目录1 理论分析 (1)1.1基础知识 (1)1.2二进制相移键控基本原理 (1)1.3二进制相移键控调制 (2)1.4二进制相移键控解调 (4)2 程序设计与仿真模型建立 (6)2.1设计与仿真基础 (6)2.2程序设计实现 (7)2.3 Simulink仿真模型建立 (12)3 程序运行结果与仿真结果 (19)3.1程序运行结果与分析 (19)3.2 Simulink仿真结果与分析 (20)4 心得体会 (22)参考文献 (24)1 理论分析1.1基础知识数字信号的传输方式分为基带传输和带通传输。
然而,实际中的大多数信道(如无线信道)因具有带通特性而不能直接传送基带信号,这是因为数字基带信号往往具有丰富的低频分量。
为了使数字信号在带通信道中传输,必须用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号(已调信号)的过程称为数字调制。
在接收端通过解调器把带通信号还原成数字基带信号的过程称为数字解调。
通常把包括调制和解调过程的数字传输系统叫做数字带通传输系统。
1.2二进制相移键控基本原理数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。
1 0 1图1.2.1 PSK信号波形的示例相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK中,通常利用初始相位0和π分别表示二进制“1”和“0”。
因此,2PSK信号的时域表达式为:e2psk =Acos(ωc+) (式1.1)其中,错误!未找到引用源。
表示第n个符号的绝对相位:错误!未找到引用源。
0 发送“0”时φn= (式1.2)π发送“1”时因此,上式可以改写为错误!未找到引用源。
(式1.3)典型波形如图1.1.2.由于表示信号的两种码元的波形相同,极性相反,故2PSK信号一般可以表述为一个双极性全占空矩形脉冲序列与一个正弦波的相乘。
图1.2.2 2PSK信号波形就模拟调制法而言,与产生2ASK信号的方法比较,只是对基带信号要求不同,因此2PSK信号可以看作是双极性基带信号作用下的DSB调幅信号。
而就键控法来说,用数字基带信号控制开关电路,选择不同相位的载波输出,这时基带信号为单极性NRZ或双极性NRZ脉冲序列信号均可。
且 2PSK信号属于DSB信号,它的解调不再能采用包络检测的方法,只能进行相干解调。
1.3二进制相移键控调制相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK中,通常用初始相位为0和π表示二进制的“1”和“0”。
因此2PSK的信号的时域表达式为e2psk (t)=Acos(ωct+φn)其中,φn表示第n个符号的绝对相位:0 发送“0”时φn=π发送“1”时因此,上式可改写为Acosωct 概率为Pe2psk(t)=- Acosωct 概率为1-P图 1.3.1 2PSK信号的时间波形由于表示信号的两种码元的波形相同,记性相反,鼓2PSK信号一般可以表述为一个双极性全占空矩形脉冲序列与一个正弦载波相乘,即e2psk(t)=s(t)cosωc t其中s(t)= ∑an g(t-nTs)这里,g(t)是脉宽为Ts的单个矩形脉冲,而an得统计特性为1 概率为Pan=-1 概率为1-P即发送二进制符号“0”时(an取+1),e2psk(t)取0相位;发送二进制符号“1”时(an取-1),e2psk(t)取π相位。
1.4二进制相移键控解调2PSK信号的解调通常都是采用相干解调, 解调器原理图如图1.4.1所示。
在相干解调过程中需要用到与接收的2PSK信号同频同相的相干载波。
2PSK信号相干解调各点时间波形如图1.4.2所示,当恢复的相干载波产生180°倒相时,解调出的数字基带信号将与发送的数字基带信号正好是相反,解调器输出数字基带信号全部出错。
图 1.4.1 2PSK信号的解调原理图图 1.4.2 2PSK信号相干解调各点时间波形图1.4.2是2PSK解调器在无噪声情况下能对2PSK信号的正确解调。
(a)是收到的2PSK信号;(b)是本地载波提取电路提取的同频同相载波信号;(c)是接收的2PSK信号与本地载波相乘得到的波形示意图,此波形经过低通滤波器滤波后得到低通信号;(d)是取样判决器在位定时信号;(e)是对(d)波形取样,再与门限进行比较,做出相应的判决得到恢复的信号;需要注意的是判决规则应与调制规则一致。
2 程序设计与仿真模型建立2.1设计与仿真基础MATLAB是矩阵实验室(Matrix Laboratory)的简称,是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。
MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。
在新的版本中也加入了对C,FORTRAN,C++,JAVA的支持。
可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。
Simulink是Matlab中的一种可视化仿真工具,也是目前在动态系统的建模和仿真等方面应用最广泛的工具之一。
确切的说,Simulink是一个用来对动态系统进行建模、仿真和分析的软件包,它支持线性和非线性系统,连续、离散时间模型,或者是两者的混合。
系统还可以使多种采样频率的系统,而且系统可以是多进程的。
Simulink工作环境进过几年的发展,已经成为学术和工业界用来建模和仿真的主流工具包。
在Simulink环境中,它为用户提供了方框图进行建模的图形接口,采用这种结构画模型图就如同用手在纸上画模型一样自如、方便,故用户只需进行简单的点击和拖动就能完成建模,并可直接进行系统的仿真,快速的得到仿真结果。
它的主要特点在于:1、建模方便、快捷;2、易于进行模型分析;3、优越的仿真性能。
它与传统的仿真软件包微分方程和差分方程建模相比,具有更直观、方便、灵活的优点。
Simulink模块库(或函数库)包含有Sinks(输出方式)、Sources(输入源)、Linear(线性环节)、Nonlinear(非线性环节)、Connection(连接与接口)和Extra(其他环节)等具有不同功能或函数运算的Simulink库模块(或库函数),而且每个子模型库中包含有相应的功能模块,用户还可以根据需要定制和创建自己的模块。
用Simulink创建的模型可以具有递阶结构,因此用户可以采用从上到下或从下到上的结构创建模型。
用户可以从最高级开始观看模型,然后用鼠标双击其中的子系统模块,来查看其下一级的内容,以此类推,从而可以看到整个模型的细节,帮助用户理解模型的结构和各模块之间的相互关系。
在定义完一个模型后,用户可以通过Simulink的菜单或Matlab的命令窗口键入命令来对它进行仿真。
菜单方式对于交互工作非常方便,而命令行方式对于运行仿真的批处理非常有用。
采用Scope模块和其他的显示模块,可以在仿真进行的同时就可立即观看到仿真结果,若改变模块的参数并再次运行即可观察到相应的结果,这适用于因果关系的问题研究。
仿真的结果还可以存放到Matlab的工作空间里做事后处理。
模型分析工具包括线性化和整理工具,Matlab 的所有工具及Simulink本身的应用工具箱都包含这些工具。
由于Matlab和SIMULINK的集成在一起的,因此用户可以在这两种环境下对自己的模型进行仿真、分析和修改模型。
但是Simulink不能脱离Matlab而独立工作。
2.2程序设计实现该实现方法是利用matlab的M文件,编写程序并利用窗口显示出结果的方法。
2PSK信号与产生2ASK信号的方法比较,只是对s(t)要求不同,在2ASK 中s(t)是单极性的,而在2PSK 中s(t)是双极性的基带信号。
因此2PSK信号可以看作是双极性基带信号作用下的DSB调幅信号。
2PSK信号属于DSB信号,它的解调,不再能采用包络检测的方法,只能进行相干解调。
因此2PSK信号的调制与解调原理框图如下图。
)e2图2.2.2 2PSK信号的解调原理框图根据2PSK信号的调制与解调原理框图进行程序设计,首先对程序进行流程图设计,下图是本课程设计的程序设计框图:然后根据程序流程图编写代码,代码分为各个功能模块,以下是程序的代码:%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 初始化参数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%clc;clear all;close all;fs=8e5;%抽样频率fm=20e3;%基带频率n=2*(6*fsfm);final=(1fs)*(n-1);fc=2e5; % 载波频率t=0:1fs:(final);Fn=fs2;%耐奎斯特频率%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 信源信号%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%figure(1)subplot(321);plot(t,x);axis([0 2e-4 -2 2]);title('信源信号');grid on %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 用正弦波产生方波%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%twopi_fc_t=2*pi*fm*t;A=1;phi=0;x = A * cos(twopi_fc_t + phi); % 方波am=1;x(x>0)=am;x(x<0)=-1; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% PSK调制信号%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%car=sin(2*pi*fc*t);%载波ask=x.*car;%载波调制subplot(322);plot(t,ask);axis([0 200e-6 -2 2]);title('PSK信号');grid on; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 带通滤波器%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%fBW=40e3;f=[0:3e3:4e5];w=2*pi*ffs;z=exp(w*j);BW=2*pi*fBWfs;a=.8547;%BW=2(1-a)sqrt(a)p=(j^2*a^2);gain=.135;Hz=gain*(z+1).*(z-1).(z.^2-(p));subplot(325);;Hz(Hz==0)=10^(8);%avoid log(0)subplot(326);;title('Receiver -3dB Filter Response');axis([1e5 3e5 -3 1]);set (gcf, 'num', 'off', 'name', ['系统信号调制波形'... blanks(10)]);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 带通滤波后输出%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%a=[1 0 0.7305];%[1 0 p]b=[0.135 0 -0.135];%gain*[1 0 -1]faskn=filter(b,a,askn);figure(2)subplot(321);plot(t,faskn);axis([0 100e-6 -2 2]);title('通过带通滤波后输出');grid on;cm=faskn.*car;%解调subplot(322);plot(t,cm);axis([0 100e-6 -2 2]);grid on;title('通过相乘器后输出'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 低通滤波器%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% p=0.72;gain1=0.14;%gain=(1-p)2Hz1=gain1*(z+1).(z-(p));subplot(323);Hz1(Hz1==0)=10^(-8);%avoid log(0)plot(f,20*log10(abs(Hz1)));grid on;title('LPF -3dB response');axis([0 5e4 -3 1]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 滤波器系数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a1=[1 -0.72];%(z-(p))b1=[0.14 0.14];%gain*[1 1]so=filter(b1,a1,cm);so=so*10;%add gainso=so-mean(so);%removes DC component subplot(324);plot(t,so);axis([0 8e-4 -3.5 3.5]);title('通过低通滤波器后输出');grid on;%Comparator %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % 判定并输出波形%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% High=2.5;Low=-2.5;vt=0;%设立比较标准error=0;len1=length(so);for ii=1:len1if so(ii) >= vtVs(ii)=High;elseVs(ii)=Low;endendVo=Vs;subplot(325);plot (t,Vo), title('解调后输出信号'),axis([0 2e-4 -5 5])grid on;xlabel('时间 (s)'), ylabel('幅度(V)')set (gcf, 'num', 'off', 'name', ['系统信号解调波形'...blanks(10)]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 调制后加噪%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%askn=(ask+noise);%调制后加噪subplot(324);plot(t,askn);axis([0 200e-6 -2 2]);title('加噪后调制信号');grid on;2.3 Simulink仿真模型建立(1)模型库在MATLAB命令窗口输入“simulink”并回车,就可进入Simulink模型库,单击工具栏上的按钮也可进入。