上海市奉贤区2017届九年级4月调研测数学试卷(二模)
- 格式:doc
- 大小:378.00 KB
- 文档页数:8
2017年上海市奉贤区中考二模数学试题及答案2012学年奉贤区调研测试九年级数学 201304(满分150分,考试时间100分钟)一、选择题:(本大题共6题,每题4分,满分24分)[每小题只有一个正确选项,在答题纸的相应题号的选项上用2 B 铅笔填涂]1.与无理数3最接近的整数是(▲)A .1;B .2 ;C .3;D .4; 2.下列二次根式中最简二次根式是(▲)A .12-a ;B .ba; C .b a 2; D .a 9; 3.函数1-=x y 的图像经过的象限是(▲)A.第一、二、三象限;B.第一、二、四象限;C.第一、三、四象限;D.第二、三、四象限;4.一个不透明的盒子中装有5个红球和3个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是(▲)A .摸到红球是必然事件; B .摸到白球是不可能事件;C .摸到红球和摸到白球的可能性相等;D .摸到红球比摸到白球的可能性大;5.对角线相等的四边形是(▲)A .菱形;B .矩形;C .等腰梯形;D .不能确定;6.已知两圆半径分别为2和3,圆心距为d ,若两圆没有公共点,则下列结论正确的是(▲)A .01d <<;B .5d >;C .01d <<或5d >;D .01d <≤或5d >;二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】 7.计算:26a a ÷= ▲ ;8.分解因式:1682+-x x = ▲ ; 9.函数3+=x y 的定义域是▲ ; 10.方程xx 312=-的解是▲ ; 11.已知关于x 的一元二次方程02=--m x x 有两个不相等的实数根,则实数m 的取值范围是▲ ;12.如果点A 、B 在同一个反比例函数的图像上,点A 的坐标为(2,3),点B 横坐标为3,那么点B 的纵坐标是▲ ;13.正多边形的中心角为72度,那么这个正多边形的内角和等于▲ 度;14. 如图,已知直线AB 和CD 相交于点O , OE AB ⊥,128AOD ∠= , 则COE ∠的度数是▲ 度;15.如图,已知∠E =∠C ,如果再增加一个条件就可以得到DEBCAD AB =,那么这个条件可以是▲ (只要写出一个即可).16.梯形ABCD 中,AB ∥DC ,E 、F 分别是AD 、BC 中点,DC =1,AB =3,设a AB =,如果用a 表示向量EF ,那么EF = ▲ ;17.我们把梯形下底与上底的差叫做梯形的底差,梯形的高与中位线的比值叫做梯形的纵横比,如果某一等腰梯形腰长为5,底差等于6,面积为24,则该等腰梯形的纵横比等于▲ ; 18.如图,在ABC ?中,90C ∠= ,10AB =,3tan 4B =,点M 是AB 边的中点,将ABC ?绕着点M 旋转,使点C 与点A 重合,点A 与点D 重合,点B 与点E 重合,得到DEA ?,且AE 交CB 于点P ,那么线段CP 的长是▲ ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)计算:?+--+--30tan 3)31(20132310;20.(本题满分10分)第15题第18题CA第14题OEDCB A EDCBA解不等式组:??-≤-->+x x x x 322121232,并把它的解集在数轴上表示;21.(本题满分10分,第(1)小题4分,第(2)小题6分)如图,已知:在△ABC 中,AB =AC ,BD 是AC 边上的中线,AB =13,BC =10,(1)求△ABC 的面积;(2)求tan ∠DBC 的值.22.(本题满分10分,第(1)小题4分,第(2)(3)小题各3分)我区开展了“关爱老人从我做起”的主题活动。
2017学年奉贤区调研测试九年级数学 2017.04(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 1.下列计算中正确的是(▲)A .633a a a =+; B . 633a a a =⋅ ; C . 033=÷a a ; D .633)(a a =. 2.二元一次方程32=+y x 的解的个数是(▲)A . 1个;B .2个;C .3个;D .无数个. 3.关于反比例函数xy 2=的图像,下列叙述错误的是(▲) A .y 随x 的增大而减小; B .图像位于一、三象限; C .图像是轴对称图形; D .点(-1,-2)在这个图像上.4.一名射击运动员连续打靶8次,命中环数如图所示,这组数据的众数与中位数分别为(▲)A .9与8;B .8与9;C .8与8.5;D .8.5与9.5.相交两圆的圆心距是5,如果其中一个圆的半径是3,那么另外一个圆的半径可以是(▲)A .2;B .5;C .8;D .10.6.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD ≌△ACD 的条件是(▲)A .∠B =45°; B .∠BAC =90°; C .BD =AC ; D .AB =AC .(第4题图)DCB A(第6题图)二、填空题:(本大题共12题,每题4分,满分48分) 7.用代数式表示:a 的5倍与b 的27的差: ▲ ; 8.分解因式:1522--x x = ▲ ; 9.已知函数3+=x x f )(,那么=-)(2f ▲ ;10.某红外线遥控器发出的红外线波长为0.000 000 94m ,这个数用科学记数法表示为 ▲ ; 11.若关于x 的方程022=--k x x 有两个不相等的实数根,则k 的取值范围为 ▲ ; 12.布袋中装有2个红球和5个白球,它们除颜色外其它都相同.如果从这个布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是 ▲ ;13.已知函数b x y +-=2,函数值y 随x 的增大而 ▲ (填“增大”或“减小”); 14.如果正n 边形的中心角是40°,那么n = ▲ ;15.已知△ABC 中,点D 在边BC 上,且BD =2DC .设AB a = ,b BC =,那么AD →等于▲ (结果用、表示);16.小明乘滑草车沿坡比为1:2.4的斜坡下滑130米,则他下降的高度为 ▲ 米; 17.我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值”.如果等 腰三角形的腰长为2,“内角正度值”为45°,那么该三角形的面积等于 ▲ ; 18.如图,已知钝角三角形ABC ,∠A=35°,OC 为边AB 上的中线,将△AOC 绕着点O顺时针旋转,点C 落在BC 边上的点'C 处,点A 落在点'A 处,联结'BA ,如果点A 、C 、'A 在同一直线上,那么∠''C BA 的度数为 ▲ ;三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 计算:1o)12(45cos 22218-++--+.CBOA(第18题图)解不等式组:⎪⎩⎪⎨⎧-≤-+<-x x x x 2371211513)(,将其解集在数轴上表示出来,并写出这个不等式组的最小..整数解....21.(本题满分10分,每小题满分各5分)已知:如图,在△ABC 中,AB=AC =6,BC =4,AB 的垂直 平分线交AB 于点E ,交BC 的延长线于点D . (1)求∠D 的正弦值;(2)求点C 到直线DE 的距离.CBA(第21题图)ED某学校组织为贫困地区儿童捐资助学的活动,其中七年级捐款总数为1000元,八年级捐款总数比七年级多了20%.已知八年级学生人数比七年级学生人数少25名,而八年级的人均捐款数比七年级的人均捐款数多4元.求七年级学生人均捐款数.23.(本题满分12分,每小题满分各6分)已知:如图,在四边形ABCD中,AB//CD,点E是对角线AC上一点,∠DEC=∠ABC,且CACECD⋅=2.(1)求证:四边形ABCD是平行四边形;(2)分别过点E、B作AB和AC的平行线交于点F,联结CF,若∠FCE= ∠DCE,求证:四边形EFCD是菱形.B(第23题图)A24.(本题满分12分,第(1)小题4分,第(2)小题8分)已知:在平面直角坐标系中,抛物线x ax y +=2的对称轴为直线x =2,顶点为A . (1)求抛物线的表达式及顶点A 的坐标; (2)点P 为抛物线对称轴上一点,联结OA 、OP .①当OA ⊥OP 时,求OP 的长;②过点P 作OP 的垂线交对称轴右侧的抛物 线于点B ,联结OB ,当∠OAP =∠OBP 时, 求点B 的坐标.25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)已知:如图,线段AB =8,以A 为圆心,5为半径作圆A ,点C 在⊙A 上,过点C 作CD //AB 交⊙A 于点D (点D 在C 右侧),联结BC 、AD . (1)若CD=6,求四边形ABCD 的面积;(2)设CD =x ,BC =y ,求y 与x 的函数关系式及自变量x 的取值范围;(3)设BC 的中点为M ,AD 的中点为N ,线段MN 交⊙A 于点E ,联结CE ,当CD 取何值时,CE //AD .DCB (第25题图)AB(备用图)A参考答案201704一 、选择题:(本大题共8题,满分24分)1.B ; 2.D ; 3.A ; 4.C ; 5.B ; 6.D . 二、填空题:(本大题共12题,满分48分)7.b a 725-; 8.)3)(5(+-x x ; 9.1; 10.7104.9-⨯; 11.1->k ; 12.72; 13.减小; 14.9;15.32+; 16.50; 17.2或1; 18.20°.三.(本大题共7题,满分78分) 19. (本题满分10分)解:原式=1222223-+--+. (2)= 122+. ………………………………………………………………………2分 20. (本题满分10分)解:由①得:2x >- .………………………………………………………………………2分由②得:4x ≤ .………………………………………………………………………2分 所以,原不等式组的解集是24x -<≤.……………………………………………2分 数轴上正确表示解集. ………………………………………………………………2分所以,这个不等式组的最小整数解是-1.…………………………………………2分21. (本题满分10分)(1)过点A 作AH ⊥BC 于点H ………………………………………………………………1分 ∵ AB=AC ,BC =4 ∴BH =21BC =2 在△ABH 中,∠BHA=90°, ∴sin ∠BAH =31=AB BH …………………………………2分∵ DE 是AB 的垂直平分线 ∴∠BED=90° BE=3 ∴∠BED=∠BHA又∵∠B=∠B ∴∠BAH=∠D …………………………………………………1分∴sin ∠D= sin ∠BAH=13……………………………………………………………1分 即∠D 的正弦值为13(2)解:过点C 作CM ⊥DE 于点M ………………………………………………………1分在△BED 中,∠BED=90°, sin ∠D =13, BE=3 ∴BD =9sin =∠DBE∴CD=5………………………………………………2分在△MCD 中,∠CMD=90°, sin ∠D =31=CD CM ∴CM=35.…………………2分即点C 到DE 的距离为3522.(本题满分10分)解:设七年级人均捐款数为x 元,则八年级人均捐款数为)4(+x 元 .…………………1分 根据题意,得4%)201(1000251000++=-x x . ……………………………………4分 整理,得 0160122=-+x x . ……………………………………………1分解得 20,821-==x x .……………………………………………………2分经检验:20,821-==x x 是原方程的解,0202<-=x 不合题意,舍去.………… 1分 答:七年级人均捐款数为8元.……………………………………………………………1分 23.(本题满分12分,每小题满分各6分) 证明:(1)CA CE CD ⋅=2 ∴CACDCD CE =∵∠ECD =∠DCA ∴△ECD ∽△DCA ……………………………………………2分 ∴∠ADC =∠DEC ∵∠DEC =∠ABC ∴∠ABC =∠ADC …………………1分∵AB ∥CD ∴∠ABC+∠BCD=1800 ∠BAD+∠ADC =1800∴∠BAD =∠BCD ………………………………………………………………………2分 ∴四边形ABCD 是平行四边形 ………………………………………………………1分 (2)∵ EF ∥AB BF ∥AE ∴四边形ABFE 是平行四边形∴ AB ∥EF AB=EF …………………………………………………………………2分 ∵四边形ABCD 是平行四边形 ∴ AB ∥CD AB=CD ∴CD ∥EF CD=EF∴四边形EFCD 是平行四边形 ………………………………………………………2分 ∵CD ∥EF ∴∠FEC=∠ECD 又∵∠DCE=∠FCE ∴∠FEC=∠FCE ∴EF=FC∴平行四边形EFCD 是菱形 …………………………………………………………2分24.(本题满分12分,每小题4分)(1)∵ 抛物线x ax y +=2的对称轴为直线x =2.∴221=-a ∴41-=a .……………………………………………………………1分 ∴抛物线的表达式为:x x y +-=241.…………………………………………………1分∴顶点A 的坐标为(2,1). ……………………………………………………………2分 (2)设对称轴与x 轴的交点为E .①在直角三角形AOE 和直角三角形POE 中, AE OE OAE =∠tan ,OEPEEOP =∠tan ∵OA ⊥OP ∴EOP OAE ∠=∠ ∴OEPEAE OE =……………………………2分 ∵AE =1,OE=2 ∴PE=4 …………………………………………………………1分 ∴OP=524222=+ ……………………………………………………………1分②过点B 作AP 的垂线,垂足为F ………………………………………………………1分 设点B (a a a +-241,),则2-=a BF ,a a EF -=241 在直角三角形AOE 和直角三角形POB 中,OE AE OAE =∠cot ,OPBPOBP =∠cot ∵OBP OAE ∠=∠, ∴21==OP BP OE AE ∵PEO BFP ∠=∠,POE BPF ∠=∠ ∴△BPF ∽△POE , ∴OEPFPO BP PE BF == ∵OE=2, ∴PF=1,1412+-=a a PE ∴2114122=+--a a a解得101=a ,22=a (不合题意,舍去)…………………………………………2分 ∴点B 的坐标是(10,-15).……………………………………………………………1分 25.解:(1)作AH ⊥CD ,垂足为点H ……………………………………………………1分∵ CD=6 ∴321===CD DH CH …………………………………………………1分 ∵AD=5 ∴ AH=4 ………………………………………………………………1分 ∴28)(21=⋅+=AH AB CD S ABCD 梯形……………………………………………1分 (2)作CP ⊥AB ,垂足为点P ∵⊙A 中,AH ⊥CD ,CD= x∴x CH 21=∴x CH AP 21==…………… ………………………………1分 ∴x BP 218-= ……………………………… ………………………………1分 222DH AD AH AHD Rt -=∆中,24125x -=∴2224125x AH CP -== …………………… ………………………………1分 在222BP CP BC BPC Rt +=∆中, 即222)218()4125(x x y -+-= 解得:()100889≤<-=x xy ………………………………………………2分(3)设AH 交MN 于点F ,联结AE∵ BC 的中点为M ,AD 的中点为N ∴MN ∥CD∵CE ∥AD ∴DC=NE=x ………………………………………………………………1分 ∵MN ∥CD ∴AD AN DH NF =∵ 2xDH = ∴4x NF = ∴43x EF =……1分 在直角三角形AEF 和直角三角形AFN 中222EF AE AF -= 222NF AN AF -= ∴2222)43(5)4()25(x x -=- ∴265=x …………………………………………………………………2分 即当CD 长为265时,CE//AD . 。
本解析由华东师范大学出版社《挑战压轴题》作者马学斌老师独家提供。
可作学习材料,切勿做其他用途。
更多信息,欢迎关注“挑战压轴题”微信公众号(ti ao z han y azho u ti).《2017年上海市各区中考数学二模压轴题图文解析》目录2017 年上海市宝山区中考模拟第 24、25 题/ 22017 年上海市崇明区中考模拟第 24、25 题/ 62017 年上海市奉贤区中考模拟第 24、25 题/ 102017 年上海市虹口区中考模拟第 24、25 题/ 142017 年上海市黄浦区中考模拟第 24、25 题/ 182017 年上海市嘉定区中考模拟第 24、25 题/ 232017 年上海市静安区中考模拟第 24、25 题/ 272017 年上海市闵行区中考模拟第 24、25 题/ 312017 年上海市浦东新区中考模拟第 24、25 题/ 342017 年上海市普陀区中考模拟第 24、25 题/ 382017 年上海市松江区中考模拟第 24、25 题/ 422017 年上海市徐汇区中考模拟第 24、25 题/ 472017 年上海市杨浦区中考模拟第 24、25 题/ 522017 年上海市长宁区青浦区金山区中考模拟第 24、25 题/ 552017 年上海市宝山区中考模拟第 18 题/ 592017 年上海市崇明区中考模拟第 18 题/ 602017 年上海市奉贤区中考模拟第 18 题/ 612017 年上海市虹口区中考模拟第 18 题/ 622017 年上海市黄浦区中考模拟第 18 题/ 632017 年上海市嘉定区中考模拟第 18 题/ 642017 年上海市静安区中考模拟第 18 题/ 652017 年上海市闵行区中考模拟第 18 题/ 662017 年上海市浦东新区中考模拟第 18 题/ 672017 年上海市普陀区中考模拟第 18 题/ 682017 年上海市松江区中考模拟第 18 题/ 692017 年上海市徐汇区中考模拟第 18 题/ 702017 年上海市杨浦区中考模拟第 18 题/ 712017 年上海市长宁区青浦区金山区中考模拟第 18 题/ 722015 年上海市中考第 24、25 题/ 732016 年上海市中考第 24、25 题/ 77例2017年上海市宝山区中考模拟第24题如图 1,已知直线y x与x轴交于点B,与y轴交于点C,抛物线1 22 12y x b x2 2与x 轴交于A、B 两点(A 在B 的左侧),与y 轴交于点C.(1)求抛物线的解析式;(2)点M 是上述抛物线上一点,如果△ABM 和△ABC 相似,求点M 的坐标;(3)联结AC,求顶点D、E、F、G 在△ABC 各边上的矩形DEFG 面积最大时,写出该矩形在AB 边上的顶点的坐标.图 1动感体验请打开几何画板文件名“17 宝山 24”,拖动点D 在BC 上运动,可以体验到,当点D是BC 的中点时,矩形DEFG 的面积最大,最大值是△ABC 面积的一半.思路点拨1.第(2)题△ABM 和△ABC 相似,只存在这两个三角形全等的情形,此时M、C 关于抛物线的对称轴对称.2.第(3)题的矩形DEFG 存在两种情况.用二次函数表示矩形的面积,求二次函数的最大值,然后看看最大值时矩形顶点的位置具有什么特殊性.图文解析(1)由1y x 2 ,得B(4, 0),C(0,-2).2将点B(4, 0)代入y 1 x2 bx 2 ,得 8+4b-2=0.解得 3b .2 2所以抛物线的解析式为 1 2 3 2 1 ( 1)( 4)y x x x x .所以A(-1, 0).2 2 2(2)如图 2,由A(-1, 0)、B(4, 0)、C(0,-2),可得 tan∠CAO=tan∠BCO=2.又因为∠CAO 与∠ACO 互余,所以∠BCO 与∠ACO 互余.所以△ABC 是直角三角形.过点A、B 分别作x 轴的垂线,不可能存在点M.所以只存在∠AMB=90°的情况,此时点M 在x 轴的下方(如图 3 所示).图 2 图 32如图 3,如果△ABM 和△ABC 相似,那么△ABM ≌△BAC .所以点 M 与点 C 关于抛物线的对称轴对称,点 M 的坐标为(3,-2).(3)矩形 DEFG 有两种情况:1①如图 4,在 AB 边上的顶点有两个,坐标分别为(2, 0)和( ,0) .23②如图 5,在 AB 边上的顶点有一个,坐标为( ,0).2考点伸展第(3)题的解题思路是这样的:在 Rt △ABC 中,AB =5,高 CO =2.情形一,如图 4,F 、G 两点在 AB 上.设 DE =m ,DG =n .根据相似三角形对应高的比等于对应边的比,得 2 .所以 5(2 )n m nm . 2 52 所以 S =mn = 5 2 n n = 5 ( 1)2 5 (2 )n . 2 2所以当 n =1 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面积 最大,最大值是△ABC 面积的一半.情形二,如图 5,点 G 在 AB 上.同样的,设 DE =m ,DG =n .由 BD DG ,得 2 5.所以 2 5 n . m n m BE EA 22 55 所以 S =m n = (2 5 ) m m 2 = 1 ( 5)2 5 m .2 2所以当 m 5 时,矩形 DEFG 的面积最大.几何意义是 D 为 BC 的中点时,矩形的面 积最大,最大值也是△ABC 面积的一半.此时点 G 为 AB 的中点.图 4 图 53例2017年上海市宝山区中考模拟第25题如图 1,在△ABC 中,∠ACB 为直角,AB=10,∠A=30°,半径为 1 的动圆Q 的圆心从点C 出发,沿着CB 方向以 1 个单位长度/秒的速度匀速运动,同时动点P 从点B 出发,沿着BA 方向也以 1 个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t≤5),以P 为圆心、PB 为半径的⊙P 与AB、BC 的另一个交点分别为E、D,联结ED、EQ.(1)判断并证明ED 与BC 的位置关系,并求当点Q 与点D 重合时t 的值;(2)当⊙P 和AC 相交时,设CQ 为x,⊙P 被AC 解得的弦长为y,求y 关于x 的函数解析式,并求当⊙Q 过点B 时⊙P 被AC 截得的弦长;(3)若⊙P 与⊙Q 相交,写出t 的取值范围.图 1动感体验请打开几何画板文件名“17 宝山 25”,拖动Q 由C 向B 运动,可以体验到,⊙P 与⊙Q 的位置关系依次为外离、外切和相交.思路点拨1.第(1)题Q、D 重合时,根据CQ+BD=BC 列关于t 的方程.2.第(2)题⊙Q 过点B 时,CQ=5-1=4.3.第(3)题求⊙P 与⊙Q 相交,先求临界位置外切时t 的值.图文解析(1)如图 2,根据直径所对的圆周角是直角,可以知道ED⊥BC.在 Rt△ABC 中,AB=10,∠A=30°,所以BC=5.在 Rt△BDE 中,BE=2BP=2t,∠BED=30°,所以BD=t,DE= 3 t.如图 3,当点Q 与点D 重合时,BD+CQ=BC=5.所以 2t=5.解得t=2.5.图 2 图 3(2)如图 4,设⊙P 和AC 相交于M、N 两点.作PH⊥MN 于H,那么MH=NH.在 Rt△PAH 中,PA=10-t,∠A=30°,所以PH=12(10t)t.=5 12在 Rt△PMH 中,PM=PB=t,由勾股定理,得MH2=PM2-PH2= 2 (5 1 )2t t .2 于是得到y=MN=2MH=3t2 20t 100 .4如图 5,当⊙Q 过点B 时,CQ=x=4,此时MN=y=316 20 4 100 =2 7 .图 4 图 5<t≤5.(3)当⊙P与⊙Q相交时,t的取值范围是17974考点伸展第(3)题的解题过程分三步:第一步,罗列三要素.对于圆P,r P=t;对于圆Q,r Q=1;圆心距PQ 需要求一下.如图 6,作PF⊥BC 于F.在Rt△PFQ 中,由勾股定理,得PQ=( 3 )2 (5 3 )2t t .2 2第二步,列方程.如图 7,当⊙P 与⊙Q 外切时,r P+r Q=PQ.所以t 1( 3 t)2 (5 3t)2 .整理,得 2t2-17t+24=0.解得17 97t .2 2 4第三步,写结论.图 6 图 75例2017年上海市崇明区中考模拟第 24题 如图 1,已知抛物线 y =ax 2-2x +c 经过△ABC 的三个顶点,其中点 A (0, 1),点 B (9, 10),AC //x 轴. (1)求这条抛物线的解析式;(2)求 tan ∠ABC 的值;(3)若点 D 为抛物线的顶点,点 E 是直线 AC 上一点,当△CDE 与△ABC 相似时,求 点 E 的坐标.图 1动感体验请打开几何画板文件名“17 崇明 24”,拖动点 E 在点 C 左侧运动,可以体验到,△CDE 与△ABC 相似存在两种情况.思路点拨1.求 tan ∠ABC 的值,首先要将∠ABC 放在某个直角三角形中.作 AB 边上的高 CH 以 后,有两种解法:一种解法是∠BAC =45°为特殊值;另一种解法是一般性的,已知三角形 的三边,作高不设高,设 AH =m .2.探究△CDE 与△ABC 相似,首选的方法是寻找一组等角,然后按照对应边成比例分 两种情况列方程.图文解析 c1,(1)将 A (0, 1)、B (9, 10)两点分别代入 y =ax 2-2x +c ,得81a 18 c 10.1 3 解得 a = ,c =1.所以这条抛物线的解析式为 12 2 1y x x . 3(2)由于 AC //x 轴,抛物线的对称轴为 x =3,所以 C (6, 1).如图 2,作 BM ⊥AC ,垂足为 M .作 CH ⊥AB 于 H .由 A (0, 1)、B (9, 10),可知 AM =BM =9,所以∠BAC =45°,AB =9 2 .在 Rt △ACH 中,AC =6,所以 AH =CH =3 2 .在 Rt △BCH 中,BH =AB -AH =6 2 ,所以 tan ∠ABC = C H B H= 3 2 6 2 = 1 2 . 6(3)由 1 2 2 1 1 ( 3)2 2y x x x ,得顶点D 的坐标为(3,-2).3 3由C(6, 1)、D(3,-2),可知∠ACD=45°,CD=3 2 .当点E 在点C 左侧时,∠DCE=∠BAC.分两种情况讨论△CDE 与△ABC 相似:①当C E A B时,CE 9 2 .解得CE=9.此时E(-3, 1)(如图 3 所示).C D A C32 6②CE AC 时,CE 6 .解得CE=2.此时E(4, 1)(如图 4 所示).C D A B329 2图 2 图 3 图 4考点伸展第(2)题还有一般的解法:如图 2,△ABC 的三边长是确定的,那么作AB 边上的高CH,设AH=m,就可以求得AH,进而求得CH、BH 的长.由A(0, 1)、B(9, 10)、C(6, 1),可得AB=9 2 ,BC=3 10 ,AC=6.由CH2=CA2-AH2,CH2=CB2-BH2,得CA2-AH2=CB2-BH2.解方程62 m2 (3 10)2 (9 2 m)2 ,得m 3 2 .于是得到BH=6 2 ,CH=3 2 .7例 2017年上海市崇明区中考模拟第 25题如图,梯形 ABCD 中,AB //CD ,∠ABC =90°,AB =6,BC =8,tan D =2,点 E 是射线 CD 上一动点(不与点 C 重合),将△BCE 沿着 BE 进行翻折,点 C 的对应点记为点 F .(1)如图 1,当点 F 落在梯形 ABCD 的中位线 MN 上时,求 CE 的长;S (2)如图 2,当点 E 在线段 CD 上时,设 CE =x , △BFCS△E F C=y ,求 y 与 x 之间的函数关系式,并写出定义域;(3)如图 3,联结 AC ,线段 BF 与射线 CA 交于点 G ,当△CBG 是等腰三角形时,求 CE 的长.图 1 图 2 图 3动感体验请打开几何画板文件名“17 崇明 25”,拖动点 E 运动,可以体验到,等腰三角形 BCG 存在三种情况,每种情况的点 G 的位置都具有特殊性.思路点拨1.第(1)题点 F 到 AB 的距离等于 BF 的一半,得到∠FBA =30°.2.第(2)题△BFC 与△EFC 的面积比等于 BH 与 EH 的比,通过 Rt △BCH ∽Rt △CEH 得到 BH 与 EH 的比.3.第(3)题先求 CG 的长,再求 CE 的长.延长 BF 交 CD 的延长线于 K ,得到△KEF ∽△KBC .图文解析(1)如图 4,在 Rt △FNB 中,BN = 所以∠B F N =30°. 1 2 B C = 1 2B F ,所以∠FBA =30°.所以∠FBC =60°. 所以∠FBE =∠CBE =30°.= 8 3 3所以 C E =B C t a n 30°=83 3. 图 4(2)如图 5,设 BE 垂直平分 FC 于点 H ,那么∠CBH =∠ECH . 所以△CBH ∽△ECH .S 所以CBH△S△ECHBH = ( )2EH= 64 x 2 S .所以 y = BFC △S△EFC= 2S △CBHC2S △ECH = 64 x2. 定义域是 0<x ≤10.8图 5图 6(3)①如图 6,当 CG =CB =8 时,AG =2.CK CG 延长 BF 交 CD 的延长线于 K .由 4 ,得 CK =4AB =24.AB AG1 3在 Rt △KBC 中,BC =8,CK =24,所以 tan ∠K =.所以 sin ∠K = 10 10. 在 Rt △KEF 中,FE =CE =x ,EK =CK -CE =24-x .由 sin ∠K =F E E K = 10 10,得10 x 24 x 10.解得 x =CE = 8 10 83.②如图 7,当 GC =GB 时,点 G 在 BC 的垂直平分线上,此时四边形 ABCK 为矩形. 在 Rt △EKF 中,sin ∠EKF =B C B K = 8 10 = 4 5,FE =CE =x ,KE =CK -CE =6-x .所以 4 x6 x 5.解得 x =CE = 8 3.③如图 8,当 BG =BC =8 时,由于 BC =BF ,所以 F 、G 重合.此时 BE ⊥AC .由 tan ∠CEB =tan ∠ACB = 3 4 ,得B C C E 3 .所以 CE = 432 3.图 7 图 8考点伸展第(3)题的①、②两种情况,解 Rt △KEF ,可以用勾股定理列方程.9例 2017年上海市奉贤区中考模拟第 24题如图 1,在平面直角坐标系中,抛物线 y =-x 2+bx +c 经过点 A (3, 0)和点 B (2, 3),过点1 3A 的直线与 y 轴的负半轴相交于点 C ,且 tan ∠CAO =(1)求这条抛物线的表达式及对称轴;. (2)联结 AB 、BC ,求∠ABC 的正切值;(3)若点 D 在 x 轴下方的对称轴上,当 S △ABC =S △ADC 时,求点 D 的坐标.图 1动感体验请打开几何画板文件名“17 奉贤 24”,可以体验到,△ABC 是等腰直角三角形,B 、D 两点到直线 AC 的距离相等.思路点拨1.直觉告诉我们,△ABC 是直角三角形.2.第(3)题的意思可以表达为:B 、D 在直线 AC 的两侧,到直线 AC 的距离相等.于 是我们容易想到,平行线间的距离处处相等.图文解析(1)将 A (3, 0)、B (2, 3)两点分别代入 y =-x 2+bx +c ,得93b c 0,4 2b c 3.解得 b =2,c =3.所以 y =-x 2+2x +3.对称轴是直线 x =1.O C OA (2)由 t a n ∠C A O == 1 3,OA =3,得 OC =1.所以 C (0,-1). 由两点间的距离公式,得 AB 2=12+32=10,AC 2=32+12=10,BC 2=22+42=20. 所以∠BAC =90°,且 AB =AC .所以△ABC 是等腰直角三角形,tan ∠ABC =1.(3)因为△ABC 与△ADC 有公共底边 AC ,当 S △ABC =S △ADC 时,B 、D 到直线 AC 的距离相等.如图 2,因为点 B (2, 3)关于点 A (3, 0)的对称点为 E (4,-3),那么过点 E 作 AC 的平行线 与抛物线的对称轴的交点即为所求的点 D .由 A (3, 0)、C (0,-1)可得直线 AC 的解析式为1y x 1.3设直线 DE 的解析式为y x b ,代入点 E (4,-3),得 13 1b .3 3 10所以直线DE 的解析式为11 3 y x .当x=1 时,y=-4.3 3所以点D 的坐标为(1,-4).考点伸展第(2)题也可以构造 Rt△ABM 和 Rt△CAN(如图 3),用“边角边”证明△ABM≌△CAN,从而得到等腰直角三角形ABC.图 2 图 3第(3)题也可以这样思考:如图 4,过点B 与直线AC 平行的直线为y 1 x 7 ,与y 轴交于点F(0, 7)33 3.F、C 两点间的距离为710(1) .3 3把直线AC:y 1 x 向下平移1013 3个单位,得到直线113y x .3 3感谢网友上海交大昂立教育张春莹老师第(3)题的解法:如图 5,如果把BL、KD 分别看作△ABC 和△ADC 的底边,那么它们的高都是A、C 两点间的水平距离,当△ABC 与△ADC 的面积相等时,BL=KD.1 ),K(1,2 ).所以3 ( 1) ( 2) 由直线AC 的解析式可以求得L (y .2,D3 3 3 3解得y D=-4.所以D(1,-4).图 4 图 511例2017年上海市奉贤区中考模拟第25题如图 1,线段AB=4,以AB 为直径作半圆O,点C 为弧AB 的中点,点P 为直径AB 上一点,联结PC,过点C 作CD//AB,且CD=PC,过点D 作DE//PC,交射线PB 于点E,PD 与CE 相交于点Q.(1)若点P 与点A 重合,求BE 的长;PD=y,当点P 在线段AO 上时,求y 关于x 的函数关系式及定义域;C E(2)设P C=x,(3)当点Q 在半圆O 上时,求PC 的长.图 1 备用图动感体验请打开几何画板文件名“17 奉贤 25”,拖动点P 在AO 上运动,可以体验到,PD 与CE的比就是菱形的对角线的比,可以转化为PQ 与EQ 的比,进而转化为∠PEQ 的正切值.拖动点P 在OB 上运动,可以体验到,当点Q 落在圆上时,点Q 到AB 的距离等于圆的半径的一半.思路点拨1.四边形PCDE 是菱形,对角线互相垂直平分.2.第(2)题根据∠PEQ 和∠CEO 是同一个角,用正切值得到关系式.3.第(3)题画图的步骤是:点Q 在OC 的中垂线与圆的交点处,延长CQ 交AB 的延长线于点E,过点Q 作CE 的垂线得到点P、D.图文解析(1)如图 2,由CD//AB,DE//PC,得四边形PCDE 是平行四边形.又因为CD=PC,所以四边形PCDE 是菱形.在等腰直角三角形AOC 中,AC= 2 OA=2 2 .当点P 与点A 重合,PE=AC=2 2 .所以BE=AB-PE=4-2 2 .图 2 图 3(2)如图 3,在 Rt△CPO 中,PC=x,CO=2,所以PO=x 2 4 .所以EO=PE-PO=PC-PO=x x 2 4 .12因为PD 与CE 互相垂直平分于Q,所以y=P DC E=PQE Q =tan∠PEQ=tan∠CEO=C OE O.所以y2x x 42x x2 442.定义域是2≤x≤22 .(3)如图 4,作QH⊥AB 于H.因为菱形PCDE 的对边CD 与PE 间的距离保持不变,等于圆的半径CO=2,当点Q在半圆O 上时,QH=12OQ=1.所以∠QOH=30°.此时∠COQ=60°,△COQ 是等边三角形.所以∠DCE=30°.所以∠PCE=30°.在 Rt△COP 中,∠OCP=30°,CO=2,所以PC=C O= 2c o s3032=4 33.图 4 图 5考点伸展在本题情境下,当点P 从A 运动到B 的过程中,求点Q 运动过的路径长.因为点Q 是CE 的中点,所以点Q 的运动轨迹与点E 的运动轨迹平行,点Q 的路径长等于点E 路径长的一半.如图 2,当点P 与点A 重合时,AE=AC=2 2 .如图 5,当点P 与点B 重合时,BE=BC=2 2 .所以点E 运动的路径长为 4,点Q 运动的路径长为 2.13例2017年上海市虹口区中考模拟第24题如图 1,在平面直角坐标系中,抛物线1y x bx c 经过点A(-2, 0)和原点,点B 在4抛物线上且 tan∠BAO=12,抛物线的对称轴与x 轴相交于点P.(1)求抛物线的解析式,并直接写出点P 的坐标;(2)点C 为抛物线上一点,若四边形AOBC为等腰梯形且AO//BC,求点C 的坐标;(3)点D 在AB 上,若△ADP 与△ABO 相似,求点D 的坐标.图 1动感体验请打开几何画板文件名“17 虹口 24”,拖动点D 在AB 上运动,可以体验到,△ADP与△ABO 相似存在两种情况.点击屏幕左下角的按钮“第(2)题”,可以体验到,以A、O、B、C 为顶点的等腰梯形存在三种情况,其中AO//BC 时,点C 与点B 关于抛物线的对称轴对称.思路点拨1.已知二次函数的二次项系数和抛物线与x 轴的两个交点,可以直接写出交点式.2.等腰梯形AOBC 当AO//BC 时,C、B 两点关于抛物线的对称轴对称.3.分两种情况讨论△ADP 与△ABO 相似.由于∠A 是公共角,根据夹∠A 的两边对应成比例,分两种情况列方程,先求AD 的长,再求点D 的坐标.图文解析(1)因为抛物线1y x bx c 与x 轴交于点A(-2, 0)和原点,所以411 1y x(x2)x x.244 2抛物线的对称轴是直线x=-1,点P 的坐标为(-1, 0).1(2)作BH⊥x 轴于H.设点B 的坐标为(x, x(x 2)) .4由 tan∠BAO=B HA H=121,得AH=2BH.所以(x 2) 2x(x 2) .4解得x=2,或x=-2(B、A 重合,舍去).所以B(2, 2).若四边形AOBC 为等腰梯形且AO//BC,那么B、C 关于抛物线的对称轴x=-1 对称.所以点C 的坐标为(-4, 2).图 2 图 314(3)作DE⊥x 轴于E.在 Rt△ADE 中,已知 tan∠A=12,所以DE=55A D,AE=2 55 A D.由于△ADP 与△ABO 有公共角∠A,分两种情况讨论相似:①当AD AB 时,AD 2 5 .所以AD=5 .A P A O1 2此时DE=1,AE=2.所以点D 的坐标为(0, 1).②当A D A O时,A D 2.所以A D= 5 A P A B125 5.此时DE=15,AE=25.所以OE=OA-AE=858 1(,).5 5.所以点D的坐标为图 4 图 5考点伸展如果第(2)题改为以A、O、B、C 为顶点的四边形是等腰梯形,那么就要分三种情况:△AOB 的三边的垂直平分线都可以是等腰梯形的对称轴.第二种情况:如果OC//AB,那么点C 与点O 关于直线AB 的垂直平分线对称.点C 在直线1y x 上,设C(2m, m).2由CB=OA=2,得CB2=4.所以(2m-2)2+(m-2)2=4.解得m=254 2 ,或m=2(此时四边形AOCB 是平行四边形).所以C( , ).5 5第三种情况:如果AC//OB,那么点C 与点A 关于直线OB 的垂直平分线对称.点C 在直线y=x+2 上,设C(n, n+2).由CB=AO=2,得CB2=4.所以(n-2)2+n2=4.解得n=2,或n=0(舍去).所以C(2, 4).图 6 图 715例2017年上海市虹口区中考模拟第25题如图 1,在△ABC 中,AB=AC=5,cos B=45,点P 为边BC 上一动点,过点P 作射线PE 交射线BA 于点D,∠BPD=∠BAC.以点P 为圆心,PC 长为半径作⊙P 交射线PD 于点E,联结CE,设BD=x,CE=y.(1)当⊙P 与AB 相切时,求⊙P 的半径;(2)当点D 在BA 的延长线上时,求y 关于x 的函数解析式,并写出定义域;(3)如果⊙O 与⊙P 相交于点C、E,且⊙O 经过点B,当O P=54时,求AD 的长.图 1动感体验请打开几何画板文件名“17 虹口 25”,拖动点P 运动,可以体验到,△BPD 与△BAC 保持相似,PN 与BD 保持平行.观察度量值,可以体验到,OP=1.25 存在两种情况.思路点拨1.作圆P 的弦CE 对应的弦心距PN,把图形中与∠B 相等的角都标记出来.2.第(3)题的圆O 经过B、C、E 三点,事实上OP 与BD 是平行的.图文解析(1)如图 2,作AM⊥BC 于M,那么BM=CM.在 Rt△ABM 中,AB=5,cos B=B MA B=45,所以BM=4,sin B=35.如图 3,设⊙P 与AB 切于点H,那么 sin B=PHBP=35.所以r8 r 35=.解得r=3.图 2 图 3 图 4 (2)如图 4,由于∠B=∠B,∠BPD=∠BAC,所以△BPD∽△BAC.因为AB=AC,所以PB=PD.如图 5,设圆P 与BC 的另一个交点为F,因此所以F E//B D.所以∠E F C=∠B.P F P E.P B P D在△PBD 中,B P B A 5,所以5 5BP BD x .B D B C888在△EFC 中,由PC=PE=PF,可知∠FEC=90°,所以 sin∠EFC=C EC F3.516所以CF5 CE 5 y .所以 PC = 13 3 2 CF = 5 6y .由 BC =BP +PC =8,得5 x 5 y .整理,得 48 3 y x .定义域是 5<x < 64886545.(3)因为⊙O 经过 B 、C 、E 三点,所以圆心 O 是 BC 和 CE 的垂直平分线的交点. 如图 6,设 CE 的中点为 N ,那么 OP ⊥CE 于 N . 所以 OP //FE //BA .所以 cos ∠OPM =cos B = 4 5 .当 OP = 5 4时,MP =1.①如图 6,当 P 在 M 右侧时,BP =4+1=5.此时 BD = 所以 A D =B D -B A =8-5=3.8 5BP =8.②如图 7,当 P 在 M 左侧时,BP =4-1=3.此时 BD = 8 5 B P = 24 5.2 4 所以 AD =BA -BD = 5 = 51 5.图 5 图 6 图 7考点伸展第(2)题不证明 FE //BA 的话,可以证明∠CPN =∠B .如图 8,由于∠CPE =∠B +∠D =2∠B ,∠CPE =2∠CPN ,所以∠CPN =∠B .在 Rt △CPE 中, 1 2 3 5 C E =PC .所以 PC =5 6 C E = 5 6 5 y .所以 BP =8 y .6 在△BPD 中, 1 2 B D = 4 5 BP .所以 1 x 4 5 y .整理,得 48 3 (8 ) y x .2 5 6 5 4定义域中 x = 64 5的几何意义如图 9 所示.图 8 图 917例 2017年上海市黄浦区中考模拟第 24题如图 1,点 A 在函数 y4(x >0)的图像上,过点 A 作 x 轴和 y 轴的平行线分别交函 x数 y 1的图像于点 B 、C ,直线 BC 与坐标轴的交点为 D 、E . x(1)当点 C 的横坐标为 1 时,求点 B 的坐标;(2)试问:当点 A 在函数 y4(x >0)的图像上运动时,△ABC 的面积是否发生变 x 化?若不变,请求出△ABC 的面积;若变化,请说明理由;(3)试说明:当点 A 在函数 y4(x >0)的图像上运动时,线段 BD 与 CE 的长始终 x相等.图 1动感体验请打开几何画板文件名“17 黄浦 24”,拖动点 A 运动,可以体验到,△DBM 与△CEN 保持全等,MN 与 BC 保持平行.思路点拨1.设点 A 的横坐标为 m ,A 、C 两点的横坐标相等,A 、B 两点的纵坐标相等,用 m 表 示 A 、B 、C 三点的坐标和 AB 、AC 的长.2.证明 BD =CE ,因为四点共线,只要证明 B 、D 两点间的竖直距离等于 C 、E 两点间 的竖直距离就可以了.图文解析(1)当点 C 的横坐标为 1 时,C (1, 1),A (1, 4).由 1 x4 ,得x 1 .所以点 B 的坐标为(1 ,4) 4 4 . (2)△ABC 的面积为定值.计算如下:4 如图 2,设点 A 的坐标为(m , ) m 1 ,那么 C (m , ) mm 4 ,B ( , ). 4 m3m 所以 A B = 4 ,AC = 3 m .所以 S △ABC = 1 2 A B A C = 1 3 3 = m2 4 m9 8 . (3)如图 3,延长 AB 交 y 轴于 M ,延长 AC 交 x 轴于 N .在 Rt △DBM 中,tan ∠DBM =tan ∠ABC = A C A B = 3 3m = m 44 m 2 ,BM = m 4,所以DM=BM tan∠DBM=m44=m21m.所以DM=CN.18又因为 sin∠DBM=sin∠CEN,所以DB=CE.图 2 图 3考点伸展如图 4,第(2)题中,面积为定值的有:矩形AMON、△ABC、△BOM、△CON,所以△BOC 的面积也为定值.如图 5,联结MN,那么MN 与BC 保持平行,这是因为M B N C 1.M A N A 4还有一个有趣的结论,随着点A 的运动,直线MN 与双曲线y 1(x>0)保持相切.x直线MN 的解析式为44,与y1y x 联立方程组,消去y,得m m x214 4x.x m m2整理,得(2x-m)2=0.所以直线MN 与双曲线有一个交点,保持相切.感谢网友上海交大昂立教育张春莹老师提供的第(3)题的简练解法:如图 4,因为B D B M 1,C E C N 1,所以B D=C E.B C B A3C B C A 3图 4 图 519例2017年上海市黄浦区中考模拟第25题已知 Rt△ABC 斜边AB 上的D、E 两点满足∠DCE=45°.(1)如图 1,当AC=1,BC= 3 ,且点D 与点A 重合时,求线段BE 的长;(2)如图 2,当△ABC 是等腰直角三角形时,求证:AD2+BE2=DE2;(3)如图 3,当AC=3,BC=4 时,设AD=x,BE=y,求y 关于x 的函数关系式,并写出定义域.图 1 图 2 图 3动感体验请打开几何画板文件名“17 黄浦 25”,可以体验到,四边形CMEN 是正方形.点击屏幕左下方的按钮“第(2)题”,可以体验到,直角三角形DEF 的边FD=AD,FE=BE.点击按钮“第(3)题”,可以体验到,△CDP∽△ECQ.思路点拨1.第(1)题过点E 向两条直角边作垂线段,围成一个正方形,然后根据对应线段成比例求正方形的边长,再得到BE 的长等于正方形边长的 2 倍.2.第(2)题的目标是把AD、BE 和DE 围成一个直角三角形.经典的解法有翻折和旋转两种.图文解析(1)当AC=1,BC= 3 时,AB=2,∠B=30°.如图 4,作EM⊥BC 于M,作EN⊥AC 于N,那么四边形CMEN 是正方形.设正方形的边长为a.由EM BM,得a 3 a .AC BC 1 3解得 3 3a .2所以BE=2EM=3 3 .图 4【解法二】如图 4,因为1C B E MS C B△C B E21S C A E N C A△C B E2S B E,△C B ES E A△C B E,所以C B B E.C A E A.解得BE=3 3 .所以3B E12B E20(2)如图5,以CE 为对称轴,构造△CFE≌△CBE,那么FE=BE,∠CFE=∠B=45°.联结DF.由“边角边”证明△CFD≌△CAD,所以FD=AD,∠CFD=∠A=45°.所以△DEF 是直角三角形,FD2+FE2=DE2.所以AD2+BE2=DE2.【解法二】如图 6,绕点C 将△CBE 逆时针旋转 90°得到△CAG,那么AG=BE,CE =CG,∠CAG=∠B=45°.由“边角边”证明△CDG≌△CDE,所以DG=DE.在 Rt△GDA 中,AD2+AG2=DG2.所以AD2+BE2=DE2.图 5 图 6(3)如图 7,作CH⊥AB 于H.在 Rt△ABC 中,AC=3,BC=4,所以AB=5.于是可得CH 12 ,BH 16 ,9AH .5 5 5所以DH 9 x,16EH y .5 5如图 8,以H 为旋转中心,将点D 逆时针旋转 90°得到点P,将点E 顺时针旋转 90°得到点Q.于是可得△CDP∽△ECQ.由PD QC,得PD QE PC QC .PC QE所以2(9 x) 2(16 y ) 12 (9 x )12 (16 y )5 5 5 5 5 5.整理,得2860xy5x 21.157 定义域是0≤x≤15 7.当B、E 重合时x=.图 7 图 821考点伸展第(3)题解法多样,再介绍三种解法:如图 9,过点C 作AB 的平行线KL.构造等腰直角三角形KDD′和LEE′.由△CDE∽△KCD,△CDE∽△LEC,得△KCD∽△LEC.所以KC DK,即KC CL=LE DK .LE CL所以12 (9 )12 (16 ) 12 2 12 2x y55555 5.整理即可.如图 10,分别以CD、CE 为对称轴,作CH 的对应线段CK、CL,再围成正方形CKRL.在 Rt△DER 中,由DR2+ER2=DE2,得2 2129121 6(x)(y)(5x y)25555.整理即可.如图 11,类似第(2)题的第一种解法,在 Rt△A′B′T 中,A′B′=CB-CA=1,所以A′T=35 ,B′T= 4 5.在 Rt△DET 中,DE=5-x-y,TE=y 4,T D= 3x ,由勾股定理,得5 52 4 23 2(5x y ) (y ) (x ) .整理即可.5 5图 9 图 10 图 1122例2017年上海市嘉定区中考模拟第24题如图 1,在平面直角坐标系中,已知点A 的坐标为(3, 1),点B 的坐标为(6, 5),点C 的坐标为(0, 5),某二次函数的图像经过A、B、C 三点.(1)求这个二次函数的解析式;(2)假如点Q 在该二次函数图像的对称轴上,且△ACQ 是等腰三角形,请直接写出点Q 的坐标;(3)如果点P 在(1)中求出的二次函数的图像上,且 tan∠PCA=12,求∠PCB 的正弦值.图 1动感体验请打开几何画板文件名“17 嘉定 24”,可以体验到,当AD⊥AC,且AC=2AD 时,点D 的位置是确定的,射线CD 与抛物线的交点就是点P.思路点拨1.由B、C 两点的坐标可知抛物线的对称轴是直线x=3,再由点A 的坐标可知点A 就是抛物线的顶点,因此设顶点式比较简便.2.分三种情况讨论等腰三角形ACQ:AQ=AC,CQ=CA,QA=QC.3.第(3)题的解题策略是:根据 tan∠PCA=12,过点A 作AC 的垂线,在垂线上截取AD=12AC,那么点P 就是射线CD 与抛物线的交点,∠DCB 就是∠PCB.不用求点P的坐标,求点D 的坐标就好了.图文解析(1)由B(6, 5)、C(0, 5),可知抛物线的对称轴是直线x=3.由A(3, 1),可知点A 是抛物线的顶点.设二次函数的解析式为y=a(x-3)2+1,代入点B(6, 5),得 9a+1=5.4 4 4 8解得a .所以y (x 3)2 1x 2 x 5.9 9 9 33 3(2)点Q 的坐标为(3, 6),(3,-4),(3, 9)或(3, )8.(3)如图 2,绕着点A 将线段AC 的中点旋转 90°得到点D,那么射线CD 与抛物线的交点就是要求的点P.当点D 在CA 左侧时,射线CD 与抛物线没有交点.如图 3,当点D 在CA 右侧时,作DE⊥x 轴于E,那么∠DCE 就是∠PCB.过点A 作x 轴的平行线交y 轴于M,过点D 作DN⊥AM 于N.CM MA AC由△CMA∽△AND,得 2 .AN ND DA所以A N 1C M ,1 32N D M A .22 223在 Rt△CDE 中,CE=MA+AN=3+2=5,ED=CM-ND=3 5 4,2 2所以 tan∠DCE=E DC E=12.所以 sin∠DCE=55,即 sin∠PCB=55.图 2 图 3考点伸展第(2)题分三种情况讨论等腰三角形ACQ:①如图 4,当AQ=AC=5 时,以A 为圆心、以AC 为半径的圆与对称轴有两个交点,所以点Q 的坐标为(3, 6) 或(3,-4).②如图 5,当CQ=CA 时,点C 在AQ 的垂直平分线上,此时点Q 的坐标为(3, 9).③如图 6,当QA=QC 时,点Q 在AC 的垂直平分线上,此时1 4A C A Q.2 5所以AQ=58AC =2583 3.此时点Q 的坐标为(3, )8.图 4 图 5 图 6 24例2017年上海市嘉定区中考模拟第25题已知AB=8,⊙O 经过点A、B,以AB 为一边画平行四边形ABCD,另一边CD 经过点O(如图 1).以点B 为圆心,BC 长为半径画弧,交线段OC 于点E(点E 不与点O、点C 重合).(1)求证:OD=OE;(2)如果⊙O 的半径长为 5(如图 2),设OD=x,BC=y,求y 与x 的函数解析式,并写出它的定义域;(3)如果⊙O 的半径长为 5,联结AC,当BE⊥AC 时,求OD 的长.图 1 图 2 备用图动感体验请打开几何画板文件名“17 嘉定 25”,拖动点D 运动,可以体验到,四边形ABED 保持等腰梯形的形状,△BCE 保持等腰三角形的形状,垂足H 的位置保持不变,MH 的位置保持不变.双击按钮“AC⊥BE”,可以体验到,点C 恰好落在圆上,MH 等于EC 与AB 和的一半.思路点拨1.根据等腰梯形是轴对称图形,很容易知道点O 是DE 的中点.2.第(2)题中,等腰三角形BCE 的高BH 为定值,先用x 表示EC,再用勾股定理就可以表示BC 了.3.第(3)题如何利用BE⊥AC,常规的方法是过点C 作BE 的平行线得到直角三角形.图文解析(1)如图 3,因为四边形ABCD 是平行四边形,所以AD=BC.又因为BE=BC,所以AD=BE.所以四边形ABED 是等腰梯形.因为圆心O 在弦AB 的垂直平分线上,所以点O 是上底DE 的中点,即OD=OE.图 3 图 425例2017年上海市静安区中考模拟第24题如图 1,已知二次函数 1 2y x bx c 的图像与x 轴的正半轴交于点A(2, 0)和点B,2与y 轴交于点C,它的顶点为M,对称轴与x 轴相交于点N.(1)用b 的代数式表示点M 的坐标;(2)当 tan∠MAN=2 时,求此二次函数的解析式及∠ACB 的正切值.图 1动感体验请打开几何画板文件名“17 静安 24”,拖动点N 运动,观察∠MAN 的正切值的度量值,可以体验到,当 tan∠MAN=2 时,△OBC 是等腰直角三角形.思路点拨1.第(1)题分三步:根据抛物线的解析式写出对称轴x=b;代入点A 的坐标,用b表示c;求x=b 时y 的值,得到顶点的纵坐标.2.第(2)题先根据 tan∠MAN=2 求b 的值,确定点B、C 的坐标,再作BC 边上的高AH,解直角三角形ABH 和直角三角形ACH.图文解析(1)由 1 2y x bx c ,得抛物线的对称轴为直线x=b.2将点A(2, 0)代入 1 2y x bx c ,得-2+2b+c=0.所以c=2-2b.2当x=b 时, 1 2 2 2 1 2 2 2 1 ( 2)2y x bx b b b b .2 2 2所以抛物线的顶点M 的坐标可以表示为( , 1 ( 2)2 )b b .2MN(2)当 tan∠MAN=2 时, 2 ,即MN=2AN.AN解方程1 ( 2)2 2( 2)b b ,得b=6,或b=2(与A 重合,舍去).2此时抛物线的解析式为 1 2 6 10y x x ,A(2, 0),B(6, 0),C(0,-10).2所以AB=8,OB=OC=10.所以BC=10 2 ,∠B=45°.27作AH⊥BC 于H,那么AH=BH=4 2 .在 Rt△ACH 中,CH=BC-BH=6 2 ,所以 tan∠ACB=A HC H=23 .图 2考点伸展第(2)题上面的解法是利用“边角边”,作高先求高.也可以利用“边边边”,作高不设高.由A(2, 0),B(6, 0),C(0,-10),得AB=8,BC=10 2 ,AC=104 .设CH=m,那么BH=10 2 m.由AH2=AC2-CH2,AH2=AB2-BH2,得AC2-CH2=AB2-BH2.解方程( 104)2 m2 82 (10 2 m)2 ,得m CH 6 2 .所以AH2=AC2-CH2=( 104)2 (6 2)2 =32.所以AH=4 2 .28例2017年上海市静安区中考模拟第25题如图 1,已知⊙O 的半径OA 的长为 2,点B 是⊙O 上的动点,以AB 为半径的⊙A 与线段OB 相交于点C,AC 的延长线与⊙O 相交于点D.设线段AB 的长为x,线段OC 的长为y.(1)求y 关于x 的函数解析式,并写出定义域;(2)当四边形ABDO 是梯形时,求线段OC 的长.图 1图文解析(1)如图 1,因为OA=OB,所以∠OAB=∠B.因为AC=AB,所以∠ACB=∠B.所以∠OAB=∠ACB.所以△OAB∽△ACB.所以B O B A,即2xB A B Cx 2 y.整理,得 2 1 2y x .定义域是 0≤x≤2.x=2 的几何意义如图 2 所示.2图 1 图 2(2)梯形ABDO 存在两种情况:①如图 3,当AB//OD 时,A B C B,即x2y.整理,得(x+2)y=4.D O C O2y代入y 2 1 x2 ,得( 2)(2 1 2 ) 4x x .整理,得x2+2x-4=0.2 2解得x= 5 1,或x= 5 1(舍去).所以CO=y=2 1 2 =2 1 ( 5 1)2x= 5 1.事实上,此时点C 是线段OB 的黄2 2金分割点.。
2016学年奉贤区调研测试九年级英语试卷(2017. 4)(满分150分,考试时间100分钟)考生注意:本卷有7大题,共94小题。
试题均采用连续编号,所有答案务必按照规定在答题纸上完成,做在试卷上不给分。
Part 1 Listening (第一部分听力)A.Listen and choose the right picture (根据你听到的内容,选出相应的图片)(6分)A B CD E FG H1.____2._____3._____4._____5._____6.______B.Listen to the dialogue and choose the best answer to the question your hear (根据你听到的对话和问题,选出最恰当的答案)(8分)7. A) Next Thursday. B) Last Thursday.C) Next Tuesday. D) Last Tuesday.8. A) By bus. B) By taxi.C) By bike. D) On foot.9. A) In a hospital. B) In a book store.C) In a supermarket. D) In a public library10. A) To see a film. B)To have sports.C) To do shopping. D) To post a letter.11. A) Shop assistant and customer. B) Mother and son.C) Doctor and patient. D) Boss and secretary.12. A) The Lantern Festival. B) The Mid-autumn festival.C) Thanksgiving Day. D) Christmas Day13. A) Because he wants to see a film.B) Because he will work late tonight.C) Because he wants to visit his classmates.D) Because he will watch a football match.l4. A) It will be given to Aunt Jane.B) It will be thrown away.C) It will be under Aunt Jane’s care.D) It will be taken to Australia.C. Listen to the passage and tell whether the following statements are true or false (判断下列句子是否符合你听到的短文内容,符合的用“T”表示,不符合的用“F”表示)(6分)15. Kite flying is a popular activity in spring in China.I6. Kites shaped like swallows (燕子)mean long life and peaches mean good luck.17. Many people visit the city of Weifang every April to take part in the International Kite Festival.18. The kite was invented by Chinese people over 200 years ago.19. People got the idea of inventing the lightning rod (避雷针)from a kite.20. The passage mainly talks about how to fly kites safely in spring.D. Listen to the passage and complete the following sentences (听短文,完成下列句子。
上海市奉贤区2016届九年级数学4月调研测试(二模)试题(满分150分,考试时间150分钟)一、选择题:(本大题共6题,每题4分,满分24分)如果两个实数b a 、满足0=+b a ,那么b a 、一定是( )A.都等于0;B.一正一负;C.互为相反数;D.互为倒数。
若12-==y x ,,那么代数式222y xy x ++的值是( )A.0;B.1;C.2;D.4.函数32+-=x y 的图像不经过( )A.第一象限;B.第二象限;C.第三象限;D.第四象限。
4、一组数据3,3,2,5,8,8的中位数是( )A.3;B.4;C.5;D.8.下列说法中,正确的是( )A.关于某条直线对称的两个三角形一定全等;B.两个全等三角形一定关于某条直线对称;C.面积相等的两个三角形一定关于某条直线之间对称;D.周长相等的两个三角形一定关于某条直线之间对称。
已知⊙1o 与⊙2o 外离,⊙1o 的半径是5,圆心距21o o =7,那么⊙2o 的半径可以是( )A.4;B.3;C.2;D.1.填空题:(本大题共12题,每题4分,满分48分) 化简:a 16=_______;因式分解:=-a a 2_________; 函数11-=x y 的定义域是______________; 一个不透明的袋子中装有若干个除颜色外形状大小完全相同的小球。
如果其中有2个白球n 个黄球,从中随机摸出白球的概率是32,那么=n _____; 不等式组⎩⎨⎧<->-8221x x 的解集是____________; 已知反比例函数x y 3=,在其图像所在的每个象限内,y 的值随x 值的增大而_______(填“增大”或“减小”);直线)(0≠+=k b kx y 平行于直线x y 21=且经过点(0,2),那么这条直线的解析式是_______________;小明在高为18米的楼上看到停在地面上的一辆汽车的俯角为60°,那么这辆汽车到楼底的距离是__________;(结果保留根号)如图,在△ABC 中,点D 在边BC 上,且BD DC 2=,点E 是边AC 的中点,设b AC a BC ρρ==,,那么DE =________________;(用不b a ρρ、的线性组合表示)四边形ABCD 中,︒=∠90//D BC AD ,,如果再添加一个条件,可以得到四边形ABCD 是矩形,那么可以添加的条件是___________;(不再添加线或字母,写出一种情况即可)如图,在ABC Rt ∆中,AD ACB ,︒=∠90是边BC 边上的中线,如果BC AD =,那么CAB ∠cot 的值是____________;如图,在ABC ∆中,23045=︒=∠︒=∠AC C B ,,,点D 在BC 上,将ACD ∆沿直线AD 翻折后,点C 落在点E 处,边AE 交边BC 于点F ,如果AB DE //,那么BFCF 的值是________。
上海市奉贤区)15届九年级数学月调研测试(二模试题(满分150分,考试吋IW0分钟)考生注意:1.本试卷含三个大题,曲题.答题时,考生务必按答题要求在答题纸规定的位置上答,在草稿纸、本试卷上答题一律无效2.除第一、二大题外,其余各题如无特别说明, 要步骤.都必须在答题纸的相应位置上W0诫算的主C ・8与8.5 ; D. 8.5与9・1. 2. 3. 4. 、选择题:(本大题饌题,题4分,满分 下列计算中正确的是(▲)A. 3 +a3 =a6;B ・a + =二元一次方程A. 1 个;关于反比例函数2y24分)3的解的个数是(▲)・2个;c.的图像,下列叙述错误的是 A. y 随x 的增大而减小;C.图像是轴对腐形一名射击运动邈换耙次,命中环数如图所示, 3 a 3a3个;(▲)・图像位于一、 三象限 3)3= 6 (aa . D.・无数个.•点(/ ,・2 )在这个图像上.这组数据的众数与中位数分别为▲)7 8 9 10(第4题图)/ A\f、2_ ___□_\BD C(第6题图)A.zB=45。
; B . N BAC=90。
; C ・BD=AC ; D ・ AB=AC.二、填空题:5.相交两圆的圆心蹬 5,如果其中一个圆的半径是3,那么另外一个圆的半径可以是(▲)6. A. 2;B ・5;C ・8;D ・ 10.如图,已相是A ABC 的EC 上的高,下列能使厶 ABD 竺A ACD 的条件是(▲)(本大题我题,4分,满分48分)7. 用代数式表示:a 的5倍与b 的?的差: ▲;7-----2 —X — ___8. 分解因式:x 2 15二▲;=J +・9. 己知函数f (x) x 3 ,那么f ( 2) 10.某红外线遥控器发出的红外线波长为 0.000 00094m ,这个数用科学记数法表示为▲:2 x k2 0 x 有两个不相等的实数根,则 k 的取值范围为 ▲;那么所摸到的于泰舀好为红球的概率是▲;13. 已知函数y 2x b ,函数值y 随X 的增夫而 ▲(填“增大”或“减小”);T 4 ―-14. 如果正n 边形的中心角是 40° ,那么n = ▲;=—>15. 已知公ABC 中,点D 在边BC 上,且BD=2DC.设AB = a , BC b ,那么AD等于▲(结果用a 、 b 表示);16-小明乘滑草车沿坡比为 1:2.4的斜坡下滑130米,则他下降的高度为17. 我们把三角形中最大内角与最小内角的度数差称为该三角形的“内角正度值” •如果等腰三角形的腰长为 2, “内角正度值”为 45° ,那么该三角 形的面积等于 ▲;18. 如图,已知钝角三角形 ABC, ZA=35° , OC 为边AB ±的中线,将厶 AOC 绕着点O 顺时针旋转,誉C 洛在BC 边上的。
上海市奉贤区2017届九年级数学4月调研测试题(二模)(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分) 1、2的倒数是( ) A 、 2 B 、 -2 C 、22 D 、 -222、下列算式的运算为2m 的是( )A 、42m m -⋅B 、63m m ÷ C 、 21)(-m D 、24m m -3、直线y =(3-π)x 经过的象限是( )A 、 一、二象限B 、 一、三象限C 、 二、三象限D 、 二、四象限4、李老师用手机软件记录了某个月(30天)每天走路的步数(单位:万步)它将记录的结果绘制成了如图一所示的统计图,在李老师每天走路的步数这组数据中,众数与中位数分别为( ) A 、 1.2与1.3 B 、 1.4与1.35 C 、 1.4与1.3 D 、 1.3与1.35、小明用如图2所示的方法画出了△ABC 全等的△DEF ,他的具体画法是:①画射线DM ,在射线DM 上截取DE =BC ; ②以点D 为圆心,BA 长为半径画弧,以E 为圆心,CA 长为半径画弧,两弧相交于点F ;③联结FD 、FE ; 这样△DEF 就是所要画的三角形,小明这样画的依据是全等三角形判定方法中的( ) A 、 边角边 B 、 角边角 C 、 角角边 D 、 边边边6、已知两圆相交,它们的圆心距为3,一个圆的半径是2,那么另一个圆的半径长可以是( ) A 、 1 B 、 3 C 、 5 D 、7二、填空题:(本大题共12题,每题4分,满分48) 7、计算:(-1)2017+02-4= ;8、函数y =x +2的定义域是 ; 9、方程x =-x 的解是 ;10、如果抛物线y =a 2x -3的顶点是它的最低点,那么a 的取值范围是 ; 11、如果抛物线32-=ax y 的顶点是它的最低点,那么a 的取值范围是 ; 12、如果点P (m -3,1)在反比例函数xy 1=的图像上,那么m 的值是 ;13、学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“试卷默写”的试题4个.小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是 ;14、为了解某区3600名九年级学生的体育训练情况,随机抽取了区内200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格,并将测试结果绘制成了如图所示的统计图.由此估计全区九年级体育测试成绩可以达到优秀的人数约为 ;15、在梯形ABCD 中,AD //BC ,AD =21BC ,设AB a →→=,DCb →→=,那么BC →等于(结果用a →、b →的线性组合表示);16、如果正n 边形的内角是它的中心角的2倍,那么边数n 的值是 ;17、在等腰ABC ∆中,当顶角A 的大小确定时,它的对边(即底边BC )与邻边(即腰AB 或AC )的比值也确定了,我们把这个比值记作T (A ),即()ABBCA A A T =∠∠=的邻边(腰)的对边(底边).例:T (600)=1,那么T (1200)= ;18、如图,矩形ABCD ,点E 是边AD 上一点,过点E 作EF ⊥BC ,垂足为点F ,将BEF ∆绕着点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处,如果点M 恰好是边DC 的中点,那么ABAD的值是 。
2017年上海市奉贤区中考数学二模试卷一、选择题(本大题共6小题,每小题4分,共24分)1.的倒数是()A.B.2 C.D.﹣2.下列算式的运算结果为m2的是()A.m4•m﹣2B.m6÷m3C.(m﹣1)2D.m4﹣m23.直线y=(3﹣π)x经过的象限是()A.一、二象限B.一、三象限C.二、三象限D.二、四象限4.李老师用手机软件记录了某个月(30天)每天走路的步数(单位:万步),她将记录的结果绘制成了如图所示的统计图,在李老师每天走路的步数这组数据中,众数与中位数分别为()A.1.2与1.3 B.1.4与1.35 C.1.4与1.3 D.1.3与1.35.小明用如图所示的方法画出了与△ABC全等的△DEF,他的具体画法是:①画射线DM,在射线DM上截取DE=BC;②以点D为圆心,BA长为半径画弧,以点E为圆心,CA长为半径画弧,画弧相交于点F;③联结FD,FE;这样△DEF就是所要画的三角形,小明这样画图的依据是全等三角形判定方法中的()A.边角边B.角边角C.角角边D.边边边6.已知两圆相交,它们的圆心距为3,一个圆的半径是2,那么另一个圆的半径长可以是()A.1 B.3 C.5 D.7二、填空题(本大题共12小题,每小题4分,共48分)7.计算:(﹣1)2012+20﹣= .8.函数的定义域是.9.方程的解是.10.如果抛物线y=ax2﹣3的顶点是它的最低点,那么a的取值范围是.11.若关于x的方程x2﹣kx+4=0有两个相等的实数根,则k的值为.12.如果点P(m﹣3,1)在反比例函数y=的图象上,那么m的值是.13.学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“诗句默写”的试题4个,小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是.14.为了解某区3600名九年级学生的体育训练情况,随机抽取了区内200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如图所示的统计图,由此估计全区九年级体育测试成绩可以达到优秀的人数约为人.15.在梯形ABCD中,AD∥BC,AD=BC,设=, =,那么等于(结果用、的线性组合表示)16.如果正n边形的内角是它中心角的两倍,那么边数n的值是.17.在等腰三角形ABC中,当顶角A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也确定了,我们把这个比值记作T(A),即T(A)==.例:T(60°)=1,那么T= .18.如图,矩形ABCD,点E是边AD上一点,过点E作EF⊥BC,垂足为点F,将△BEF绕着点E逆时针旋转,使点B落在边BC上的点N处,点F落在边DC上的点M处,如果点M恰好是边DC的中点,那么的值是.三、解答题(本大题共7小题,共78分)19.先化简,再求值:(﹣)÷,其中a=.20.解不等式组将其解集在数轴上表示出来,并写出这个不等式组的整数解.21.已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=8,sin∠BCD=,CE 平分∠BCD,交边AD于点E,联结BE并延长,交CD的延长线于点P.(1)求梯形ABCD的周长;(2)求PE的长.22.王阿姨销售草莓,草莓成本价为每千克10元,她发现当销售单价为每千克至少10元,但不高于每千克20元时,销售量y(千克)与销售单价x(元)的函数图象如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当王阿姨销售草莓获得的利润为800元时,求草莓销售的单价.23.已知:如图,在Rt△ABC中,∠ACB=90°,点D在边AC上,点E是BD的中点,CE的延长线交边AB于点F,且∠CED=∠A.(1)求证:AC=AF;(2)在边AB的下方画∠GBA=∠CED,交CF的延长线于点G,联结DG,在图中画出图形,并证明四边形CDGB是矩形.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(3,0)和点B(2,3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1)求这条抛物线的表达式及对称轴;(2)联结AB、BC,求∠ABC的正切值;(3)若点D在x轴下方的对称轴上,当S△DBC=S△ADC时,求点D的坐标.25.已知:如图,选段AB=4,以AB为直径作半圆O,点C为弧AB的中点,点P为直径AB 上一点,联结PC,过点C作CD∥AB,且CD=PC,过点D作DE∥PC,交射线PB于点E,PD与CE相交于点Q.(1)若点P与点A重合,求BE的长;(2)设PC=x, =y,当点P在线段AO上时,求y与x的函数关系式及定义域;(3)当点Q在半圆O上时,求PC的长.2017年上海市奉贤区中考数学二模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题4分,共24分)1.的倒数是()A.B.2 C.D.﹣【考点】76:分母有理化.【分析】的倒数是,再分母有理化即可.【解答】解:的倒数是,.故选:C.2.下列算式的运算结果为m2的是()A.m4•m﹣2B.m6÷m3C.(m﹣1)2D.m4﹣m2【考点】48:同底数幂的除法;46:同底数幂的乘法;47:幂的乘方与积的乘方;6F:负整数指数幂.【分析】根据同底数幂的乘法,同底数幂的除法底数不变指数相减,幂的乘方底数不变指数相乘,可得答案.【解答】解:m4•m﹣2=m2,故A符合题意;B、m6÷m3=m3,故B不符合题意;C、(m﹣1)2=,故C不符合题意;D、m4﹣m2≠m2,故D不符合题意;故选:A.3.直线y=(3﹣π)x经过的象限是()A.一、二象限B.一、三象限C.二、三象限D.二、四象限【考点】F6:正比例函数的性质.【分析】先根据正比例函数的解析式判断出k的值,再根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵直线y=(3﹣π)x中,k<0,∴此直线经过二、四象限.故选D.4.李老师用手机软件记录了某个月(30天)每天走路的步数(单位:万步),她将记录的结果绘制成了如图所示的统计图,在李老师每天走路的步数这组数据中,众数与中位数分别为()A.1.2与1.3 B.1.4与1.35 C.1.4与1.3 D.1.3与1.3【考点】W5:众数;W4:中位数.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,1.4万步,故众数是1.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步).故选C.5.小明用如图所示的方法画出了与△ABC全等的△DEF,他的具体画法是:①画射线DM,在射线DM上截取DE=BC;②以点D为圆心,BA长为半径画弧,以点E为圆心,CA长为半径画弧,画弧相交于点F;③联结FD,FE;这样△DEF就是所要画的三角形,小明这样画图的依据是全等三角形判定方法中的()A.边角边B.角边角C.角角边D.边边边【考点】N3:作图—复杂作图;KB:全等三角形的判定.【分析】根据画法可得,DE=BC,BA=DF,CA=EF,依据SSS可判定△ABC≌△FDE.【解答】解:根据画法可得,DE=BC,BA=DF,CA=EF,在△ABC和△FDE中,,∴△ABC≌△FDE(SSS),∴这样画图的依据是全等三角形判定方法中的SSS,故选:D.6.已知两圆相交,它们的圆心距为3,一个圆的半径是2,那么另一个圆的半径长可以是()A.1 B.3 C.5 D.7【考点】MJ:圆与圆的位置关系.【分析】本题直接告诉了大圆的半径及两圆位置关系,圆心距,求小圆半径的取值范围,据数量关系与两圆位置关系的对应情况便可直接得出答案.相交,则R﹣r<P<R+r.(P表示圆心距,R,r分别表示两圆的半径).【解答】解:因为两圆相交,圆心距P满足:R﹣r<P<R+r,即3<P<7,满足条件的圆心距只有B,故选B.二、填空题(本大题共12小题,每小题4分,共48分)7.计算:(﹣1)2012+20﹣= 0 .【考点】2C:实数的运算;6E:零指数幂.【分析】原式利用乘方的意义,零指数幂,以及算术平方根定义计算即可得到结果.【解答】解:原式=1+1﹣2=0.故答案为:08.函数的定义域是x≥.【考点】E4:函数自变量的取值范围.【分析】根据二次根式的性质的意义,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2x﹣1≥0,解得:x≥.故答案为x≥.9.方程的解是x=0 .【考点】AG:无理方程.【分析】把方程两边平方去根号后求解.【解答】解:两边平方得:x=x2,解方程的:x1=0,x2=1,检验:当x1=0时,方程的左边=右边=0,∴x=0为原方程的根当x2=1时,原方程无意义,故舍去.故答案为:x=0.10.如果抛物线y=ax2﹣3的顶点是它的最低点,那么a的取值范围是a>0 .【考点】H3:二次函数的性质;H7:二次函数的最值.【分析】由于原点是抛物线y=ax2﹣3的最低点,这要求抛物线必须开口向上,由此可以确定a的范围.【解答】解:∵原点是抛物线y=ax2﹣3的最低点,∴a>0.故答案为a>0.11.若关于x的方程x2﹣kx+4=0有两个相等的实数根,则k的值为±4 .【考点】AA:根的判别式.【分析】因为方程有两个相等的实数根,说明根的判别式△=b2﹣4ac=0,由此可以得到关于k的方程,解方程即可求出k的值.【解答】解:∵方程有两个相等的实数根,而a=1,b=﹣k,c=4,∴△=b2﹣4ac=(﹣k)2﹣4×1×4=0,解得k=±4.故填:k=±4.12.如果点P(m﹣3,1)在反比例函数y=的图象上,那么m的值是 4 .【考点】G6:反比例函数图象上点的坐标特征.【分析】直接把点P(m﹣3,1)代入反比例函数y=,求出m的值即可.【解答】解:∵点P(m﹣3,1)在反比例函数y=的图象上,∴1=,解得m=4.故答案为:4.13.学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“诗句默写”的试题4个,小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是.【考点】X4:概率公式.【分析】根据共设有20道试题,其中有关“诗句作者”的试题6个,再根据概率公式即可得出答案.【解答】解:∵共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“诗句默写”的试题4个,∴小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是: =.故答案为:.14.为了解某区3600名九年级学生的体育训练情况,随机抽取了区内200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘成了如图所示的统计图,由此估计全区九年级体育测试成绩可以达到优秀的人数约为360 人.【考点】V5:用样本估计总体.【分析】根据题意和扇形统计图中的数据可以解答本题.【解答】解:由题意可得,九年级体育测试成绩可以达到优秀的人数约为:3600×(1﹣30%﹣35%﹣25%)=360(人),故答案为:360.15.在梯形ABCD中,AD∥BC,AD=BC,设=, =,那么等于2﹣2(结果用、的线性组合表示)【考点】LM:*平面向量;LH:梯形.【分析】过点A作AE∥DC,证四边形AECD是平行四边形得AE=DC、AD=EC,从而得BC=2BE,由=﹣=﹣=﹣可得答案.【解答】解:如图,过点A作AE∥DC交BC于点E,∵AD∥BC,∴四边形AECD是平行四边形,∴AE=DC、AD=EC,∵AD=BC,∴EC=BE=BC,即BC=2BE,∵=, =,∴=﹣=﹣=﹣,则=2(﹣)=2﹣2,故答案为:2﹣2.16.如果正n边形的内角是它中心角的两倍,那么边数n的值是 6 .【考点】L3:多边形内角与外角.【分析】根据正n边形的内角是它中心角的两倍,列出方程求解即可.【解答】解:依题意有(n﹣2)•180°=360°×2,解得n=6.故答案为:6.17.在等腰三角形ABC中,当顶角A的大小确定时,它的对边(即底边BC)与邻边(即腰AB或AC)的比值也确定了,我们把这个比值记作T(A),即T(A)==.例:T(60°)=1,那么T= .【考点】T7:解直角三角形.【分析】根据T(A)的定义解答即可.【解答】解:∠BAC=90°,AB=AC,作AD⊥BC于D,则∠BAD=60°,∴BD=AB,∴BC=AB,∴T=.故答案是:.18.如图,矩形ABCD,点E是边AD上一点,过点E作EF⊥BC,垂足为点F,将△BEF绕着点E逆时针旋转,使点B落在边BC上的点N处,点F落在边DC上的点M处,如果点M恰好是边DC的中点,那么的值是.【考点】R2:旋转的性质;LB:矩形的性质.【分析】根据旋转的性质得到BE=EN,EM=EF,MN=BF,得到BF=FN=NM,推出四边形EFCD是矩形,根据矩形的性质得到EF=CD,由点M恰好是边DC的中点,得到DM=CD=EM,设CN=x,解直角三角形即可得到结论.【解答】解:如图,将△BEF绕着点E逆时针旋转得到△EMN,∴BE=EN,EM=EF,MN=BF,∵EF⊥BC,∴BF=FN,∴BF=FN=NM,∵EF⊥BC,∴四边形EFCD是矩形,∴EF=CD,∵点M恰好是边DC的中点,∴DM=CD=EM,∴∠DEM=30°,∴∠DME=60°,∵∠NME=90°,∴∠CMN=30°,设CN=x,∴MN=2x,CM=x,∴CD=2x,∴BF=FN=NM=2x,∴BC=5x,∴===,故答案为:.三、解答题(本大题共7小题,共78分)19.先化简,再求值:(﹣)÷,其中a=.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.【解答】解:(﹣)÷======,当a=时,原式===.20.解不等式组将其解集在数轴上表示出来,并写出这个不等式组的整数解.【考点】CC:一元一次不等式组的整数解;C4:在数轴上表示不等式的解集;CB:解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式①,得:x>3,解不等式②,得:x≤4,∴不等式组的解集为3<x≤4,解集表示在数轴上如下:则其整数解为4.21.已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AB=4,AD=8,sin∠BCD=,CE 平分∠BCD,交边AD于点E,联结BE并延长,交CD的延长线于点P.(1)求梯形ABCD的周长;(2)求PE的长.【考点】S9:相似三角形的判定与性质;LH:梯形;T7:解直角三角形.【分析】(1)过D作DF⊥BC于F,根据矩形的性质得到DF=AB=4,BF=AD=8,根据三角函数的定义得到CD=5,于是得到结论;(2)根据平行线的性质得到∠DEC=∠BCE,根据角平分线的定义得到∠DCE=∠BCE,等量代换得到∠DEC=∠DCE,于是得到DE=CD=5,由勾股定理得到BE==5,根据相似三角形的性质即可得到结论.【解答】解:(1)过D作DF⊥BC于F,则四边形ABFD是矩形,∴DF=AB=4,BF=AD=8,∵sin∠BCD==,∴CD=5,∴CF=3,∴梯形ABCD的周长=4+8+3+5+8=27;(2)∵AD∥BC,∴∠DEC=∠BCE,∵CE平分∠BCD,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=CD=5,∴AE=3,∴BE==5,∵DE∥BC,∴△PED∽△PBC,∴,即,∴PE=.22.王阿姨销售草莓,草莓成本价为每千克10元,她发现当销售单价为每千克至少10元,但不高于每千克20元时,销售量y(千克)与销售单价x(元)的函数图象如图所示:(1)求y关于x的函数解析式,并写出它的定义域;(2)当王阿姨销售草莓获得的利润为800元时,求草莓销售的单价.【考点】HE:二次函数的应用;AD:一元二次方程的应用.【分析】(1)直接利用待定系数法求出一次函数解析式即可;(2)利用利润=销量×每千克利润,进而求出答案.【解答】解:(1)设y关于x的函数解析式为:y=kx+b,将(15,90),(10,100),代入得:,解得:,故y关于x的函数解析式为:y=﹣2x+120(10≤x≤20);(2)由题意可得:800=(﹣2x+120)(x﹣10),解得:x1=20,x2=50(不合题意舍去),答:王阿姨销售草莓获得的利润为800元时,草莓销售的单价为20元.23.已知:如图,在Rt△ABC中,∠ACB=90°,点D在边AC上,点E是BD的中点,CE的延长线交边AB于点F,且∠CED=∠A.(1)求证:AC=AF;(2)在边AB的下方画∠GBA=∠CED,交CF的延长线于点G,联结DG,在图中画出图形,并证明四边形CDGB是矩形.【考点】S9:相似三角形的判定与性质;LC:矩形的判定.【分析】(1)只要证明∠CDE=∠ECD,∠CDE=∠AFC即可解决问题.(2)只要证明CG=BD,CE=EG,DE=EB即可.【解答】(1)证明:∵∠BCD=90°,DE=EB,∴EC=ED=EB,∴∠EDC=∠ECD,∵∠CED+∠CDE+∠DCE=180°,∠A+∠DCE+∠AFC=180°,又∵∠CED=∠A,∴∠CDE=∠AFC,∴∠AFC=∠ACF,∴AC=AF.(2)解:图象如图所示.∵∠CED=∠ABG,∠CED=∠A,∴∠A=∠ABG,∴AC∥BG,∴∠ECD=∠BGE,在△CED和△GEB中,,∴△CED≌△GEB,∴CE=EG,∴CE=DE=EB,∴CG=BD,CE=EG,DE=EB,∴四边形CDGB是平行四边形,∵BD=CG,∴四边形CDGB是矩形.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c经过点A(3,0)和点B(2,3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1)求这条抛物线的表达式及对称轴;(2)联结AB、BC,求∠ABC的正切值;(3)若点D在x轴下方的对称轴上,当S△DBC=S△ADC时,求点D的坐标.【考点】HA:抛物线与x轴的交点;H8:待定系数法求二次函数解析式;T7:解直角三角形.【分析】(1)把A(3,0)和点B(2,3)代入y=﹣x2+bx+c,解方程组即可解决问题.(2)如图,作BE⊥OA于E.只要证明△AOC≌△BEA,推出△ABC是等腰直角三角形,即可解决问题.(3)如图过点C作CD∥AB交对称轴于D,则S△DBC=S△ADC,先求出直线AC的解析式,再求出直线CD的解析式即可解决问题.【解答】解:(1)把A(3,0)和点B(2,3)代入y=﹣x2+bx+c得到,解得,∴抛物线的解析式为y=﹣x2+2x+3,对称轴x=1.(2)如图,作BE⊥OA于E.∵A(3,0),B(2,3),tan∠CAO=,∴OC=1,∴BE=OA=3,AE=OC=1,∵AEB=∠AOC,∴△AOC≌△BEA,∴AC=AB,∠CAO=∠BAE,∵∠ABE+∠BAE=90°,∴∠CAO+∠BAE=90°,∴∠CAB=90°,∴△ABC是等腰直角三角形,∴∠ABC=45°,∴tan∠ABC=1.(3)如图过点C作CD∥AB交对称轴于D,则S△DBC=S△ADC,∵AB⊥AC,AB∥CD,∴AC⊥CD,∵直线AC的解析式为y=x﹣1,∴直线CD的解析式为y=﹣3x﹣1,当x=1时,y=﹣4,∴点D的坐标为(1,﹣4).25.已知:如图,选段AB=4,以AB为直径作半圆O,点C为弧AB的中点,点P为直径AB 上一点,联结PC,过点C作CD∥AB,且CD=PC,过点D作DE∥PC,交射线PB于点E,PD 与CE相交于点Q.(1)若点P与点A重合,求BE的长;(2)设PC=x, =y,当点P在线段AO上时,求y与x的函数关系式及定义域;(3)当点Q在半圆O上时,求PC的长.【考点】MR:圆的综合题.【分析】(1)如图1中,连接OC.只要证明△AOC是等腰直角三角形即可.(2)由PC=x,OC=2,可得OP=,OE=x﹣,由四边形PCDE是菱形,推出PD⊥EC,CQ=QE,PQ=QD,由==y,推出tan∠PEQ==,由此即可解决问题.(3)由点Q在⊙O上,∠CQP=90°,推出∠CQP所以对的弦CM是直径,由∠M+∠OPM=90°,∠QPE+∠QEP=90°,∠OPM=∠QPE,推出∠M=∠QEP,易知∠PCM=∠M,∠PCQ=∠PEQ,推出∠PCO=∠PCQ=∠CEO=30°,由此即可解决问题.【解答】解:(1)如图1中,连接OC.∵=,∴CO⊥AB,△AOC是等腰直角三角形,AC=OC=2,∵四边形ACDE是菱形,∴AE=AC=2,∴BE=AB﹣AE=4﹣2.(2)如图2中,∵PC=x,OC=2,∴OP=,OE=x﹣,∵四边形PCDE是菱形,∴PD⊥EC,CQ=QE,PQ=QD,∵==y,∴tan∠PEQ==,∴y=(2≤x≤2).(3)如图3中,∵点Q在⊙O上,∠CQP=90°,∴∠CQP所以对的弦CM是直径,∵∠M+∠OPM=90°,∠QPE+∠QEP=90°,∠OPM=∠QPE,∴∠M=∠QEP,易知∠PCM=∠M,∠PCQ=∠PEQ,∴∠PCO=∠PCQ=∠CEO=30°,在Rt△POC中,PC=OC÷cos30°=.。
图2 2017学年奉贤区调研测试 九年级数学试卷 2018.04〔总分值150分,考试时间100分钟〕考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题〔本大题共6题,每题4分,总分值24分〕1.以下二次根式中,与a 是同类二次根式的是〔▲〕〔A 〕2a ; 〔B 〕a 2; 〔C 〕a 4; 〔D 〕a +4.2.某班要推选学生参加学校的“诗词达人”比赛,有7名学生报名参加班级选拔赛,他们的选拔赛成绩各不相同,现取其中前3名参加学校比赛.小红要判断自己能否参加学校比赛,在知道自己成绩的情况下,还需要知道这7名学生成绩的〔▲〕 〔A 〕众数; 〔B 〕中位数; 〔C 〕平均数; 〔D 〕方差.3.以下四个不等式组中,其中一个不等式组的解集在数轴上的正确表示如图1所示,这个不等式组是〔▲〕〔A 〕⎩⎨⎧->≥;,32x x 〔B 〕⎩⎨⎧-<≤;,32x x 〔C 〕⎩⎨⎧-<≥;,32x x 〔D 〕⎩⎨⎧->≤.32x x ,4.如果将直线l 1:22-=x y 平移后得到直线l 2:x y 2=,那么以下平移过程正确的选项是〔▲〕〔A 〕将l 1向左平移2个单位; 〔B 〕将l 1向右平移2个单位;〔C 〕将l 1向上平移2个单位; 〔D 〕将l 1向下平移2个单位.5.将一把直尺和一块含30°和60°角的三角板ABC 按如图2所示的位置放置,如果∠CDE =40°,那么∠BAF 的大小为〔▲〕〔A 〕10°; 〔B 〕15°;〔C 〕20°; 〔D 〕25°. 6.直线AB 、CD 相交于点O ,射线 OM 平分∠AOD ,点P 在射线OM 上〔点P 与点O 不重 合〕,如果以点P 为圆心的圆与直线AB 相离,那么圆P 与直线CD 的位置关系是〔▲〕 〔A 〕相离; 〔B 〕相切; 〔C 〕相交; 〔D 〕不确定.图1二、填空题〔本大题共12题,每题4分,总分值48分〕7.计算:=-aa 211▲. 8.如果822=-b a ,且4=+b a ,那么b a -的值是▲. 9.方程242=-x 的根是▲.10.已知反比例函数)0(≠=k xk y ,在其图像所在的每个象限内,y 的值随x 的值增大而减 小,那么它的图像所在的象限是第▲象限.11.如果将抛物线22y x =平移,使平移后的抛物线顶点坐标为〔1,2〕,那么所得新抛物线的表达式是 ▲.12.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有▲本.13.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是▲.14.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图3所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休 日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的▲〔填百分数〕 .15.如图4,在梯形ABCD 中,AD //BC ,BC=2AD ,E 、F 分别是边AD 、BC 的中点,设a AD =, b AB =,那么EF 等于 ▲〔结果用a 、b 的线性组合表示〕.16.如果一个矩形的面积是40,两条对角线夹角的正切值是34,那么它的一条对角线长是▲. 17.已知正方形ABCD ,AB =1,分别以点A 、C 为圆心画圆,如果点B 在圆A 外,且圆A与圆C 外切,那么圆C 的半径长r 的取值范围是▲.18.如图5,将△ABC 的边AB 绕着点A 顺时针旋转)900(︒<<︒αα得到AB ’,边AC 绕 着点A 逆时针旋转)900(︒<<︒ββ得到AC ’,联结B ′C ′.当︒=+90βα时,我们称△A B ′C ′ 是△ABC 的“双旋三角形”.如果等边△ABC 的边长为a ,那么它的“双旋三角形”的面 积是▲〔用含a 的代数式表示〕.图4 A B D F E C 图3 B C 图5 AB ′C ′三、解答题〔本大题共7题,总分值78分〕19.〔此题总分值10分〕 计算:1212)33(8231)12(--+++-.20.〔此题总分值10分〕解方程组:⎩⎨⎧=++=+.12,2222y xy x y x21.〔此题总分值10分,每题总分值各5分〕已知:如图6,在△ABC 中,AB =13,AC=8,135cos =∠BAC ,BD ⊥AC ,垂足为点D ,E 是BD 的中点,联结AE 并延长,交边BC 于点F .(1) 求EAD ∠的余切值;(2) 求BF CF 的值. 22.〔此题总分值10分,第(1)小题总分值4分,第(2)小题总分值6分〕 某学校要印刷一批艺术节的宣传资料,在需要支付制版费100元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件.甲印刷厂提出:所有资料的印刷费可按9折收费;乙印刷厂提出:凡印刷数量超过200份的,超过部分的印刷费可按8折收费.〔1〕设该学校需要印刷艺术节的宣传资料x 份,支付甲印刷厂的费用为y 元,写出y 关于x 的函数关系式,并写出它的定义域;〔2〕如果该学校需要印刷艺术节的宣传资料600份,那么应该选择哪家印刷厂比较优惠?23.〔此题总分值12分,每题总分值各6分〕已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD ,点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A .〔1〕求证:B 是EC 的中点;〔2〕分别延长CD 、EA 相交于点F ,假设EC DC AC ⋅=2,求证:FC AC AF AD ::=.图6A B CDE FA C D B24.〔此题总分值12分,每题总分值各4分〕已知平面直角坐标系xOy 〔如图8〕,抛物线)0(3222>++-=m m mx x y 与x 轴交于点A 、B 〔点A 在点B 左侧〕,与y 轴交于点C ,顶点为D ,对称轴为直线l ,过点C 作直线l 的垂线,垂足为点E ,联结DC 、〔1〕当点C 〔0,3〕时,① 求这条抛物线的表达式和顶点坐标;② 求证:∠DCE=∠BCE ;〔2〕当CB 平分∠DCO 时,求m 的值.25.〔此题总分值14分,第(1)小题总分值5分,第(2)小题总分值5分,第(3)小题总分值4分〕已知:如图9,在半径为2的扇形AOB 中,∠AOB=90°,点C 在半径OB 上,AC 的垂直平分线交OA 于点D ,交弧AB 于点E ,联结BE 、CD .〔1〕假设C 是半径OB 中点,求∠OCD 的正弦值;〔2〕假设E 是弧AB 的中点,求证:BC BO BE ⋅=2;〔3〕联结CE ,当△DCE 是以CD 为腰的等腰三角形时,求CD 的长.图8 图9 AB C DOE 备用图 A B O 备用图 A B O奉贤区初三调研考数学卷参考答案 201804一 、选择题:〔本大题共8题,总分值24分〕1.C ; 2.B ; 3.D ; 4.C ; 5.A ; 6.A .二、填空题:〔本大题共12题,总分值48分〕7.a21; 8.2; 9.4=x ; 10.一、三; 11.2)1(22+-=x y ; 12.28; 13.83; 14.28%; 15.b a +21; 16.10; 17.21-2<<r ; 18.241a . 三.〔本大题共7题,总分值78分〕19. 〔此题总分值10分〕 计算:1212)33(8231)12(--+++-. 解原式=32223223-+-+-. ……………………………………………各2分 =23-. ……………………………………………………………………………2分20.〔此题总分值10分〕解方程组:⎩⎨⎧=++=+②①.12,2222y xy x y x解:将方程②变形为1)2=+y x (,得 1=+y x 或1-=+y x …………………………3分 由此,原方程组可以化为两个二元一次方程组:⎩⎨⎧=+=+;1,22y x y x⎩⎨⎧-=+=+.1,22y x y x ………3分 分别解这两个二元一次方程组,得到原方程组的解是:⎩⎨⎧==;0,111y x ⎩⎨⎧-==.4,322y x ………4分 21. 〔此题总分值10分,每题总分值各5分〕〔1〕∵BD ⊥AC ,∴∠ADB =90°. 在Rt △ADB 中,135cos =∠BAC ,AB =13, ∴513513cos =⨯=∠⋅=BAC AB AD .………………………………………………2分 ∴1222=-=AD AB BD .……………………………………………………………1分 ∵E 是BD 的中点,∴DE=6.在Rt △ADE 中,65cot ==∠DE AD EAD . …………………………………………2分 即EAD ∠的余切值是65. 〔2〕过点D 作DQ //AF ,交边BC 于点Q , ………………………………………1分 ∵AC =8, AD =5, ∴CD =3.∵DQ//AF ,∴53==AD CD FQ CQ .………………………………………………………2分∵E 是BD 的中点,EF //DQ ,∴BF =FQ . ……………………………………1分 ∴85=CF BF .……………………………………………………………………………1分 22.〔此题总分值10分,第(1)小题总分值4分,第(2)小题总分值6分〕解:〔1〕由题意可知, %903.0100⨯+=x y ,……………………………………2分 ∴y 与x 之间的函数关系式是:x y 27.0100+=,………………………………1分 它的定义域是:0>x 且x 为整数.…………………………………………………1分 〔2〕当600=x 时,支付甲印刷厂的费用:26260027.0100=⨯+=y 〔元〕.…2分 支付乙印刷厂的费用为:256400%803.02003.0100=⨯⨯+⨯+〔元〕.………3分 ∵256<262,∴当该学校需要印刷艺术节的宣传资料600份时,应该选择乙印刷厂比较优惠.…1分23.〔此题总分值12分,每题总分值各6分〕证明:〔1〕∵DC ∥AB ,∴∠DCB =∠CAB . ……………………………………………1分 ∵AC 平分∠BCD ,∴∠DCB =∠BCA .∴∠CAB =∠BCA . ………………………………………………………………………1分 ∴BC =BA . ………………………………………………………………………………1分 ∵EA ⊥AC ,∴∠CAB +∠BAE=90°,∠BCA +∠E=90°. ∴∠BAE =∠E . …………1分 ∴BA =BE . …………………………………………………………………………………1分 ∴BC =BE ,即B 是EC 的中点. ………………………………………………………1分 〔2〕∵EC DC AC ⋅=2,∴AC EC DC AC ::=.∵∠DCA =∠ACE ,∴△DCA ∽△ACE . ………………………………………………2分 ∴EC AC AE AD ::=.……………………………………………………………………1分 ∵∠FCA =∠ECA ,AC=AC ,∠F AC =∠EAC ,∴△FCA ≌△ECA . …………………2分 ∴AE =AF ,EC =FC .∴FC AC AF AD ::=. …………………………………………………………………1分24.〔此题总分值12分,每题4分〕〔1〕①由抛物线)0(3222>++-=m m mx x y 经过点C 〔0,3〕可得:332=m ,∴ 1±=m 〔负数不符合题意,舍去〕.………………………………………………1分 ∴抛物线的表达式:322++-=x x y .………………………………………………1分 ∴顶点坐标D 〔1,4〕.…………………………………………………………………2分 ②由抛物线322++-=x x y 与x 轴交于点A 、B 〔点A 在点B 左侧〕,可得B 〔3,0〕,对称轴l 是直线1=x ,………………………………………………1分 ∵CE ⊥直线l ,∴E 〔1,3〕,即DE=CE=1.∴在Rt △DEC 中,1tan ==∠CEDE DCE . ∵在Rt △BOC 中,1tan ==∠BO CO OBC , ∴OBC DCE ∠=∠=45°.………………………………………………………………2分 ∵CE //OB ,∴OBC BCE ∠=∠.∴∠DCE=∠BCE . ………………………………………………………………………1分(2) 由抛物线)0(3222>++-=m m mx x y 与x 轴交于点A 、B 〔点A 在点B 左侧〕,与y 轴交点C ,顶点为D ,对称轴为直线l ,可得:)4,(2m m D ,)3,0(2m C ,)0,3(m B ,)3,(2m m E .∴2m DE =,m CE =,23m CO =,m BO 3=.…………………………………1分在Rt △DEC 中,m mm CE DE DCE ===∠2tan . 在Rt △BOC 中,m mm BO CO OBC ===∠33tan 2. ∵∠DCE 、∠OBC 都是锐角,∴∠DCE =∠OBC .…………………………………1分 ∵CE //OB ,∴OBC BCE ∠=∠.∴∠DCB=2∠BCE=2∠OBC .∵CB 平分∠DCO , ∴∠OCB=∠DCB=2∠OBC .∵∠OCB+∠OBC=90°,∴∠OBC=30°.……………………………………………1分 ∴33tan =∠OBC ,∴33=m . …………………………………………………1分25.〔此题总分值14分,第〔1〕小题5分,第〔2〕小题5分,第〔3〕小题4分〕 〔1〕∵C 是半径OB 中点,BO =2,∴OC=1.∵DE 垂直平分AC ,∴AD=CD .………………………………………………………1分 设AD =a ,则a DO -=2,a DC =,在Rt △DOC 中,222DC OC DO =+,即2221)2a a =+-(.解得:45=a . …2分 ∴43452=-=DO . 在Rt △DOC 中,53sin ==∠DC DO OCD .……………………………………………2分 即∠OCD 的正弦值是53.〔2〕联结AE 、EC 、EO . ∵E 是弧AB 的中点,∴AE=BE . ……………………………………………………1分 ∵DE 垂直平分AC ,∴AE=EC . ……………………………………………………1分 ∴BE=EC . ∴∠EBC =∠ECB .∵OE=OB , ∴∠EBC =∠OEB . ……………………………………………………1分 ∴∠ECB=∠OEB .又∵∠CBE =∠EBO ,∴△BCE ∽△BEO . ……………………………………………1分 ∴BOBE BE BC = .∴BC BO BE ⋅=2. ……………………………………………………1分 〔3〕联结AE 、OE ,由△DCE 是以CD 为腰的等腰三角形可得:①当CD=ED 时,∵CD=AD ,∴ED=AD .∴∠DAE =∠DEA .∵OA=OE ,∴∠DAE =∠OEA .∴点D 与点O 重合,点C 与点B 重合.∴CD=BO=2. …………………………………………………………………………2分 ②当CD=CE 时,∵CD=AD ,CE =AE ,∴CD=AD =CE =AE .∴四边形ADCE 是菱形,∴AD//EC .∵∠AOB=90°,∴∠COE=90°.设CD =a ,在Rt △COE 中,22224a EC EO CO -=-=.在Rt △DOC 中,22222)2(a a DO CD CO --=-=.∴222)2(4a a a --=-. 整理得 0842=-+a a ,解得 232-±=a 〔负数舍去〕. ∴CD =232-. ………………………………………………………………………2分 综上所述,当CD 的长是2或232-时,△DCE 是以CD 为腰的等腰三角形.。
上海市奉贤区2017届九年级数学4月调研测试题(二模)(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分) 1、2的倒数是( )A 、 2B 、 -2C 、 22D 、 -222、下列算式的运算为2m 的是( )A 、42m m -⋅B 、63m m ÷ C 、 21)(-m D 、24m m -3、直线y =(3-π)x 经过的象限是( )A 、 一、二象限B 、 一、三象限C 、 二、三象限D 、 二、四象限4、李老师用手机软件记录了某个月(30天)每天走路的步数(单位:万步)它将记录的结果绘制成了如图一所示的统计图,在李老师每天走路的步数这组数据中,众数与中位数分别为( ) A 、 与 B 、 与1.35 C 、 与 D 、 与5、小明用如图2所示的方法画出了△ABC 全等的△DEF ,他的具体画法是:①画射线DM ,在射线DM 上截取DE =BC ; ②以点D 为圆心,BA 长为半径画弧,以E 为圆心,CA 长为半径画弧,两弧相交于点F ;③联结FD 、FE ; 这样△DEF 就是所要画的三角形,小明这样画的依据是全等三角形判定方法中的( )A 、 边角边B 、 角边角C 、 角角边D 、 边边边6、已知两圆相交,它们的圆心距为3,一个圆的半径是2,那么另一个圆的半径长可以是( ) A 、 1 B 、 3 C 、 5 D 、7 二、填空题:(本大题共12题,每题4分,满分48)7、计算:(-1)2017+02-4= ;8、函数y =x +2的定义域是 ; 9、方程x =-x 的解是 ;10、如果抛物线y =a 2x -3的顶点是它的最低点,那么a 的取值范围是 ;11、如果抛物线32-=ax y 的顶点是它的最低点,那么a 的取值范围是 ;12、如果点P (m -3,1)在反比例函数xy 1=的图像上,那么m 的值是 ; 13、学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“试卷默写”的试题4个.小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是 ; 14、为了解某区3600名九年级学生的体育训练情况,随机抽取了区内200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格,并将测试结果绘制成了如图所示的统计图.由此估计全区九年级体育测试成绩可以达到优秀的人数约为 ;在梯形ABCD 中,AD21AB a →→=DC b →→=BC →a →b →ABC ∆()ABBCA A A T =∠∠=的邻边(腰)的对边(底边):T (600)=1,那么T (1200)= ;18、如图,矩形ABCD ,点E 是边AD 上一点,过点E 作EF ⊥BC ,垂足为点F ,将BEF ∆绕着点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处,如果点M 恰好是边DC 的中点,那么ABAD的值是 。
上海市奉贤区2017届九年级数学4月调研测试题(二模)
(考试时间100分钟,满分150分)
一、选择题:(本大题共6题,每题4分,满分24分)
1、2的倒数是( )
A 、 2
B 、 -2
C 、
22 D 、 -22 2、下列算式的运算为2m 的是( )
A 、42m m -⋅
B 、63m m ÷
C 、 21)(-m
D 、2
4m m - 3、直线y =(3-π)x 经过的象限是( )
A 、 一、二象限
B 、 一、三象限
C 、 二、三象限
D 、 二、四象限
4、李老师用手机软件记录了某个月(30天)每天走路的步数(单位:万步)它将记录的结果绘制成了如图一所示的统计图,在李老师每天走路的步数这组数据中,众数与中位数分别为( ) A 、 1.2与1.3 B 、 1.4与1.35 C 、 1.4与1.3 D 、 1.3与1.3
5、小明用如图2所示的方法画出了△ABC 全等的△DEF ,他的具体画法是:①画射线DM ,在射线DM 上截取DE =BC ; ②以点D 为圆心,BA 长为半径画弧,以E 为圆心,CA 长为半径画弧,两弧相交于点F ;③联结FD 、FE ; 这样△DEF 就是所要画的三角形,小明这样画的依据是全等三角形判定方法中的( )
A 、 边角边
B 、 角边角
C 、 角角边
D 、 边边边
6、已知两圆相交,它们的圆心距为3,一个圆的半径是2,那么另一个圆的半径长可以是( ) A 、 1 B 、 3 C 、 5 D 、7
二、填空题:(本大题共12题,每题4分,满分48)
7、计算:(-1)2017+0
2-4= ; 8、函数y =x +2的定义域是 ;
9、方程x =-x 的解是 ;
10、如果抛物线y =a 2
x -3的顶点是它的最低点,那么a 的取值范围是 ;
11、如果抛物线32-=ax y 的顶点是它的最低点,那么a 的取值范围是 ;
12、如果点P (m -3,1)在反比例函数x
y 1=的图像上,那么m 的值是 ; 13、学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“试卷默写”的试题4个.小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是 ;
14、为了解某区3600名九年级学生的体育训练情况,随机抽取了区内200名九年级学生进行了一次体育模拟测试,把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;
D 级:不及格,并将测试结果绘制成了如图所示的统计图.由此估计全区九年级体
育测试成绩可以达到优秀的人数约为 ;
15、在梯形ABCD 中,AD //BC ,AD =2
1BC ,设AB a →→=,DC b →→=,那么BC →等于 (结果用a →、b →
的线性组合表示);
16、如果正n 边形的内角是它的中心角的2倍,那么边数n 的值是 ;
17、在等腰ABC ∆中,当顶角A 的大小确定时,它的对边(即底边BC )与邻边(即腰AB 或AC )的比值也确定了,我们把这个比值记作T (A ),即()AB BC A A A T =∠∠=
的邻边(腰)的对边(底边).例:T (600)=1,那么T (1200)= ;
18、如图,矩形ABCD ,点E 是边AD 上一点,过点E 作EF ⊥BC ,垂足为点F ,将BEF ∆绕着点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处,如果点M 恰好是边DC 的中点,那么
AB
AD 的值是 。
三、解答题(本大题共7题,满分78分)
19、(本题满分10分) 先化简,在求值:1
221122-÷⎪⎭⎫
⎝⎛-+--+a a a a a a ,其中5=a
20、(本题满分10分) 解不等式组7(1)4221253
x x x x ->+⎧⎪+⎨>-⎪⎩ ,将其解集在数轴上表示出来,并写出这个不等式组的整数解
.。