七年级上期中数学试卷四套
- 格式:doc
- 大小:309.87 KB
- 文档页数:15
2022-2023学年重庆一中七年级(上)期中数学试卷一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了1.在﹣2、﹣1、0、1这四个数中,最小的数是()A.1B.0C.﹣1D.﹣22.如图,该几何体由6个大小相同的正方体组成,从正面看到该几何体的形状图是()A.B.C.D.3.如图,B地在A地的()A.北偏东50°方向B.南偏西40°方向C.北偏东40°方向D.东偏北50°方向4.从六边形的一个顶点出发,可连出的对角线条数为()A.3B.4C.5D.65.下列运算正确的是()A.3xy﹣xy=2B.﹣(a﹣b)=﹣a﹣bC.﹣32=9D.6.下列说法正确的是()A.连接两点间的线段叫做这两点间的距离B.延长射线AB至点CC.x3﹣abx2﹣ab是四次三项式D.单项式的系数为﹣37.若﹣2a m+5b2与a4b2n的和仍为单项式,则(m﹣n)3的值为()A.8B.6C.﹣6D.﹣88.如图,图①中有4个黑点,图②中有9个黑点,图③中有14个黑点,…,按这样的规则排列下去,则图⑨中的黑点个数为()A.39B.44C.49D.549.已知1<a<4,则|4﹣a|+|1﹣a|的化简结果为()A.5﹣2a B.﹣3C.2a﹣5D.310.《孙子算经》是中国古代重要的数学著作.书中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,则可列方程为()A.3x+3(100﹣x)=100B.x+3(100﹣x)=100C.D.3x+(100﹣x)=10011.将连续的偶数2,4,6,8,…排成如图所示的数表.若将十字形框上下左右移动,则十字形框中的七个数的和可能为()A.390B.391C.392D.39312.关于x的多项式:A n=a n x n+a n﹣1x n﹣1+a n﹣2x n﹣2+…+a2x2+a1x+a0,其中n为正整数.各项系数各不相同且均不为0.交换任意两项的系数,得到的新多项式我们称为原多项式的“亲缘多项式”.当n=3时,A3=a3x3+a2x2+a1x+a0.①多项式A3共有6个不同的“亲缘多项式”;②多项式A n共有个不同的“亲缘多项式”;③若多项式A n=(1﹣2x)n,则A n的所有系数之和为1;④若多项式A4=(2x﹣1)4,则a4+a2+a0=41.以上说法正确的有()个.A.l B.2C.3D.4二、填空题:(本大题共6个小题,每小题4分,共24分)请把下列各题的正确答案填写13.2022年11月1日,红沿河核电站核能供暖示范项目以大连市瓦房店红沿河镇为试点,规划供热面积约242000平方米,其中242000用科学记数法表示为.14.已知关于x的方程(m﹣1)x|m|﹣3=0是一元一次方程,则m=.15.如图,当时钟指向9点整时,时针与分针的较小夹角为90度,当时钟指向上午9:10时,时针与分针的较小夹角为度.16.如图,一个矩形场地的四个角被隔出四个半径相等的扇形阴影,根据图中所给出的数据(单位:米),用含a、b的式子表示空白部分的面积为平方米.(结果保留π)17.已知A=2x2+ax﹣7,B=bx2﹣x﹣.当A﹣2B的值与x无关时,a+b=.18.重庆一中初一年级为了奖励军训中表现优异的学生,决定购买文具作为奖励.某文具店有A、B、C三种文具套装,C套装的价格为奇数,B套装比A套装每套贵a元,且一套A套装的价格与一套B套装的价格和不小于45元,若购买20套A套装,30套B套装,需要花费1170元.根据数据统计,年级最终决定购买A、B两种文具套装一共105套,同时还加购了一套C文具套装(A套装的数量不超过47套),一共花费2436元,则一套C文具套装的价格为元(三种套装的单价均为整数).三、解答题:(本大题共7个小题,共48分)请在答题卡上对应题目的位置作答.19.如图,已知线段a,b.(尺规作图,保留作图痕迹,不写作法)求作:线段AB=2a﹣b.20.计算:(1)﹣22﹣2×(﹣3)+|﹣4|;(2)×(﹣72).21.化简:(1)2x2y﹣3x2y+x2y;(2)﹣m+2(n+m)﹣(5m﹣3n).22.解方程:(1)6﹣2(x﹣1)=2(x﹣1);(2)x﹣=1﹣.23.先化简,再求值:2x2+[2y2﹣3(﹣x2+xy)]﹣2(x2﹣xy+2y2),其中|x﹣2|+(1+y)2=0.24.某核酸检测站点有A、B、C三个检测窗口,共48人排队等候.其中A窗口有(3a+2b)人,B窗口人数的2倍比A窗口人数少(a﹣2b+2)人,请用含a、b的式子表示C窗口的人数.25.如图,点C是线段AB上一点,线段AB=21cm,AC:BC=3:4,点D、E分别为线段BC、AD的中点.(1)求线段BD的长;(2)求线段EC的长.四、解答题:(本大题共3个小题,共30分)请在答题卡上对应题目的位置作答.26.一个三位自然数m,若十位数字为0且个位数字不为0,则称这个自然数为“优秀数”,交换m的百位与个位,得到一个新的三位数m′(m与m′可以相同),称为m的“卓越数”.记T(m)=||.例如:m=401,m'=104,T(401)=||=3.(1)计算T(308)=;(2)求证:任意T(m)均为整数;(3)已知一个“优秀数”m=100x+208(其中x为整数,且0≤x≤7),若T(m)能被3整除,求出所有满足条件的数m.27.如图,含有60°的直角三角板ABC(∠BAC=60°)的边AC在直线DE上,∠BAF=2∠F AD.(1)∠F AD=;(2)如图(2),射线AG平分∠BAD,射线AH平分∠CAF,求∠GAH的度数;(3)如图(3),将三角板ABC绕点A以每秒6°的速度沿逆时针方向旋转t秒,AB旋转以后的射线记为AB′,AC旋转以后的线段记为AC′,当AB′落在AD上时停止转动,在运动的过程中,射线AG′平分∠B′AD,射线AH′平分∠C′AF,当∠DAH′=3∠F AG′+60°时,求t的值.28.W商场10月份用72000元同时购进A、B两款服装共350件,其中A款服装每件进价180元,B款服装每件进价240元.(1)求商场10月份分别购进A,B两款服装各多少件;(2)商场决定将A、B两款服装按2:3的价格售出,销售一段时间后A款服装售出了,B款服装售出了,剩下的A,B两款服装恰好数量相等,为尽快售完,商场将B款服装的售价提高50%,同时推出买一送一活动,即买一件B款服装送一件A款服装,直至两款服装全部售完,经结算10月份售出A,B两款服装共获利40%.那么B款服装的原售价是多少元?(3)由于“双十一购物狂欢节”,京东,天猫等电商平台推出了预售,满减,送券,领红包等优惠活动,11月份该商场所有商品销量均减少.为吸引顾客,11月份商场对全场打折促销.店长根据市场调查推出两种促销方案如下(两种方案不能叠加享受):方案一:顾客所购商品的原价总和每满300元送60元的现金券,无论用券与否原总价打九折;若有券,折后可用券抵扣.例如:某人购物总和为620元,则他实际付款为620×0.9﹣2×60=438(元).方案二:原价总和优惠标准不超过300元的部分九折优惠超过300元但不超过600元的部分七折优惠超过600元但不超过900元的部分六折优惠超过900元的部分五折优惠例如:某人购物原价总和1000元,则他实际付款:300×0.9+300×0.7+300×0.6+100×0.5=710(元).已知小依选择方案一购物,小钟选择方案二购物,他们所购物品原价总和为1500元,且小钟所购物品的原总价高于小依.店员建议他们两人组合,一次性购买所有物品,并且选择最优惠的购买方案,这样比两人各自购物实际付款总额少84元.那么小依与小钟各自所购物品的原总价分别是多少元?。
七年级数学上册期中考试卷及答案人教版人教版数学七年级上学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1. 比小的数是 ( )A. B. C. D.2. 在式子 , , , , , 中 , 整式有 ( )A. 个B. 个C. 个D. 个3. 算式的值为 ( )A. B. C. D.4. 若和相减的结果是, 则的值是 ( ) A. B. C.D.5. 下列计算正确的是 ( )A.B.C.D.6. 若 , 互为相反数 , , 互为倒数 ,.则的值为 ( )A. B. C. 或 D.7. 若, 则 a-b 的值是 ( ) A. B. C.D. 8. 如图 , 在数轴上 , 点 , 所表示的数分别为,, 则 , 两点之间表示整数的点一共有 ( )A. 个B. 个C. 个D. 个9. 按如图所示程序流程计算 , 若开始输入的值.则最后输出的结果是 ( )A. B. C. D.10. 如图 , 把张形状大小完全相同的小长方形卡片不重叠地放在一个底面为长方形的盒子底部 , 盒子底面未被覆盖的部分用阴影部分表示则图中两块阴影部分的周长的和是 ( )A.B.C.D.二、填空题(每小题3分,共15分)11.的相反数是 ____ . 12. 多项式的次数是____. 13. 目前 , 第五代移动通信技术正在阔步前行 , 按照产业间关联关系测算 , 2020 年 ,间接拉动增长将超过亿元数据“亿”用科学记数法表示为_____. 14. 已知数 , 在数轴上的位置如图所示 , 则 , , ,的大小关系是____.15. 观察下列式子:, , 它们是按照一定规律排列的 , 依照此规律 , 则第个式子为 _______ .三.解答题(本大题共8个小题,满分75分)16. 计算:( 1 ); ( 2 ).17. 化简:( 1 ); ( 2 ). 18. 化简并求值:, 其中,.19. 小王在新藏公路某路段设置了一个加水站 , 他每天开着加水车沿东西方向给过路的汽车加水.如果约定向西为正.向东为负 , 加水车当天的行驶记录如下 ( 单位:千米 ) :+8 , -9 , +7 , -4 , -3 , +5 , -6 , -8 , +6 , +7 .( 1 ) 加水车最后到达地方在出发点的哪个方向 ? 距出发点多远 ?( 2 ) 若加水车行驶过程中每千米耗油量为升 , 求这天加水车共耗油多少升 ?20. 小刚同学做一道题:“已知两个多项式 , , 计算.”小刚同学误将看作, 求得结果.若多项式. ( 1 ) 请你帮助小刚同学求出的正确答案; ( 2 ) 若的值与的取值无关 , 求的值.21. 学校让综合实践活动课外学习小组参与学校校办工厂的足球生产活动 , 在工人师傅的指导和帮助下 , 综合实践活动课外学习小组一周计划生产 700 个足球 , 平均每天生产 100 个 , 由于各种原因实际每天生产产量与计划量相比有出入 , 下表是某周的生产情况 ( 超产为正、减产为负 ) :( 1 ) 根据记录可知前四天共生产个;( 2 ) 产量最多的一天比产量最少的一天多生产个;( 3 ) 该校办工厂实行每周计件奖励制 , 生产一个足球奖励给综合实践活动课外学习小组元.超额完成任务超额部分每个再奖元 , 那么该校的综合实践活动课外学习小组这一周得到的奖励总额是多少元 ?22. 某校准备到服装超市购一批演出服装 ( 男 , 女服装价格相同 ) 以供文艺汇演使用 , 一套服装定价元 , 领结 ( 花 ) 每条定价元 , 适逢新中国成立周年 , 服装超市开展促销活动 , 向客户提供两种优惠方案:①买一套服装送一条领结 ( 花 ) ;②服装和领结 ( 花 ) 都按定价的销售. 现该校要到该服装超市购买服装套 , 领结 ( 花 ) 条.( 1 ) 若该校按方案①购买.需付款 _______ 元 ( 用含的式子表示 ) ;若该校按方案②购买.需付款元 ( 用含的式子表示 ) ;( 2 ) 若, 通过计算说明此时按哪种方案付款比较合算; ( 3 ) 当时 , 你能给出一种更为省钱的购买方案吗 ? 试写出你的购买方案 , 并计算出需付款多少元.23. ( 1 ) 如图 , 点 M 在数轴上对应数为 -4 .点 N 在点 M 右边距 M 点 6 个单位长度 , 求点 N 对应的数;( 2 ) 在 ( 1 ) 的条件下.保持 N 点静止不动 , 点 M 沿数轴以每秒 1 个单位长度的速度匀速向右运动 , 经过多长时间 M , N 两点相距 4 个单位长度;( 3 ) 若已知点 M , N 在数轴上对应的数分别为 -6 、 2 .点 M 以每秒 3 个单位长度的速度沿数轴向右运动 , N 以每秒 2 个单位长度的速度同时沿数轴向右运动 , 当 M , N 两点相距个单位长度时 , 请直接写出点 M 所对应的数.初一数学21个必考知识点1.数轴(1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴.数轴的三要素:原点,单位长度,正方向。
华师版七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元 2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a2b+3ab2-2b3+a3按a的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m2,则用科学记数法表示FAST的反射面总面积约为____________m2.(精确到万位)13.若|x+2|+(y-3)4=0,则x y=________.14.如果规定符号“*”的意义是a*b=aba+b,则[2*(-3)]*(-1)的值为________.15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.七年级数学上册期中测试卷一、选择题(每题3分,共30分)1.现实生活中,如果收入1 000元记作+1 000元,那么-800元表示( )A .支出800元B .收入800元C .支出200元D .收入200元 2.据国家统计局公布数据显示:2020年我国粮食总产量为13 390亿斤,比上年增加113亿斤,增长0.9%,我国粮食生产喜获“十七连丰”.将13 390亿用科学记数法表示为( ) A .1.339×1012B .1.339×1011C .0.133 9×1013D .1.339×10143.⎪⎪⎪⎪⎪⎪-16的相反数是( ) A.16 B .-16C .6D .-64.在-6,0,-2,4这四个数中,最小的数是( )A .-2B .0C .-6D .45.a ,b 两数在数轴上对应点的位置如图所示,下列结论中正确的是( )(第5题)A .a <0B .a >1C .b >-1D .b <-16.数轴上与表示-1的点距离10个单位的点表示的数是( )A .10B .±10C .9D .9或-117.已知|a |=-a ,则a -1的绝对值减去a 的绝对值所得的结果是( )A .-1B .1C .2a -3D .3-2a8.计算:(-3)3×⎝ ⎛⎭⎪⎫13-59+427的结果为( ) A.23 B .2 C.103D .109.若代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,则-a +b 的值为( )A .0B .-1C .-2D .210.如果a +b +c =0,且|a |>|b |>|c |.则下列说法中可能成立的是( )A .b 为正数,c 为负数B .c 为正数,b 为负数C .c 为正数,a 为负数D .c 为负数,a 为负数二、填空题(每题3分,共15分)11.将代数式4a2b+3ab2-2b3+a3按a的升幂排列是________________________.12.被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7 140m2,则用科学记数法表示FAST的反射面总面积约为____________m2.(精确到万位)13.若|x+2|+(y-3)4=0,则x y=________.14.如果规定符号“*”的意义是a*b=aba+b,则[2*(-3)]*(-1)的值为________.15.如图①是三阶幻方(从1到9,一共九个数,每行、每列以及两条对角线上的3个数之和均相等).如图②是三阶幻方,已知此幻方中的一些数,则图②中9个格子中的数之和为________.(用含a的式子表示)(第15题)三、解答题(17题16分,22题9分,23题10分,其余每题8分,共75分) 16.将下列各数在如图所示的数轴上表示出来,并把它们用“<”号连接起来.-|-2.5|,414,-(+1),-2,-⎝⎛⎭⎪⎫-12,3.(第16题)17.计算:(1)25.7+(-7.3)+(-13.7)+7.3; (2)⎝ ⎛⎭⎪⎫-12-59+712÷⎝ ⎛⎭⎪⎫-136;(3)(-1)3+⎪⎪⎪⎪⎪⎪-12-⎝ ⎛⎭⎪⎫-32×⎝ ⎛⎭⎪⎫-23; (4)-14-(1-0.5)×13×[1-(-2)2].18.先化简,再求值:2(x 2y +3xy )-3(x 2y -1)-2xy -2,其中x =-2,y =2.19.已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 无关,求y 的值.20.小敏对算式:(-24)×⎝ ⎛⎭⎪⎫18-13+4÷⎝ ⎛⎭⎪⎫12-13进行计算时的过程如下: 解:原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫12-13……第一步 =-3+8+4×(2-3)……第二步 =5-4……第三步 =1.……第四步根据小敏的计算过程,回答下列问题:(1)小敏在进行第一步时,运用了乘法的________律;(2)她在计算时出现了错误,你认为她从第________步开始出错了; (3)请你给出正确的计算过程.21.某服装店以每套82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如下表:则该服装店在售完这30套保暖内衣后,共赚了多少钱?22.下面的图形是由边长为1的正方形按照某种规律组成的.(第22题)(1)观察图形,填写下表:图形序号①②③正方形的个数9图形的周长16(2)推测第n个图形中,正方形的个数为____________,周长为____________;(都用含n的代数式表示)(3)写出第2 020个图形的周长.23.如图,一个点从数轴上的原点开始,先向左移动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)请你在数轴上表示出A,B,C三点的位置.(2)把点C到点A的距离记为CA,则CA=________cm.(3)若点B沿数轴以3cm/s的速度匀速向右运动,经过________s后点B到点C的距离为3cm.(4)若点B沿数轴以2cm/s的速度匀速向左运动,同时点A,C沿数轴分别以1cm/s和4cm/s的速度匀速向右运动.设运动时间为t s,试探索:CA-AB的值是否会随着t的变化而改变?请说明理由.(第23题)答案一、1.A 2.A 3.B 4.C 5.D 6.D 7.B 8.B9.D 【点拨】x 2+ax +9y -(bx 2-x +9y +3)=x 2+ax +9y -bx 2+x -9y -3=(1-b )x 2+(a +1)x -3,因为代数式x 2+ax +9y -(bx 2-x +9y +3)的值恒为定值,所以1-b =0,a +1=0,解得a =-1,b =1,则-a +b =1+1=2. 10.C 【点拨】由题意可知a ,b ,c 三数中只有两正一负或两负一正两种情况,假设a ,b ,c 两负一正,要使a +b +c =0成立,则必有b <0,c <0,a >0,但题中并无此选项,故假设不成立.假设a ,b ,c 两正一负,要使a +b +c =0成立,则必有a <0,b >0,c >0,故只有选项C 符合题意.二、11.-2b 3+3ab 2+4a 2b +a 3 12.2.5×105 13.-814.-65 【点拨】[2*(-3)]*(-1)=2×(-3)2+(-3)*(-1)=6*(-1)=6×(-1)6+(-1)=-65. 15.9a -27三、16.解:在数轴上表示如图所示.(第16题)-|-2.5|<-2<-(+1)<-⎝ ⎛⎭⎪⎫-12<3<414.17.解:(1)原式=[25.7+(-13.7)]+[(-7.3)+7.3]=12+0=12.(2)原式=⎝ ⎛⎭⎪⎫-12-59+712×(-36)=18+20+(-21)=17.(3)原式=-1+12-1=-32.(4)原式=-1-12×13×(-3)=-1+12=-12. 18.解:原式=2x 2y +6xy -3x 2y +3-2xy -2=-x 2y +4xy +1.当x =-2,y =2时,原式=-(-2)2×2+4×(-2)×2+1=-8-16+1=-23.19.解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6 =15xy -6x -9.(2)由(1)知3A +6B =15xy -6x -9=(15y -6)x -9, 由题意可知15y -6=0,解得y =25. 20.解:(1)分配 (2)二(3)原式=(-24)×18+(-24)×⎝ ⎛⎭⎪⎫-13+4÷⎝ ⎛⎭⎪⎫36-26 =-3+8+4÷16 =-3+8+4×6 =-3+8+24 =29.21.解:7×(100+5)+6×(100+1)+7×100+8×(100-2)+2×(100-5)=735+606+700+784+190=3 015(元),30×82=2 460(元),3 015-2 460=555(元). 答:共赚了555元.22.解:(1)从上到下、从左往右依次填:14;22;19;28(2)5n +4; 6n +10(3)当n =2 020时,周长为6×2 020+10=12 130. 23.解:(1)如图所示.(第23题) (2)6 (3)2或4(4)CA -AB 的值不会随着t 的变化而改变.理由如下: 根据题意得CA =(4+4t )-(-2+t )=6+3t (cm), AB =(-2+t )-(-5-2t )=3+3t (cm), 所以CA -AB =(6+3t )-(3+3t )=3(cm), 所以CA -AB 的值不会随着t 的变化而改变.。
人教版七年级第一学期期中数学试卷一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.20222.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.63.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×1094.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.5.(3分)计算:8×5的结果是()A.8B.25C.40D.416.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣88.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是210.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.12.(2分)化简分数:﹣=.13.(2分)计算:(+5)+(﹣6)+(﹣4)=.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回元.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日柚子销售超过或不足计划量情况(单位:千克)+3﹣5﹣2+11﹣7+13+5(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.(参考答案与详解)一、选择题(每小题3分,共30分)1.(3分)﹣2022的相反数是()A.﹣B.C.﹣2022D.2022【解答】解:﹣2022的相反数是2022,故选:D.2.(3分)计算(﹣2)﹣(﹣4)的结果等于()A.﹣2B.2C.﹣6D.6【解答】解:(﹣2)﹣(﹣4)=﹣2+4=2,故选:B.3.(3分)截至2021年12月31日,全国共有少先队员110425000名,该数据用科学记数法表示为()A.110.425×106B.11.0425×107C.1.10425×108D.0.110425×109【解答】解:110425000=1.10425×108.故选:C.4.(3分)四位同学所画的数轴分别如下,其中正确的是()A.B.C.D.【解答】解:A选项的数轴1,2的位置不对,故不符合题意;B选项的数轴有单位长度,有正方向,有原点,故符合题意;C选项的数轴正数和负数的位置反了,不符合题意;D选项的数轴单位长度不一致,故不符合题意;故选:B.5.(3分)计算:8×5的结果是()A.8B.25C.40D.41【解答】解:8×5=×5=41.故选:D.6.(3分)某地8:00的气温是﹣2℃,15:00的气温比8:00的气温上升了5℃,则该地15:00的气温是()A.2℃B.3℃C.4℃D.5℃【解答】解:﹣2+5=3(℃),即该地15:00的气温是3℃.故选:B.7.(3分)从﹣4,5,﹣3,2中任取两个数相乘,所得积最大的是()A.﹣20B.12C.10D.﹣8【解答】解:积最大的是(﹣4)×(﹣3)=12,故选:B.8.(3分)两个有理数a,b表示在数轴上如图所示,则有理数a,b,﹣a,﹣b的大小关系是()A.a<b<﹣b<﹣a B.a<﹣a<b<﹣b C.﹣b<b<a<﹣a D.﹣b<﹣a<a<b【解答】解:由题意可知,a<b<0,∴a<b<﹣b<﹣a.故选:A.9.(3分)下列说法正确的是()A.﹣15x2y的系数是﹣15,次数是2B.多项式﹣x3﹣2x2y2+3y2有3项,次数是4C.单项式x的系数和次数都是0D.多项式4x2﹣4x2y+y2的次数是2【解答】解:A、﹣15x2y的系数是﹣15,次数是3,故A不符合题意;B、多项式﹣x3﹣2x2y2+3y2有3项,次数是4,正确,故B符合题意;C、单项式x的系数是1,次数是1,故C不符合题意;D、多项式4x2﹣4x2y+y2的次数是3,故D不符合题意,故选:B.10.(3分)新冠疫情期间,某药店对一品牌橡胶手套进行优惠促销,将原价m元的橡胶手套每盒以元售出,则以下四种说法中可以准确表达该药店促销方法的是()A.将原价打6折之后,再降低8元B.将原价降低8元之后,再打3折C.将原价降低8元之后,再打6折D.将原价打8折之后,再降低6元【解答】解:的意义是将原价打6折之后,再降低8元.故选:A.二、填空题(每小题2分,共10分)11.(2分)有理数的倒数是.【解答】解:有理数的倒数是.故答案为:.12.(2分)化简分数:﹣=﹣.【解答】解:﹣=﹣=﹣,故答案为:﹣.13.(2分)计算:(+5)+(﹣6)+(﹣4)=﹣5.【解答】解:(+5)+(﹣6)+(﹣4)=5+[(﹣6)+(﹣4)]=5+(﹣10)=﹣5.故答案为:﹣5.14.(2分)王叔叔把3000元存入银行,银行的利率存一年的是3%,存两年的是3.75%,王叔叔存了两年,到期时他取回3225元.【解答】解:3000+3000×3.75%×2=3000+225=3225(元),∴到期时他取回3225元,故答案为:3225.15.(2分)如图,搭一个三角形需要3根火柴,搭两个三角形需要5根火柴,搭三个三角形需要7根火柴,…,按这个规律,搭n个这样的三角形的需要火柴棒根数为2n+1.【解答】解:搭1个三角形需要火柴棒的根数为:3,搭2个三角形需要火柴棒的根数为:5=3+2=3+2×1,搭3个三角形需要火柴棒的根数为:7=3+2+2=3+2×2,…搭n个三角形需要火柴棒的根数为:3+2(n﹣1)=2n+1,故答案为:2n+1.三、解答题(共60分)16.(6分)计算:(﹣0.5)+3+2.75+(﹣5).【解答】解:原式=[(﹣0.5)+(﹣5.5)]+(3.25+2.75)=﹣6+6=0.17.(6分)计算:﹣22×[5﹣(﹣1)2022]+|﹣1+5|.【解答】解:﹣22×[5﹣(﹣1)2022]+|﹣1+5|=﹣4×(5﹣1)+4=﹣4×4+4=﹣16+4=﹣12.18.(6分)先化简,后求值:x2y+2(2xy2﹣3x2y)﹣3(xy2﹣2x2y+1),其中x=﹣2,y=1.【解答】解:原式=x2y+4xy2﹣6x2y﹣3xy2+6x2y﹣3=(1﹣6+6)x2y+(4﹣3)xy2﹣3=x2y+xy2﹣3,当x=﹣2,y=1时,原式=(﹣2)2×1+(﹣2)×12﹣3=4×1﹣2×1﹣3=4﹣2﹣3=﹣1.19.(6分)一甲虫从点A开始左右来回爬行8次,如果规定向右为正,向左为负,这8次爬行的记录如下:+10、﹣9、+8、﹣6、+7.5、﹣6、+8、﹣7(单位:cm).(1)求甲虫停止运动时,所在位置距A点多远?(2)如果该甲虫运动的速度是2cm/s,那么甲虫来回爬行8次一共需要多长时间?【解答】解:(1)10﹣9+8﹣6+7.5﹣6+8﹣7=10+8+7.5+8﹣9﹣6﹣6﹣7=33.5﹣28=5.5(cm),答:停止时所在位置距A点5.5cm,在A点的右方;(2)10+9+8+6+7.5+6+8+7=61.5(cm),61.5÷2=30.75(秒).答:共用30.75秒.20.(6分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期—二三四五六日+3﹣5﹣2+11﹣7+13+5柚子销售超过或不足计划量情况(单位:千克)(1)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元/千克进行柚子销售,平均运费为3元/千克,则小王第一周销售柚子一共收入多少元?【解答】解:(1)3﹣5﹣2+11﹣7+13+5+100×7=18+700=718(千克).答:小王第一周实际销售柚子的总量是718千克.(2)718×(8﹣3)=718×5=3590(元).答:小王第一周销售柚子一共收入3590元.21.(6分)小明家最近刚购置了一套商品房,如图是这套商品房的平面图(阴影部分)(单位:m).(1)请用含字母x,y的式子表示这套房子的总面积:(2)若x=5,y=8,并且房价为每平方米0.5万元,则购买这套房子共需要多少万元?Array【解答】解:(1)这套房子的总面积为:3x+xy+6y+3x=(6x+6y+xy)m2,答:这套房子的总面积为(5x+6y+xy)m2;(2)当x=5,y=8时,房子的总面积为:30+48+40=118(m2),0.5×118=59(万元),答:购买这套房子共需要59万元.22.(6分)已知A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5.(1)求A﹣3B;(2)若+|xy+1|=0,求A﹣3B的值.【解答】解:(1)∵A=3x2﹣x+2y﹣4xy,B=x2﹣2x﹣y+xy﹣5,∴A﹣3B=(3x2﹣x+2y﹣4xy)﹣3(x2﹣2x﹣y+xy﹣5)=3x2﹣x+2y﹣4xy﹣3x2+6x+3y﹣3xy+15=5x+5y﹣7xy+15;(2)∵+|xy+1|=0,∴x+y﹣=0,xy+1=0,∴x+y=,xy=﹣1,∴A﹣3B=5x+5y﹣7xy+15=5(x+y)﹣7xy+15=5×﹣7×(﹣1)+15=4+7+15=26.23.(6分)阅读材料:若点A,B在数轴上分别表示有理数a,b,则A,B两点间的距离表示为AB=|a﹣b|.例如:|x﹣3|表示的几何意义是:数轴上的有理数x对应的点与有理数3对应的点之间的距离.解决问题:根据上述材料,解答下列问题:(1)若|x﹣3|=|x+1|,请求出x的值;(2)请求出式子|x﹣3|+|x+1|的最小值.【解答】解:(1)∵|x﹣3|=|x+1|,∴x=(﹣1+3)=1;(2)由数轴得:|x﹣3|+|x+1|≤4,∴式子|x﹣3|+|x+1|的最小值为4.。
七年级数学上册期中考试卷及答案虽然在学习的过程中会遇到许多不顺心的事,但古人说得好——吃一堑,长一智。
多了一次失败,就多了一次教训;多了一次挫折,就多了一次经验。
下面给大家分享一些关于七年级数学上册期中考试卷及答案,希望对大家有所帮助。
一、选择题(每小题3分,共24分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号哦字母填入题后括号内1.如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作( )A.﹣3mB.3mC.6mD.﹣6m【考点】正数和负数.【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降6m时水位变化记作﹣6m.故选:D.【点评】考查了正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.2.在0,﹣2,5,,﹣0.3中,负数的个数是( )A.1B.2C.3D.4【考点】正数和负数.【分析】根据小于0的是负数即可求解.【解答】解:在0,﹣2,5,,﹣0.3中,﹣2,﹣0.3是负数,共有两个负数,故选:B.【点评】本题主要考查了正数和负数,熟记概念是解题的关键.注意0既不是正数也不是负数.3.在数轴上表示﹣2的点与表示3的点之间的距离是( )A.5B.﹣5C.1D.﹣1【考点】数轴.【分析】根据正负数的运算方法,用3减去﹣2,求出在数轴上表示﹣2的点与表示3的点之间的距离为多少即可.【解答】解:3﹣(﹣2)=2+3=5.所以在数轴上表示﹣2的点与表示3的点之间的距离为5.故选A【点评】此题主要考查了正负数的运算方法,关键是根据在数轴上表示﹣2的点与表示3的点之间的距离列出式子.4.|﹣ |的相反数是( )A. B.﹣ C.3 D.﹣3【考点】绝对值;相反数.【专题】常规题型.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:∵|﹣ |= ,∴ 的相反数是﹣ .故选:B.【点评】本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号,不要把相反数的意义与倒数的意义混淆.同时考查了绝对值的性质:一个负数的绝对值是它的相反数.5.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为( )A.11×104B.0.11×107C.1.1×106D.1.1×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1 时,n是负数.【解答】解:110000=1.1×105,故选:D.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.下列说法错误的是( )A.3.14×103是精确到十位B.4.609万精确到万位C.近似数0.8和0.80表示的意义不同D.用科学记数法表示的数2.5×104,其原数是25000【考点】近似数和有效数字;科学记数法—原数.【分析】根据近似数的精确度对A、B、C进行判断;根据科学记数法对D进行判断.【解答】解:A、.14×103是精确到十位,所以A选项的说法正确;B、4.609万精确到十位,所以B选项的说法错误;C、近似数0.8精确到十分位,0.80精确到百分位,所以C选项的说法正确;D、用科学记数法表示的数2.5×104,其原数为25000,所以,D 选项的说法正确.故选B.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.7.下列说法中,正确的是( )A. 不是整式B.﹣的系数是﹣3,次数是3C.3是单项式D.多项式2x2y﹣xy是五次二项式【考点】整式;单项式;多项式.【分析】利用单项式、多项式及整式的定义判定即可.【解答】解:A、是整式,错误;B、﹣的系数是﹣,次数是3,错误;C、3是单项式,正确;D、多项式2x2y﹣xy是三次二项式,错误;故选C【点评】本题主要考查了单项式、多项式及整式,解题的关键是熟记单项式、多项式及整式的定义.8.在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A.4,2,1B.2,1,4C.1,4,2D.2,4,1【考点】代数式求值.【专题】压轴题;图表型.【分析】把各项中的数字代入程序中计算得到结果,即可做出判断.【解答】解:A、把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;B、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项不合题意;C、把x=1代入得:3+1=4,把x=4代入得: =2,把x=2代入得: =1,本选项不合题意;D、把x=2代入得: =1,把x=1代入得:3+1=4,把x=4代入得: =2,本选项符合题意,故选D【点评】此题考查了代数式求值,弄清程序框图中的运算法则是解本题的关键.二、填空题(每小题3分,共21分)9.有理数中,的负整数是﹣1.【考点】有理数.【分析】根据小于零的整数是负整数,再根据的负整数,可得答案.【解答】解:有理数中,的负整数是﹣1,故答案为:﹣1.【点评】本题考查了有理数,根据定义解题是解题关键.10.如图,数轴的单位长度为1,如果R表示的数是﹣1,则数轴上表示相反数的两点是P,Q.【考点】相反数;数轴.【分析】首先根据R表示的数是﹣1,求出P、Q、T三点表示的数各是多少;然后根据相反数的含义,判断出数轴上表示相反数的两点是多少即可.【解答】解:∵R表示的数是﹣1,∴P点表示的数是(﹣3,0),Q点表示的数是(3,0),T点表示的数是(4,0),∵﹣3和3互为相反数,∴数轴上表示相反数的两点是:P,Q.故答案为:P,Q.【点评】此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”,并能求出P、Q、T三点表示的数各是多少.11.在数1,0,﹣1,|﹣2|中,最小的数是﹣1.【考点】有理数大小比较.【专题】计算题.【分析】利用绝对值的代数意义化简后,找出最小的数即可.【解答】解:在数1,0,﹣1,|﹣2|=2中,最小的数是﹣1.故答案为:﹣ 1.【点评】此题考查了有理数的大小比较,弄清有理数的比较方法是解本题的关键.12.已知|a+2|与(b﹣3)2互为相反数,则ab=﹣8.【考点】非负数的性质:偶次方;相反数;非负数的性质:绝对值.【分析】根据非负数的性质解答.有限个非负数的和为零,那么每一个加数也必为零,即若a1,a2,…,an为非负数,且a1+a2+…+an=0,则必有a1=a2=…=an=0.【解答】解:∵|a+2|与(b﹣3)2互为相反数,∴|a+2|+(b﹣3)2=0,则a+2=0,a=﹣2;b﹣3=0,b=3.故ab=(﹣2)3=﹣8.【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.13.在式子,﹣1,x2﹣3x,,中,是整式的有3个.【考点】整式.【分析】单项式和多项式统称整式,准确理解其含义再去判断是否为整式,式子,中,分母中含有字母,故不是整式.问题可求.【解答】解:式子,和x2﹣3x是多项式,﹣1是单项式,三个都是整式;,中,分母有字母,故不是整式.因此整式有3个.【点评】判断是否为整式,关键是看分母是否含有字母,有则不是;圆周率π或另有说明的除外,如就是整式.14.一列单项式:﹣x2,3x3,﹣5x4,7x5,…,按此规律排列,则第7个单项式为﹣13x8.【考点】单项式.【专题】规律型.【分析】根据规律,系数是从1开始的连续奇数且第奇数个是负数,第偶数个是正数,x的指数是从2开始的连续自然数,然后求解即可.【解答】解:第7个单项式的系数为﹣(2×7﹣1)=﹣13,x的指数为8,所以,第7个单项式为﹣13x8.故答案为:﹣13x8.【点评】本题考查了单项式,此类题目,难点在于根据单项式的定义从多个方面考虑求解.15.多项式 x+7是关于x的二次三项式,则m=2.【考点】多项式.【分析】由于多项式是关于x的二次三项式,所以|m|=2,但﹣(m+2)≠0,根据以上两点可以确定m的值.【解答】解:∵多项式是关于x的二次三项式,∴|m|=2,∴m=±2,但﹣(m+2)≠0,即m≠﹣2,综上所述,m=2,故填空答案:2.【点评】本题解答时容易忽略条件﹣(m+2)≠0,从而误解为m=±2.三、解答题(本大题共8小题,满分65分)16.把下列各数表示在数轴上,再按从大到小的顺序用大于号把这些数连接起来.|﹣3|,﹣5,,0,﹣2.5,﹣22,﹣(﹣1).【考点】有理数大小比较;数轴.【分析】先在数轴上表示出各数,从右到左用“>”连接起来即可.【解答】解:如图所示,,由图可知,|﹣3|>﹣(﹣1)> >0>﹣2.5>﹣22>﹣5.【点评】本题考查的是有理数的大小比较,熟知数轴上右边的数总比左边的大是解答此题的关键.17.单项式 x2ym与多项式x2y2+ y4+ 的次数相同,求m的值.【考点】多项式;单项式.【分析】利用多项式及单项式的次数列出方程求解即可.【解答】解:∵单项式 x2ym与多项式x2y2+ y4+ 的次数相同,∴2+m=7,解得m=5.故m的值是5.【点评】本题主要考查了多项式及单项式,解题的关键是熟记多项式及单项式的次数.18.某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数 7 6 7 8 2售价(元) +5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?【考点】正数和负数.【分析】首先由进货量和进货单价计算出进货的成本,然后再根据售价计算出赚了多少钱.【解答】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.【点评】本题主要考查有理数的混合运算,关键在于根据表格计算出一共卖了多少钱.19.将多项式按字母X的降幂排列.【考点】多项式.【专题】计算题.【分析】按x的降幂排列就是看x的指数从大到小的顺序把多项式的各个项排列即可,【解答】解:将多项式按字母x的降幂排列为:﹣7x4y2+3x2y﹣ xy3+ .【点评】本题考查了对多项式的有关知识的理解和运用,注意按字母排列是要带着各个项的符号.20.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4) .【考点】有理数的混合运算.【分析】(1)先化简,再计算加减法;(2)按照有理数混合运算的顺序,先乘除后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的;(4),先将乘法变为乘法,再运用乘法的分配律计算.【解答】解:(1)原式=﹣4+1﹣3=﹣6;=﹣3.【点评】本题考查的是有理数的运算能力.注意:(1)要正确掌握运算顺序,在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序;(2)去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣.(3)整式中如果有多重括号应按照先去小括号,再去中括号,最后大括号的顺序进行.21.已知ab2<0,a+b>0,且|a|=1,|b|=2,求的值.【考点】绝对值.【分析】计算绝对值要根据绝对值的定义求解,注意在条件的限制下a,b的值剩下1组.a=﹣1,b=2,所以原式=|﹣1﹣ |+(2﹣1)2= .【解答】解:∵ab2<0,a+b>0,∴a<0,b>0,且b的绝对值大于a的绝对值,∵|a|=1,|b|=2,∴a=﹣1,b=2,∴原式=|﹣1﹣ |+(2﹣1)2= .【点评】本题是绝对值性质的逆向运用,此类题要注意两个绝对值条件得出的数据有4组,再添上a,b大小关系的条件,一般剩下1组答案符合要求,解此类题目要仔细,看清条件,以免漏掉答案或写错.22.观察:4×6=24,14×16=224,24×26=624,34×36=1224…,(1)上面两数相乘后,其末尾的两位数有什么规律?(2)如果按照上面的规律计算:124×126(请写出计算过程).(3)请借助代数式表示这一规律!【考点】规律型:数字的变化类.【分析】(1)仔细观察后直接写出答案即可;(2)将124×126写成12×(12+1)×100+24后计算即可;(3)分别表示出两个因数后即可写出这一规律.【解答】解:(1)末尾都是24;(2)124×126=12×(12+1)×100+24=15600+24=15624;(3)(10a+4)(10a+6)=100a2+100a+24=100a(a+1)+24.【点评】本题考查了数字的变化类问题,仔细观察算式发现规律是解答本题的关键.23.已知x、y为有理数,现规定一种新运算※,满足x※y=xy+1.(1)求2※4的值;(2)求(1※4)※(﹣2)的值;(3)任意选择两个有理数(至少有一个是负数),分别填入下列□和○中,并比较它们的运算结果:□※○和○※□;(4)探索a※(b+c)与a※b+a※c的关系,并用等式把它们表达出来.【考点】有理数的混合运算.【专题】压轴题;新定义.【分析】读懂题意,掌握规律,按规律计算每个式子.【解答】解:(1)2※4=2×4+1=9;(2)(1※4)※(﹣2)=(1×4+1)×(﹣2)+1=﹣9;(3)(﹣1)※5=﹣1×5+1=﹣4,5※(﹣1)=5×(﹣1)+1=﹣4;(4)∵a※(b+c)=a(b+c)+1=ab+ac+1,a※b+a※c=ab+1+ac+1.∴a※(b+c)+1=a※b+a※c.【点评】解答此类题目的关键是认真观察已知给出的式子的特点,找出其中的规律.。
陕西省西安市莲湖区2024—-2025学年七年级上学期11月期中数学试题一、单选题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是今有两数若其意义相反,则分别叫做正数与负数.如果向北走5步记作5-步,那么向南走7步记作()A .7+步B .7-步C .12+步D .2-步2.下列各组中的两个数互为倒数的是()A .23和32B .58和58-C .517和715D .12和0.53.若()22024205-⨯⨯ 的运算结果为正数,则□内的数字可以为()A .2B .1C .0D .1-4.下列几何体中,是棱柱的是()A .B .C .D .5.相关数据显示,我国基本医保年度参保率稳定在95%左右,参保人数超13.3亿人.将数据“13.3亿”用科学记数法表示为()A .713310⨯B .813.310⨯C .91.3310⨯D .101.3310⨯6.52-表示的意义是()A .5个2相乘的相反数B .5个2-相乘C .2个5相乘的相反数D .2个5-相乘7.在式子2a +,58b -,2x ,27x y -,3m ,单项式有()A .1个B .2个C .3个D .4个8.用一样长的火柴棒按如图所示的方式搭建图形.已知第1个图形需要6根火柴棒;第2个图形需要11根火柴棒;第3个图形需要16根火柴棒;……按照这个规律,第n 个图形需要火柴棒的根数是()A .6nB .42n +C .54n -D .51+n 二、填空题9.一个直角三角形绕其直角边旋转一周得到的几何体是.10.一辆小汽车每小时行驶a 千米,高铁的速度比它的3倍多10千米,则高铁的速度是每小时行驶千米.(用含a 的式子表示)11.塔克拉玛干沙漠是中国最大的沙漠,昼夜温差大.某科学考察队测得其夏季某天中午的最高温度是零上62℃,当天晚上的最低温度是零下8℃,这一天中的温差是℃.12.用四舍五入法把2.496精确到0.01,结果为.13.一个圆柱体的高为6cm ,底面半径为2cm ,若其截面是长方形,则这个长方形面积最大为2cm .三、解答题14.计算:61039-+-+-.15.计算:()()2133442-+-⨯-÷.16.行驶中的汽车刹车后,由于惯性还会继续向前滑行一段距离,这段距离称为刹车距离.某车的刹车距离()m s 与车速.()km h x 之间的关系式是20.010.002s x x =+,若该车以100km h的速度行驶,求该车的刹车距离.17.已知37a b -=,求83b a +-的值.18.若()2520a b ++-=,求ab 的值.19.若a 是最大的负整数,b 是最小的正整数,c 的相反数是它本身,求2025a b c +-的值.20.一个无盖的长方体包装盒展开后的平面图形如图所示(单位:cm ),a ,b ,c 分别是该长方体包装盒的长、宽、高.已知5cm c =,求该长方体包装盒的体积.21.把下列各数填在相应的括号里.5-,0.12,0,6,36%,73-,23,112-.正数:{___________________...};分数:{___________________…};整数:{___________________…}.22.已知有四个有理数,分别是3-,0,112,4.5.(1)请把这四个有理数在数轴上表示出来.(2)用“<”把这四个数连接起来.23.如图,这是由6个相同的小正方体搭成的几何体(从正面看到的图形已给出).(1)请在方格中画出该几何体从左面和上面看到的图形.(2)如果在这个几何体上再添加一些小正方体,并保持从左面和上面看到的图形不变,最多可以再添加______个小正方体.24.如图,这是一套住宅的建筑平面图(单位:m ).(1)这套住宅的建筑面积为_______2m .(用含x ,y 的式子表示)(2)该住宅的销售价格为1.5万元/2m ,当6x =,4y =时,求该套住宅的总价.25.学生食堂购进了20袋土豆,以每袋50千克为标准,超过或者不足的分别用正、负表示,记录如下表.每袋与标准质量的差/千克3-2- 1.5-02 2.5袋数134354(1)20袋土豆中,最轻的一袋比最重的一袋要轻__________千克.(2)与标准质量比较,20袋土豆总计超过或不足多少千克?(3)若土豆每千克的售价为2元,则买这20袋土豆共需多少钱?26.已知多项式24325m n mn --的二次项系数为a ,项数为b ,次数为c ,如图,在数轴上,点A 表示的数为a ,点B 表示的数为b ,点C 表示的数为c .(1)填空;a =________,b =__________,c =_______.(2)若将该数轴对折,使得对折后点A 与点C 重合,求折叠后与点B 重合的点所表示的数.(3)有一电子蟋蟀落在数轴上的点A 处,第1步向右跳一个单位长度,第2步向左跳2个单位长度,第3步向右跳3个单位长度,第4步向左跳4个单位长度,……按以上规律跳了2025步后,求电子蟋蟀最终落在数轴上的点所表示的数.。
北师大版七年级上册数学期中考试试题一、单选题1.3-的相反数是( )A .3B .3-C .13D .13-2.多项式-23m 2-n 2是( )A .二次二项式B .三次二项式C .四次二项式D .五次二项式 3.已知长方形周长为20cm ,设长为x cm ,则宽为( )A .20x -B .202x- C .202x - D .10x -4.下列各式的化简,正确的是( )A .-(-3)= -3B .-[-(-10)]= -10C .-(+5)=5D .-[-(+8)]= -85.我国最长的河流长江全长约6300千米,6300千米用科学记数法表示为( ) A .6.3×102千米 B .6.3×103千米C .0.63×104千米D .630×10千米6.有理数a b ,在数轴上的位置如图,则下列各式成立的是( )A .a b >B .0a b +<C .0ab >D .||a b < 7.已知:32m x y -与5n xy 是同类项,则代数式2m n -的值是( )A .6-B .5-C .2-D .58.如图,边长为a 的正方形中,阴影部分的面积是( )A .22a a π-B .22a a π-C .222a a π⎛⎫- ⎪⎝⎭ D .2()a π-9.已知代数式x +2y +1的值是3,则代数式2x +4y +1的值是( )A .4B .5C .7D .不能确定10.将下面平面图形绕直线l 旋转一周,可得到如图所示立体图形的是( )A .B .C .D .二、填空题11.如果﹣20%表示减少20%,那么+6%表示_____.12.单项式25xy -的系数是______.13.表示“x 与4的差的3倍”的代数式为_____.14.在(﹣25)4中,底数是___,指数是___;在﹣63中,底数是______.15.用“<”“=”或“>”号填空:-3_____0 89- _____89- -(+6) _____-|-6|16.根据你学过的数学知识,写出一个运算结果为2a -的多项式______________. 17.观察一列单项式:234,2,4,8,...a a a a -- 根据你发现的规律,第7个单项式为_____________;第n 个单项式为________.三、解答题18.计算:(1)341119-+--+--()()()()(2)321210.5233---⨯⨯--()[()](3)372a b a b ++-()()(4)222(8)3(2)x y y x y y +--19.先化简,再求值:222[7(43)2]x x x x ----,其中12x =-.20.已知:a b ,互为相反数,c d ,互为倒数,(3)m =--.求2||a b m cd m m+---的值.21.如图,由5个相连的正方形可以折成一个无盖的正方体盒子.请你再画出3种不同的由5个正方形相连组成的图形,使它可以折成一个无盖的正方体盒子.22.已知:已知:A =2a 2+3ab ﹣2a ﹣1,B =﹣a 2+ab ﹣1.(1)求2A ﹣3B ;(2)若A+2B 的值与a 的取值无关,求b 的值.23.某人用400元购买了8套儿童服装,准备以一定价格出售.如果以每套儿童服装55元的价格为标准,超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣3(单位:元);请通过计算说明:(1)当他卖完这八套儿童服装后是盈利还是亏损?盈利(或亏损)了多少钱?(2)每套儿童服装的平均售价是多少元?24.某自然风景区的门票价格为:成人票20元,学生票10元.某中学七年级共有学生m人,老师n人,八年级学生人数是七年级学生人数的32倍,八年级老师人数是七年级老师人数的6 5倍,若他们一起去此风景区,买门票要花多少钱?若200m=,10n=,你能具体求出门票是多少钱吗?25.已知一个三角形的第一条边长为2a+5b,第二条边比第一条边长3a﹣2b,第三条边比第二条边短3a.(1)则第二边的边长为,第三边的边长为;(2)用含a,b的式子表示这个三角形的周长,并化简;(3)若a,b满足|a﹣5|+(b﹣3)2=0,求出这个三角形的周长.参考答案1.A2.A3.D4.B5.B6.B7.B8.C9.B10.B11.增加6%【分析】根据正负是相反意义的量,“正”和“负”相对,即可解题.【详解】如果﹣20%表示减少20%,那么+6%表示增加6%.故答案为增加6%.12.1 5 -【分析】单项式中的数字因数是单项式的系数,根据定义可得答案.【详解】因为:22155xyxy-=-,所以25xy-的系数是15-.故答案是:1 5 -【点睛】本题考查单项式的系数,掌握单项式系数概念是解题关键.13.3(x-4)【详解】x与4的差为:x-4,差的3倍为:3(4)x-.故答案为3(4)x-.14.﹣2546【分析】根据乘方的定义,即可解答.【详解】解:在425⎛⎫-⎪⎝⎭中,底数是25-,指数是4;在﹣63中,底数是6,故答案为:﹣25,4,6.【点睛】本题考查了有理数的乘方,熟练掌握乘方的定义是解题的关键.15. < = =【解析】【详解】解:因为负数小于0,所以-3<0;89-=89-;因为-(+6)=-6,-|-6|=-6,所以-(+6) =-|-6|.故答案是:<,=,=.16.222a a -(答案不唯一)【分析】运用合并同类项、单项式乘法、单项式除法等知识均可求解,注意答案不唯一.【详解】解:例如:2222a a a -=-故答案为222a a -(答案不唯一)【点睛】本题考查了合并同类项、单项式乘法、单项式除法等知识,属于开放型题目.17. 64a 7(或26a 7) (-2)n -1an【解析】通过观察已知条件,找出这列单项式的规律即可求出结果.【详解】解:根据观察可得,系数是(-2)n -1,a 的指数是n ,∴第7个单项式为64a 7,第n 个单项式为(﹣2)n ﹣1an .故答案为64a 7,(﹣2)n ﹣1an .18.(1)1(2)-416(3)10a ﹣b(4)222x y y -+根据有理数的混合运算和整式的加减的运算法则进行计算即可.(1)解:341119-+--+--()()()()71119--=+1819=-+1=(2) 解:321210.5233---⨯⨯--()[()] 1182923-⨯⨯-=-() 786+=- 416=- (3)解:372a b a b ++-()() 372a a b b ++-=()()10a b -=(4)解:222(8)3(2)x y y x y y +--2221636x y y x y y =+-+2223616x y x y y y =-++222x y y =-+【点睛】本题主要考查了有理数的混合运算和整式的加减,牢固掌握有理数的混合运算和整式的加减的运算法则并准确计算是做出本题的关键.19.12- 【解析】先对222[7(43)2]x x x x ----进行化简,然后将x 的值代入即可求解.【详解】解:222[7(43)2]x x x x ---- 222(7432)x x x x =--+-2227432x x x x =-+-+2433x x =--. 当12x =-时,原式1131433134222⎛⎫=⨯-⨯--=+-=- ⎪⎝⎭. 【点睛】本题主要考查代数式的化简求值,代数式的化简是解答本题的关键.20.5【解析】【分析】根据a ,b 互为相反数,c ,d 互为倒数的性质,以及求出m 的值,代入代数式,即可求解.【详解】解:由已知得0a b +=,1cd =,3m =.20||91|3|91353a b m cd m m +---=---=--=. 【点睛】考查了代数式求值,此题的关键是把a+b ,cd 当成一个整体求值.21.见解析【解析】【分析】根据正方体展开图的特征,画出能折叠成正方体纸盒的展开图即可,注意答案不唯一.【详解】解:画出3种图形如下(答案不唯一):【点睛】正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.22.(1)7a2+3ab﹣4a+1;(2)b=25.【解析】【分析】(1)把A与B代入原式,去括号合并即可得到结果;(2)由A+2B的结果与a的取值无关,即a的系数为0,确定出b的值即可.【详解】解:(1)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴2A﹣3B=2(2a2+3ab﹣2a﹣1)﹣3(﹣a2+ab﹣1)=4a2+6ab﹣4a﹣2+3a2﹣3ab+3=7a2+3ab﹣4a+1;(2)∴A=2a2+3ab﹣2a﹣1,B=﹣a2+ab﹣1,∴A+2B=2a2+3ab﹣2a﹣1﹣2a2+2ab﹣2=5ab﹣2a﹣3=(5b﹣2)a﹣3,由结果与a的取值无关,得到5b﹣2=0,解得:b=25.【点睛】本题考查整式的加减,熟练掌握运算法则是解本题的关键.23.(1)当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)每套儿童服装的平均售价是54.5元.【解析】【分析】(1)将数据求和,就是和55元偏离的值,用总价减去成本就是盈利.(2)用总售价除以总件数,就是平均售价.【详解】解:(1)售价:55×8+(2﹣3+2+1﹣2﹣1+0﹣3)=440﹣4=436,盈利:436﹣400=36(元);答:当他卖完这八套儿童服装后是盈利了,盈利了36元;(2)平均售价:436÷8=54.5(元),答:每套儿童服装的平均售价是54.5元.24.门票为5440元【解析】【分析】先用m 、n 表示出八年级的学生数和老师数,然后运用总票价=人数×单价即可.【详解】 解:八年级的学生数和老师数32n ,65m 则七八年级一起去景区,应付票钱为:365111020102025442525m m n n m n m n ⎛⎫⎛⎫+++=⨯+⨯=+ ⎪ ⎪⎝⎭⎝⎭. 当200m =,10n =时,原式25200441050004405440=⨯+⨯=+=(元).答:门票为5440元.【点睛】本题主要考查了列代数式以及代数式求值问题,根据已知得出式子表示该支付门票费用是解题关键.25.(1)5a+3b ,2a+3b ;(2)9a+11b ;(3)78【解析】【详解】解:(1)∴三角形的第一条边长为2a +5b ,第二条边比第一条边长3a -2b ,第三条边比第二条边短3a ,∴第二条边长=(2a +5b)+(3a -2b)=2a +5b +3a -2b=5a +3b ,第三条边长=(5a +3b)-3a11 =5a +3b -3a=2a +3b ;故答案为:5a+3b ,2a+3b ;(2)周长:()()()255323911a b a b a b a b +++++=+; (3)∴|a ﹣5|+(b ﹣3)2=0,∴a -5=0,b -3=0,即a =5,b =3,∴周长:9a +11b =45+33=78.。
A .
B .2a >-a b >
(2)将上述的有理数填入图中相应的圈内.
18.阳阳同学做一道计算题的解答过程如下:
解:原式 ①111242423⎛⎫⨯+÷- ⎪⎝⎭
1112422423
=⨯+÷-÷1
(1)明明认为“甲的解答过程只适应两数分布在原点两侧,所以甲的解法不能推广.”你认为明
.
).
【分析】(1)计算最大的与最小的的差即可得出结论;
(2)计算20筐苹果的重量与标准重量的差异的代数和即可;
(3)利用20筐苹果的标准重量的和加上总计超过的重量即可;
(4)将代入(3)中的代数式再乘以售价即可.
【详解】(1)解:(千克);
答:这20框苹果中,最重的一筐比最轻的一筐多5.5千克.
(2)解:(千克).
答:与标准重量比较,20筐苹果总计超过8千克.
(3)解:这20筐苹果的总重量是:千克,
故答案为:;
(4)解:当时,可以卖出的总价为:
(元.
答:把这20筐苹果全部出售总共可以卖出616元.
【点睛】本题主要考查了正负数的应用,列代数式,求代数式的值,解题的关键是正确理解表格值的数值的实际意义.15a = 2.5(3) 5.5--=31(2)4( 1.5)20312 2.58
-⨯+-⨯+-⨯+⨯+⨯+⨯8=(208)a +(208)a +20a =2(20158)616⨯⨯+=)。
最新北师大版七年级数学上册期中测试题时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1.在1,-2,0,53这四个数中,最大的数是( )A.-2B.0C.53D.12.如图所示是由4个大小相同的正方体组合而成的几何体,则从正面看到的图形是( )3.下列各式计算正确的是( ) A.-7-2×5=-45 B.3÷54×45=3C.-22-(-3)3=22D.2×(-5)-5÷⎝⎛⎭⎫-12=0 4.如果-2a m b 2与12a 5b n +1是同类项,那么m +n 的值为( )A.5B.6C.7D.85.用一个平面去截一个圆锥,截面图形不可能是( )6.已知a 、b 在数轴上的位置如图所示,则下列各式正确的是( )A.ab 〉0B.a -b 〉0C.a 2b 〉0D.|b|〈|a|二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式-5x 2yz 的系数是 ,次数是 .8.天宫二号空间实验室将开展空间冷原子钟实验,有望实现3千万年误差一秒的超高精准,对卫星定位导航等生产生活及引力波探测等空间科学研究将产生重大影响.其中3千万用科学记数法表示为 .9.在akg 含糖15%的糖水中,若加入mkg 的水,则这些糖水的浓度变为 ;若再加入nkg 的糖并假设这些糖全部溶解,则这些糖水的浓度变为 .10.若m 、n 互为相反数,则54(3m -2n)-2⎝⎛⎭⎫54m -158n = .11.如图所示是一个正方体纸盒的展开图,若在其中三个正方形的a 、b 、c 内分别填入适当的数,使得它们折成正方体后a 与其相对面上的数互为相反数,b 与其相对面上的数互为倒数,则a = ,b = .12.若|x|=7,|y|=5,且xy >0,则x +y = . 三、(本大题共5小题,每小题6分,共30分) 13.计算:(1)-3.25-⎝⎛⎭⎫-19+(-6.75)+179;(2)-12018-(1+0.5)×13÷(-4).14.化简:(1)3x 2-1-2x -5+3x -x 2;(2)(2a 2-1+2a)-3(a -1+a 2).15.将下列各数在数轴上表示出来,然后用“<”连接起来.-212,0,|-4|,0.5,-(-3).16.已知(x +1)2+|y -1|=0,求代数式4⎝⎛⎭⎫x -12y -[2y +3(x +y)+3xy]的值.17.如图,这是一个由小正方体搭成的几何体从上面看得到的平面图形,小正方形中的数字表示该位置的小正方体的个数.请你画出从它的正面和左面看得到的平面图形.四、(本大题共3小题,每小题8分,共24分)18.某人用400元购买了8套儿童服装,准备以一定的价格出售,如果每套儿童服装以55元的价格为标准,超出的记作正数,不足的记作负数,记录如下(单位:元):+2,-3,+2,+1,-2,-1,0,-2.当他卖完这8套儿童服装后是盈利还是亏损?盈利(或亏损)多少?19.如图,将面积为a2的小正方形和面积为b2的大正方形放在同一水平面上(b>a>0).(1)用a、b表示阴影部分的面积;(2)计算当a=3,b=5时,阴影部分的面积.20.如图所示是一个包装盒从不同方向看到的图形,求这个包装盒的表面积(结果保留π).五、(本大题共2小题,每小题9分,共18分)21.定义一种新运算:观察下列各式:1⊙3=1×4+3=7,3⊙(-1)=3×4-1=11,5⊙4=5×4+4=24,4⊙(-3)=4×4-3=13.(1)请你想一想:a⊙b=;(2)若a≠b,那么a⊙b b⊙a(填“=”或“≠”);(3)先化简,再求值:(a-b)⊙(2a+b),其中a=1,b=2.22.如图,观察数轴,请回答:(1)点C与点D的距离为,点B与点D的距离为;(2)点B与点E的距离为,点A与点C的距离为;发现:在数轴上,如果点M与点N分别表示数m,n,则他们之间的距离可表示为MN =(用m,n表示).(3)利用发现的结论解决下列问题:数轴上表示x的点P与点E之间的距离是3,求x 的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图案如图所示:(1)(2)(3)第20个“T”字形图案共有棋子多少个?参考答案与解析1.C2.C3.D4.B5.A6.B7.-548.3×1079.15%aa+m15%a+na+m+n10.011.-31212.12或-12解析:⊙|x|=7,|y|=5,⊙x=±7,y=±5.⊙xy>0,⊙x=7时,y=5,则x +y =7+5=12;x =-7时,y =-5,则x +y =-7-5=-12.综上所述,x +y =12或-12.13.解:(1)原式=-8.(3分) (2)原式=-78.(6分)14.解:(1)原式=3x 2-x 2-2x +3x -1-5=2x 2+x -6.(3分) (2)原式=2a 2-1+2a -3a +3-3a 2=-a 2-a +2.(6分) 15.解:如图所示.(3分)用“<”连接为-212<0<0.5<-(-3)<|-4|.(6分)16.解:由题意可知x +1=0,y -1=0,解得x =-1,y =1.(3分)故原式=x -7y -3xy =-1-7-3×(-1)×1=-5.(6分)17.解:如图所示.(每图3分)18.解:由题意得55×8+2+(-3)+2+1+(-2)+(-1)+0+(-2)-400=37(元),(6分)所以他卖完这8套儿童服装后是盈利,盈利37元.(8分)19.解:(1)阴影部分的面积为12b 2+12a(a +b).(4分)(2)当a =3,b =5时,12b 2+12a(a +b)=12×25+12×3×(3+5)=492,即阴影部分的面积为492.(8分)20.解:由题意及图形可知,该包装盒是一个圆柱,此圆柱的直径为20cm ,高为20cm ,(3分)⊙表面积为π×20×20+π×⎝⎛⎭⎫12×202×2=400π+200π=600π(cm 2).(8分) 21.解:(1)4a +b (2分) (2)≠(4分)(3)(a -b)⊙(2a +b)=4(a -b)+(2a +b)=4a -4b +2a +b =6a -3b.(7分)当a =1,b =2时,原式=6×1-3×2=0.(9分)22.解:(1)3 2(2分) (2)4 7 |m -n|(5分)(3)由图可知,当点P 在点E 左边时,x =2-3=-1;(7分)当点P 在点E 右边时,x =2+3=5,故x 的值为-1或5.(9分)23.解:(1)11 14 32(3分)(2)第n 个“T ”字形图案中棋子的个数为(3n +2)个.(8分)(3)当n=20时,3n+2=3×20+2=62(个).所以第20个“T”字形图案共有棋子62个.(12分)。
七年级(上)期中数学试卷一、选择题:每小题3分,共24分1.在数0.25,﹣,7,0,﹣3,100中,正数的个数是()A.1个B.2个C.3个D.4个2.﹣||的倒数是()A.2015 B.﹣2015 C.﹣D.3.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<04.若a、b互为相反数,x、y互为倒数,则的值是()A.3 B.4 C.2 D.3.55.已知a和b是有理数,若a+b=0,a2+b2≠0,则在a和b之间一定()A.存在负整数B.存在正整数C.存在一个正数和负数D.不存在正分数6.在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.87.多项式2x2y3﹣5xy2﹣3的次数和项数分别是()A.5,3 B.5,2 C.8,3 D.3,38.已知代数式2y2﹣2y+1的值是7,那么y2﹣y+1的值是()A.1 B.2 C.3 D.4二、填空题:每小题3分,共21分9.若m<n<0,则(m+n)(m﹣n)0.(2015春大名县期末)|x﹣4y|+(2y+1)2=0,则x2009y2010=.11.单项式﹣的系数是,次数是.12.按图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是.13.若单项式2a2b m+1与﹣3n b2的和是单项式,则(﹣m)n=.14.定义新运算“⊗”,,则12⊗(﹣1)=.15.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是.三、解答题:共55分16.计算下列各题:(1)(+45)+(﹣92)+35+(﹣8);(2);(3)﹣24+|4﹣6|﹣3÷(﹣1)2014;(4)化简:3ab﹣a2﹣2ba﹣3a2;(5)先化简后求值:,其中.17.实数a、b、c在数轴上的位置如图所示,试化简:|c﹣b|+|b﹣a|﹣|c|.18.有3个有理数x、y、z,若且x与y互为相反数,y与z互为倒数.(1)当n为奇数时,你能求出x、y、z这三个数吗?当n为偶数时,你能求出x、y、z这三个数吗?能,请计算并写出结果;不能,请说明理由.(2)根据(1)的结果计算:xy﹣y n﹣(y﹣z)2011的值.19.某检修小组乘汽车检修公路道路.向东记为正,向西记为负.某天自A地出发.所走路程(单位:千米)为:+22,﹣3,+4,﹣2,﹣8,﹣17,﹣2,+12,+7,﹣5;问:①最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?②若每千米耗油0.05升,则今天共耗油多少升?20.某地电话拨号入网有两种收费方式:(A)计时制:0.05元/分;(B)包月制:50元,此外,每种另加收通信费0.02元/分.(1)某用户某月上网时间为x小时,请分别写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月上网时间为20小时,你认为采用哪种方式较合算.21.学习有理数得乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:小明:原式=﹣×5=﹣=﹣249;小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:19×(﹣8)22.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数.(2)点A运动t秒后所在位置的点表示的数为;点B运动t秒后所在位置的点表示的数为;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)七年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题3分,共24分1.在数0.25,﹣,7,0,﹣3,100中,正数的个数是()A.1个B.2个C.3个D.4个【考点】正数和负数.【分析】根据大于零的数是正数,可得答案.【解答】解:0.25,7,100是正数,故选:C.【点评】本题考查了正数和负数,大于零的数是正数,注意零既不是正数也不是负数.2.﹣||的倒数是()A.2015 B.﹣2015 C.﹣D.【考点】倒数;绝对值.【分析】直接根据倒数的定义求解.【解答】解:﹣||的倒数是﹣2015,故选B.【点评】本题考查了倒数的定义,关键是根据乘积是1的两数互为倒数,a的倒数为(a≠0).3.实数a在数轴上的位置如图所示,则下列说法不正确的是()A.a的相反数大于2 B.a的相反数是2C.|a|>2 D.2a<0【考点】实数与数轴.【分析】根据数轴确定a的取值范围,进而选择正确的选项.【解答】解:由数轴可知,a<﹣2,A、a的相反数>2,故本选项正确,不符合题意;B、a的相反数≠2,故本选项错误,符合题意;C、a的绝对值>2,故本选项正确,不符合题意;D、2a<0,故本选项正确,不符合题意.故选:B.【点评】本题考查的是数轴和实数的性质,属于基础题,灵活运用数形结合思想是解题的关键.4.若a、b互为相反数,x、y互为倒数,则的值是()A.3 B.4 C.2 D.3.5【考点】代数式求值;相反数;倒数.【专题】计算题.【分析】先根据相反数、倒数的概念易求a+b、xy的值,然后整体代入所求代数式计算即可.【解答】解:根据题意得a+b=0,xy=1,那么=×0+×1=.故选:D.【点评】本题考查了相反数、倒数、代数式求值,解题的关键是熟练掌握倒数、相反数的概念.5.已知a和b是有理数,若a+b=0,a2+b2≠0,则在a和b之间一定()A.存在负整数B.存在正整数C.存在一个正数和负数D.不存在正分数【考点】有理数.【专题】常规题型.【分析】本题可用排除法.代入特殊值即可,令a=0.5,b=﹣0.5,故A、B即可排除,无论a,b何值,a,b必然一正一负,故D不正确.【解答】解:本题用排除法即可.令a=0.5,b=﹣0.5,a,b间无非0整数,A、B即可排除.无论a,b何值,a,b必然一正一负.故选C.【点评】本题考查了学生对有理数的分类的掌握情况,遇到这种情况可让学生用排除法即可.6.在﹣0.1428中用数字3替换其中的一个非0数码后,使所得的数最大,则被替换的字是()A.1 B.2 C.4 D.8【考点】有理数大小比较.【分析】对负数来说,绝对值大的反而小,因此用3代替其中的一个数字,使她的绝对值最小即为正确选项.【解答】解:逐个代替后这四个数分别为﹣0.3428,﹣0.1328,﹣0.1438,﹣0.1423.﹣0.1328的绝对值最小,只有C符合.故选C.【点评】考查有理数大小比较法则.两个负数,绝对值大的反而小.7.多项式2x2y3﹣5xy2﹣3的次数和项数分别是()A.5,3 B.5,2 C.8,3 D.3,3【考点】多项式.【分析】根据多项式次数的定义求解,多项式的次数是多项式中最高次项的次数,多项式中单项式的个数是多项式的项数,可得答案.【解答】解:多项式2x2y3﹣5xy2﹣3的次数和项数分别是5,3,故选:A.【点评】本题考查了多项式,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.8.已知代数式2y2﹣2y+1的值是7,那么y2﹣y+1的值是()A.1 B.2 C.3 D.4【考点】代数式求值.【分析】首先根据代数式2y2﹣2y+1的值是7,可得到等式2y2﹣2y+1=7,然后利用等式的性质1;等式两边同时加上或减去同一个数,等式仍然成立;把等式两边同时减去1,可得到2y2﹣2y=6,再把等式的变形成2(y2﹣y)=6‘再利用等式的性质2:等式两边同时加乘以(或除以同一个不为零)数,等式仍然成立;等式两边同时除以2,可得到y2﹣y=3,最后再利用等式的性质1,两边同时加上1即可得到答案.【解答】解:∵2y2﹣2y+1=7∴2y2﹣2y+1﹣1=7﹣12y2﹣2y=6∴2(y2﹣y)=6∴y2﹣y=3∴y2﹣y+1=3+1=4故选:D【点评】此题主要考查了利用等式的性质求代数式的值,作此题的关键是把已知条件与结论要有效的结合,利用等式的性质不断的变形.二、填空题:每小题3分,共21分9.若m<n<0,则(m+n)(m﹣n)>0.(m﹣n)>0.【解答】解:∵m<n<0,∴m+n<0,m﹣n<0,∴(m+n)(m﹣n)>0.故答案是>.【点评】本题考查了有理数的乘法法则,解题的关键是先判断m+n、m﹣n的取值情况.10.|x﹣4y|+(2y+1)2=0,则x2009y2010=﹣.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】据非负数的性质,可求出x、y的值,然后将代数式化简再代值计算.【解答】解:根据题意得:,解得:,则原式=(xy)2009y=12009×(﹣)=﹣.故答案是:﹣.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.11.单项式﹣的系数是﹣,次数是4.【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:根据单项式系数、次数的定义,该单项式得系数是﹣,次数是2+1+1=4.【点评】确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.分子为1和指数为1时,不能忽略.12.按图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是21.【考点】代数式求值.【专题】图表型.【分析】把x=3代入程序流程中计算,判断结果与10的大小,即可得到最后输出的结果.【解答】解:把x=3代入程序流程中得:=6<10,把x=6代入程序流程中得:=21>10,则最后输出的结果为21.故答案为:21【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.13.若单项式2a2b m+1与﹣3n b2的和是单项式,则(﹣m)n=1.【考点】合并同类项.【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,根据乘方的意义,可得答案.【解答】解:单项式2a2b m+1与﹣3n b2的和是单项式,得n=2,m+1=1,解得m=1.则(﹣m)n=(﹣1)2=1,故答案为:1.【点评】本题考查了合并同类项,利用同类项得出m、n的值是解题关键.14.定义新运算“⊗”,,则12⊗(﹣1)=8.【考点】代数式求值.【专题】压轴题;新定义.【分析】根据已知可将12⊗(﹣1)转换成a﹣4b的形式,然后将a、b的值代入计算即可.【解答】解:12⊗(﹣1)=×12﹣4×(﹣1)=8故答案为:8.【点评】本题主要考查代数式求值的方法:直接将已知代入代数式求值.15.下图(1)表示1张餐桌和6张椅子(每个小半圆代表1张椅子),若按这种方式摆放20张餐桌需要的椅子张数是82.【考点】规律型:图形的变化类.【分析】此类找规律的题目一定要结合图形进行分析,发现每多一张餐桌,就多4张椅子.【解答】解:结合图形发现:1张餐桌时,是6张椅子.在6的基础上,每多一张餐桌,就多4张椅子.则共有n张餐桌时,就有6+4(n﹣1)=4n+2.当n=20时,原式=4×20+2=82.故答案为:82【点评】此题考查了平面图形,主要培养学生的观察能力和归纳能力.三、解答题:共55分16.计算下列各题:(1)(+45)+(﹣92)+35+(﹣8);(2);(3)﹣24+|4﹣6|﹣3÷(﹣1)2014;(4)化简:3ab﹣a2﹣2ba﹣3a2;(5)先化简后求值:,其中.【考点】整式的加减—化简求值;有理数的混合运算;整式的加减.【专题】计算题.【分析】(1)原式结合后,相加即可;(2)原式利用乘法分配律计算即可;(3)原式利用乘方的意义,绝对值的代数意义计算即可;(4)原式合并同类项即可;(5)原式去括号合并得到最简结果,把x与y的值代入计算即可.【解答】解:(1)原式=45+35﹣92﹣8=80﹣100=﹣20;(2)原式=﹣24+36+9﹣14=7;(3)原式=﹣16+2﹣3=﹣17;(4)原式=ab﹣4a2;(5)原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.实数a、b、c在数轴上的位置如图所示,试化简:|c﹣b|+|b﹣a|﹣|c|.【考点】整式的加减;绝对值;实数与数轴.【分析】先根据各点在数轴上的位置判断出其符号及绝对值的大小,再去绝对值符号,合并同类项即可.【解答】解:∵由图可知,c<b<0<a,|c|>a>|b|,∴c﹣b<0,b﹣a<0,∴原式=b﹣c+a﹣b+c=a.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.18.有3个有理数x、y、z,若且x与y互为相反数,y与z互为倒数.(1)当n为奇数时,你能求出x、y、z这三个数吗?当n为偶数时,你能求出x、y、z这三个数吗?能,请计算并写出结果;不能,请说明理由.(2)根据(1)的结果计算:xy﹣y n﹣(y﹣z)2011的值.【考点】有理数的乘方;相反数;倒数.【专题】分类讨论.【分析】(1)分n为奇数,n为偶数两种情况求出x、y、z这三个数.(2)将x=﹣1,y=1,z=1的值代入计算即可.【解答】解:(1)当n为奇数时,==﹣1.∵x与y互为相反数,∴y=﹣x=1,∵y与z为倒数,∴,∴x=﹣1;y=1;z=1.当n为偶数时,(﹣1)n﹣1=1﹣1=0,∵分母不能为零,∴不能求出x、y、z这三个数.(2)当x=﹣1,y=1,z=1时,xy﹣y n﹣(y﹣z)2011,=(﹣1)×1﹣1n﹣(1﹣1)2011,=﹣2.【点评】本题考查了有理数的运算.注意:互为相反数的两个数的和为0;互为倒数的两个数的积为1;0的任何不等于0的次幂都等于0;1的任何次幂都等于1;﹣1的奇次幂都等于﹣1;﹣1的偶次幂都等于1.19.某检修小组乘汽车检修公路道路.向东记为正,向西记为负.某天自A地出发.所走路程(单位:千米)为:+22,﹣3,+4,﹣2,﹣8,﹣17,﹣2,+12,+7,﹣5;问:①最后他们是否回到出发点?若没有,则在A地的什么地方?距离A地多远?②若每千米耗油0.05升,则今天共耗油多少升?【考点】正数和负数.【分析】①把所走的路程相加,然后根据正负数的意义解答;②先求出所有路程的绝对值的和,再乘以0.05,计算即可得解.【解答】解:①(+22)+(﹣3)+(+4)+(﹣2)+(﹣8)+(﹣17)+(﹣2)+(+12)+(+7)+(﹣5)=45+(﹣37)=8千米,所以,不能回到出发点,在A地东边8千米处;②|+22|+|﹣3|+|+4|+|﹣2|+|﹣8|+|﹣17|+|﹣2|+|+12|+|+7|+|﹣5|=22+3+4+2+8+17+2+12+7+5=82千米,82×0.05=4.1升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.20.某地电话拨号入网有两种收费方式:(A)计时制:0.05元/分;(B)包月制:50元,此外,每种另加收通信费0.02元/分.(1)某用户某月上网时间为x小时,请分别写出两种收费方式下该用户应支付的费用;(2)若某用户估计一个月上网时间为20小时,你认为采用哪种方式较合算.【考点】列代数式;代数式求值.【分析】A种方式收费为:计时费+通信费;B种方式付费为:包月费+通信费.根据等量关系列出代数式求出结果,比较后得出结论.【解答】解:(1)A:0.05×60x+0.02×60x=4.2x(元),B:50+0.02×60x=50+1.2x(元);(2)当x=20时,A:84元;B:74元,∴采用包月制较合算.【点评】本题考查列代数式、代数式求值解决实际问题的能力.解决问题的关键是找到所求的量的等量关系,需注意把时间单位统一.21.学习有理数得乘法后,老师给同学们这样一道题目:计算:49×(﹣5),看谁算的又快又对,有两位同学的解法如下:小明:原式=﹣×5=﹣=﹣249;小军:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;(1)对于以上两种解法,你认为谁的解法较好?(2)上面的解法对你有何启发,你认为还有更好的方法吗?如果有,请把它写出来;(3)用你认为最合适的方法计算:19×(﹣8)【考点】有理数的乘法.【专题】阅读型.【分析】(1)根据计算判断小军的解法好;(2)把49写成(50﹣),然后利用乘法分配律进行计算即可得解;(3)把19写成(20﹣),然后利用乘法分配律进行计算即可得解.【解答】解:(1)小军解法较好;(2)还有更好的解法,49×(﹣5)=(50﹣)×(﹣5)=50×(﹣5)﹣×(﹣5)=﹣250+=﹣249;(3)19×(﹣8)=(20﹣)×(﹣8)=20×(﹣8)﹣×(﹣8)=﹣160+=﹣159.【点评】本题考查了有理数的乘法,主要是对乘法分配律的应用,把带分数进行适当的转化是解题的关键.22.[背景知识]数轴是初中数学的一个重要工具,利用数轴可以将数与形完美的结合.研究数轴我们发现了许多重要的规律:数轴上A点、B点表示的数为a、b,则A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b;线段AB的中点M表示的数为.[问题情境]已知数轴上有A、B两点,分别表示的数为﹣10,8,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).[综合运用](1)运动开始前,A、B两点的距离为18;线段AB的中点M所表示的数﹣1.(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;(用含t的代数式表示)(3)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(4)若A,B按上述方式继续运动下去,线段AB的中点M能否与原点重合?若能,求出运动时间,并直接写出中点M的运动方向和运动速度;若不能,请说明理由.(当A,B 两点重合,则中点M也与A,B两点重合)【考点】一元一次方程的应用;数轴.【专题】几何动点问题.【分析】(1)根据A,B两点之间的距离AB=|a﹣b|,若a>b,则可简化为AB=a﹣b及线段AB的中点M表示的数为即可求解;(2)点A运动t秒后所在位置的点表示的数=运动开始前A点表示的数+点A运动的路程,点B运动t秒后所在位置的点表示的数=运动开始前B点表示的数﹣点B运动的路程;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,等量关系为:点A运动的路程+点B运动的路程=18,依此列出方程,解方程即可;(4)设A,B按上述方式继续运动t秒线段AB的中点M能否与原点重合,根据线段AB 的中点表示的数为0列出方程,解方程即可.【解答】解:(1)运动开始前,A、B两点的距离为8﹣(﹣10)=18;线段AB的中点M 所表示的数为=﹣1;(2)点A运动t秒后所在位置的点表示的数为﹣10+3t;点B运动t秒后所在位置的点表示的数为8﹣2t;(3)设它们按上述方式运动,A、B两点经过x秒会相遇,根据题意得﹣10+3x=8﹣2x,解得x=,﹣10+3x=.答:A、B两点经过秒会相遇,相遇点所表示的数是;(4)由题意得,=0,解得t=2,答:经过2秒A,B两点的中点M会与原点重合.M点的运动方向向右,运动速度为每秒个单位长度.故答案为18,﹣1;﹣10+3t,8﹣2t.【点评】本题考查了一元一次方程的应用应用和数轴,解题的关键是掌握点的移动与点所表示的数之间的关系,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
七年级(上)期中数学试卷1一、选择题(本大题共8小题,每小题3分,共24分)1.的倒数是()A.2 B.﹣2 C.﹣D.2.下列各组量中,互为相反意义的量是()A.收入200元与支出200元B.上升10米与下降7米C.超过0.05毫米与不足0.03毫米D.增大5升与减少2升3.现规定一种新的运算“*”:a*b=a b,如3*2=32=9,则*3=()A.B.8 C.D.4.下图中,表示互为相反数的两个点是()A.点M与点Q B.点N与点P C.点M与点P D.点N与点Q5.下列说法中正确的是()A.3x2、﹣xy、0、m四个式子中有三个是单项式B.单项式2πxy的系数是2C.式子+7x2y是三次二项式D.﹣x2y3和6y3x2是同类项6.我国领土面积大约是9 600 000平方公里,用科学记数法应记为()A.0.96×107平方里B.9.6×106平方公里C.96×105平方公里D.9.6×105平方公里7.已知代数式x+2y的值是3,则代数式2x+4y+1的值是()A.1 B. 4 C.7 D.不能确定8.观察下列数的排列规律:0,﹣3,8,﹣15,…照这样排列第8个数应是()A.55 B.﹣56 C.﹣63 D.65二、填空题(本大题共10小题,每小题3分,共30分)9.某天早晨的气温是﹣7℃,中午上升了11℃,则中午的气温是℃.10.某粮店出售的某种品牌的面粉袋上,标有质量为的字样,从中任意拿出两袋,它们的质量最多相差kg.11.“a,b两数平方差除它们和的平方”列代数式是.12.计算:1﹣2+3﹣4+5﹣6+…+2003﹣2004=.13.请写出与9xy2是同类项的一个代数式.14.对代数式“5x”,我们可以这样来解释:某人以5千米/小时的速度走了x小时,他一共走的路程是5x千米.请你对“5x”再给出另一个生活实际方面的解释:.15.若﹣a m b4与是同类项,则m﹣n=.16.多项式2xy2﹣3x2y+x3y3﹣7的最高次项的系数是.17.若代数式(m﹣2)x|m|y是关于字母x、y的三次单项式,则m=.18.已知|x|=4,|y|=,且xy<0,则的值等于.三、解答题(本大题共8小题,共66分)19.把下列各数填在相应的大括号内:﹣5,,﹣12,0,﹣3.14,+1.99,﹣(﹣6),(1)正数集合:{ …}(2) 负数集合:{ …}(3)整数集合:{ …}(4)分数集合:{ …}.20.计算:(1)﹣8+(﹣7)﹣(﹣13)(2)(﹣5)×(﹣7)﹣5×(﹣6)(3)﹣14﹣[2﹣(﹣3)2]+(﹣1)6(4)(﹣﹣+)÷(﹣)21.先化简再求值:(ab+3a2)﹣2b2﹣5ab﹣2(a2﹣2ab),其中:a=1,b=﹣2.22.有理数a、b、c的位置如图所示,化简式子:|b|+|a﹣c|+|b﹣c|﹣|a﹣b|.23.若|x+2|+(3﹣y)2=0,求多项式4﹣3(x﹣2y)+2x﹣3y的值.24.已知A=2x2﹣1,B=3﹣2x2,求B﹣2A的值.25.三溪中学的小卖部最近进了一批计算器,进价是每个8元,今天共卖出20个,实际卖出时以每个10元为标准,超过的记为正,不足的记为负,记录如下:超出标准的钱数(元)+3 ﹣1 +2 +1卖出计算器个数5个4个6个5个(1)这个小卖部的计算器今天卖出的平均价格是多少?这个小卖部今天卖计算器赚了多少元?26.《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累进计算:某人一月份应交纳此项税款26.78元,则他的当月工资、薪金所得是多少?全月应纳税所得额税率不超过500元的部分5%超过500元至2000元部分10%超过2000元至5000元部分15%……期中质量调研考试七年级数学试题2一、选择题(每小题3分,共36分)1.某天的温度上升了-2℃的意义是()A.上升了2℃ B.没有变化C.下降了-2℃ D.下降了2℃2.如下图所示,在数轴上表示到原点的距离为3个单位的点有()A.D点B.A点C.A点和D点D.B点和C点3.下面各组数中,相等的一组是 ( )A .22-与()22- B .323与332⎪⎭⎫ ⎝⎛ C .2-- 与()2-- D .()33-与33-4.某班共有学生x 人,其中男生人数占35%,那么女生人数是 ( )A 、35%xB 、(1-35%)xC 、x/35%D 、x/1-35% 5.下列各项中,是同类项的是( )A .x 与yB .2222a b ab 与C .-3pq 与2pqD .abc 与ac 6.已知b a ,两数在数轴上对应的点如下图所示,下列结论正确的是 ( )A .b a >B .0<abC .0>-a bD .0>+b a 7.去括号后等于a -b+c 的是( )A . a - (b+c)B .a -(b -c)C .a+(b -c)D .a+(b+c) 8.一件商品的进价是a 元,提价20%后出售,则这件商品的售价是 ( ) A .0.8a 元 B .a 元 C .1.2a 元 D .2a 元9.甲乙丙三地海拔高度分别为20米,-l5米,-10米,那么最高的地方比最低的地方高( )A .10米B .25米C .35米D .5米 10. 下列说法中正确的是( )A. 如果两个数的绝对值相等,那么这两个数相等B.有理数分为正数和负数C. 互为相反数的两个数的绝对值相等D.最小的整数是011. 2008年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”中进行着,全程11.8千米,用科学计数法,保留两个有效数字,结果为 ( )米 A. 11.8x103B.1.2x104C.1.18x104D.1.2x10312. 减去2m -等于232++m m 多项式是 ( )A .252++m mB .22m m ++C .252m m --D .22m m -- 二、填空题(每小题3分,共24分)13.-|-43|的相反数是_______. 14.计算⨯++-)6143121(12= .15.化简(x+y )- (x -y) 的结果是 . 16.若2x 3y n+1与-5x m-2y 2是同类项,则m= , n= .17.311的相反数是_______,绝对值是______.18. 若|x -1| + (y + 3)2 = 0,则x 2 + y 2=_ _____.19.—个乒乓球的质量比标准质量重0.02克,记作+0.02克,那么-0.03克表示 . 20.观察下列算式: ,, , , , , , , 2562128264232216282422287654321======== 根据上述算式中的规律,你认为20072的末位数字是 .三、计算或化简(共20分)21.(每小题5分,本题满分20分)计算: ⑴ 15)7()18(12--+-- ⑵(-48)÷8-(-25)×(-6);⑶ 5)4()1(3242⨯---⨯+- ⑷)32(4)2(52222ab b a c c ab b a -+-+-四、解答题(共40分)22.(本题满分6分)先化简,再求值)3123()31(22122y x y x x +-+--,其中22 3x y =-=,23.(本题满分8分)阅读计算过程:5)]75.03()21[(231322⨯+--÷- 解:原式5]43341[23132⨯+-÷-=① 5]2[4313⨯-÷+=② 12335=- ③14215回答下列问题:(1)步骤①错在______________________________;(2)步骤①到步骤②错在______________________________;(3)步骤②到步骤③错在______________________________;(4)此题的正确结果是____________________。
24. (本题满分6分)多项式(a-2)㎡+(2b+1)mn-m+n-7是关于m,n的多项式,若该多项式不含二次项,求 3a+2b25.(本题满6分)已知a、b互为相反数,c、d互为倒数, x的绝对值为2,求x2-(a+b-cd)x+(a+b)2007-(cd)2008.26.(本题满分6分)为体现社会对老师的尊重,教师节这一天上午,出租车司机小王在东西向的公路上免费接送老师,如果规定向东为正,向西为负,出租车的行程如下(单位:千米):+5,-4,+3,-10,+3,-9.(1)最后一名老师送到目的时,小王距出租车出发点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天上午小王的汽车共耗油多少升?27.找规律(本题共8分).一张长方形桌子可坐6人,按下图方式讲桌子拼在一起。
① 2张桌子拼在一起可坐______人;(1分)3张桌子拼在一起可坐______人;(1分)n张桌子拼在一起可坐______人。
(3分)②一家餐厅有40张这样的长方形桌子,按照上图方式每5张桌子拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐______人。
(3分)期中考试七年级数学试题3一、细心选一选(每小题只有一个正确的选项的选项。
10小题,共30分)1.在0,-1,-9,1中,最小的有理数是______A.0B.-1C. -9D.12.下列计算中,正确的是______A.3a+2b=5abB.13x-18x=-5C.5+a=5aD.6ab-ab=5ab3.下列用四舍五入得到的近似数中,精确到百位的是______A. 62.80B. 2.628×105C. 600万 D.628.004.下列各组中是同类项的是______A.5x3和-2x2B.14ax和9bxC.x和aD.5ab和7ab5.若A.B都是5次多项式,则A+B一定是_____A.10次多项式B.次数不高于5次的整式C.5次多项式D.次数不低于5次的整式6.某速冻汤圆的储藏温度是-18±2℃,现有四个冷藏室的温度如下,则不适合此种汤圆的温度是_____A.-17℃B.-22℃C.-18℃D.-19℃7.若a,b两数在数轴上的位置如图,则下列结论正确的是______ b a 0A.a<bB.ab<0C.|a|<|b|D.a+b>08.小明利用计算机设计了一个计算程序,输入和输出的数据如下表,当输入数据是8时,输出的数据是_____A.63 B.65C.67D.699.若多项式2x2-3y-4的值为2,则多项式6x2-9y-10的值是_____A.6B.8C.10D.1210.已知(2x-1)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a5+a4+a3+a2+a1+a0=______A.0B.1C.5D.6二、耐心填一填(6小题,共18分)11.若-6米表示低于海平面6米,则高于海平面5米记作______12.某栋楼的建筑面积为17.6万m 2,则17.6万用科学计数法表示为______13.在代数式中x 5,7x 32y,π,2(x-1),3x 2y-5xy+1,0,-abc 中,单项式的个数是_____14.轮船在逆水中的速度为a 千米/时,水流速度是2千米/时,则这艘轮船在静水中的速度是________千米/时。