2014-2015学年第二学期期中考试七年级数学试题答案
- 格式:doc
- 大小:58.50 KB
- 文档页数:3
----------------------------装---------------------------订-----------------------线---------------2014—2015学年度初一年级第二学期数学期中测试成绩一、选择题(每题2分,共24分)1、已知点P (-2,-4),则点P 在 ( )A 、 第一象限B 、 第二象限C 、第三象限D 、 第四象限 2、的平方根是( ) A 、B 、3C 、D 、3、如图,图中对顶角共有 ( ) A 、6对 B 、11对 C 、12对 D 、13对4、下列运算中正确的个数是( )A 、0个B 、1个C 、2个D 、3个 5、下列语句中不是命题的是( )A 两条直线相交只有一个交点B 、等式两边加上同一个数C 、同位角相等,两直线平行D 、同角的余角相等6、无理数6在哪两个整数之间 ( )A .1和2B .2和3C .3和4D . 4与5 7、若20x +=,则的值为()A .8-B .6-C .5D .68、线段AB 的两个端点坐标为A (1,3),B (2,7),线段CD 的两个端点坐标为C (2,-4),D (3,0),则线段AB 与线段CD 的关系是( )A 、平行且相等B 、平行但不相等C 、不平行但相等D 、不平行且不相等· · · 0ab9、如图所示,a,b表示两个实数,那么化简的结果是()A 、2aB 、-2aC 、2bD 、-2b10、点P(a+b,ab)在第二象限,则点Q(a,-b)在( ) A 、第一象限 B 、第二象限C 、第三象限 D 、第四象限11、如图,若AB ∥CD ,∠BEF=70°,则∠ABE+∠EFC+∠FCD 的度数是( )A 、215゜B 、250゜C 、320゜D 、无法知道12、如图1,一张四边形纸片ABCD ,∠A=50°,∠C=150°.若将其按照图2所示方式折叠后,恰好MD ′∥AB ,ND ′∥BC ,则∠D 的度数为( )A 、70゜B 、75゜ C 、80゜ D 、85゜二、填空题(每题3分,共计24分)13、 ;;5的平方根为 。
2014-2015学年第二学期七年级数学中段考试试题(全卷满分共120分,完成时间100分钟)_____班 姓名_________ ____号 成绩_________一、选择题(每小题3分,共30分)1.下面的四个图形中,∠1与∠2是对顶角的是( )。
A .B .C .D.2.14的平方根是( )。
A .12 B .12- C .12± D .116± 3.下列式子正确的是( )。
A. BC5± D3-4.如图,已知AB ⊥CD ,垂足为O ,EF 为过O 点的一条直线,则∠1与∠2的关系一定成立的是( )。
A .相等 B .互余 C .互补D .互为对顶角 5.下列说法正确的是( )。
A .无限小数都是无理数B .带根号的数都是无理数C .无理数是无限不循环小数 D.实数包括正实数、负实数 6.已知点P (m ,1)在第二象限,则点Q (-m ,3)在( )。
A .第一象限 B .第二象限 C .第三象限D .第四象限7.已知在同一平面内三条直线a 、b 、c ,若a ‖c ,b ‖c ,则a 与b 的位置关系是( )。
A .a ⊥b B .a ⊥b 或a ‖b C .a ‖b D .无法确定8.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2的度数是( )。
A .30°B .25°C .20°D .15°9.一个正数x 的平方根是2a -3与5-a ,则x 的值是( )。
A .64 B .36 C .81 D .4910.在平面直角坐标系中,已知点A (-4,0)和B (0,2),现将线段AB 沿着直线AB 平移,使点A 与点B 重合,则平移后点B 坐标是( )。
A .(0,-2) B .(4,2) C .(4,4) D .(2,4)二、填空题(每小题4分,共30分)11. 3的相反数是 ,绝对值是 。
浙教版七年级数学第二学期期中考试试题及答案一、选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.2.下列属于二元一次方程的是()A.B.C.x2+y=0 D.3.计算:(6a3b4)÷(3a2b)=()A.2 B.2ab3C.3ab3D.2a5b54.如图所示,两只手的食指和拇指在同一平面内,它们构成的一对角可以看成()A.内错角B.同位角C.同旁内角D.对顶角5.已知某个二元一次方程的一个解是,则这个方程可能是()A.2x+y=5 B.x﹣2y=0 C.2x﹣y=0 D.x=2y6.下列计算正确的是()A.2a+a=3a2B.a6÷a2=a3C.(a3)2=a6D.a3•2a2=2a67.如图,有以下四个条件:其中不能判定AB∥CD的是()①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;A.①B.②C.③D.④8.下列整式乘法不能用平方差公式运算的是()A.(a+b)(a﹣b)B.(﹣a+b)(a﹣b)C.(﹣a﹣b)(a﹣b)D.(a+b)(b﹣a)9.已知a>b,a>c,若M=a2﹣ac,N=ab﹣bc,则M与N的大小关系是()A.M<N B.M=N C.M>N D.不能确定10.如图所示:在长为30米,宽为20米的长方形花园里,原有两条面积相等的小路,其余部分绿化.现在为了增加绿地面积,把公园里的一条小路改为绿地,只保留另一条小路,并且使得绿地面积是小路面积的4倍,则x 与y的值为()A.B.C.D.二、填空题(每题5分,满分30分,将答案填在答题纸上)11.在二元一次方程x+3y=8的解中,当x=2时,对应的y的值是.12.计算:﹣2x(x﹣3y)=.13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是.14.若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,则∠α的度数为.15.方程x2﹣y2=31的正整数解为.16.如图,直线l1⊥直线l2,垂足为O,Rt△ABC如图放置,过点B作BD∥AC交直线l2于点D,在△ABC内取一点E,连接AE,DE.(1)若∠CAE=15°,∠EDB=25°,则∠AED=.(2)若∠EAC=∠CAB,∠EDB=∠ODB,则∠AED=°.(用含n的代数式表示)三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:(1)2a2b•(﹣3b2c)÷4ab3;(2).18.(1)解方程:;(2)简便计算:19.92+19.9×0.2+0.12.19.先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.20.已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠EFD=72°,则∠EGC等于多少度?21.已知关于x,y的方程组的解满足4x+y=3,求m的值.22.在(x2+ax+b)(2x2﹣3x﹣1)的结果中,x3项的系数为﹣5,x2项的系数为﹣6,求a,b的值.解:原式=2x4﹣3x3﹣x2+2ax3﹣3ax2﹣ax+2bx2﹣3bx﹣b①=2x4﹣(3+2a)x3﹣(1﹣3a+2b)x2﹣(a﹣3b)x﹣b②由题可知,解得③(1)上述解答过程是否正确?若不正确,从第步开始出现错误.(2)请你写出正确的解答过程.23.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?24.教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);求代数式2x2+4x﹣6的最小值,2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:x2﹣4x﹣5=.(2)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.(3)利用配方法,尝试解方程﹣2ab﹣2b+1=0,并求出a,b的值.参考答案一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列图形中,不能通过其中一个四边形平移得到的是()A.B.C.D.【分析】根据平移与旋转的性质得出.解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选:D.2.下列属于二元一次方程的是()A.B.C.x2+y=0 D.【分析】根据二元一次方程的定义判断即可.解:A、符合二元一次方程定义,是二元一次方程;B、不是整式方程,所以不是二元一次方程;C、最高项的次数为2,不是二元一次方程;D、不是等式,不是二元一次方程.故选:A.3.计算:(6a3b4)÷(3a2b)=()A.2 B.2ab3C.3ab3D.2a5b5【分析】利用单项式除以单项式法则计算即可得到结果.解:(6a3b4)÷(3a2b)=2ab3.故选:B.4.如图所示,两只手的食指和拇指在同一平面内,它们构成的一对角可以看成()A.内错角B.同位角C.同旁内角D.对顶角【分析】图中两只手的食指和拇指构成”Z“形,根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.解:两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是内错角.故选:A.5.已知某个二元一次方程的一个解是,则这个方程可能是()A.2x+y=5 B.x﹣2y=0 C.2x﹣y=0 D.x=2y【分析】把x=1、y=2分别代入所给选项进行判断即可.解:A、当x=1,y=2时,2x+y=2+2=4≠5,故不是方程2x+y=5的解;B、当x=1,y=2时,x﹣2y=1﹣4=﹣3≠5,故不是方程x﹣2y=0的解;C、当x=1,y=2时,2x﹣y=2﹣2=0,故是方程2x﹣y=0的解;D、当x=1,y=2时,x=1≠2y,故不是方程x=2y的解.故选:C.6.下列计算正确的是()A.2a+a=3a2B.a6÷a2=a3C.(a3)2=a6D.a3•2a2=2a6【分析】根据同类项、同底数幂的除法、幂的乘方和同底数幂的乘法计算即可.解:A、2a+a=3a,错误;B、a6÷a2=a4,错误;C、(a3)2=a6,正确;D、a3•2a2=2a5,错误;故选:C.7.如图,有以下四个条件:其中不能判定AB∥CD的是()①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5;A.①B.②C.③D.④【分析】根据平行线的判定定理求解,即可求得答案.解:①∵∠B+∠BCD=180°,∴AB∥CD;②∵∠1=∠2,∴AD∥BC;③∵∠3=∠4,∴AB∥CD;④∵∠B=∠5,∴AB∥CD;∴不能得到AB∥CD的条件是②.故选:B.8.下列整式乘法不能用平方差公式运算的是()A.(a+b)(a﹣b)B.(﹣a+b)(a﹣b)C.(﹣a﹣b)(a﹣b)D.(a+b)(b﹣a)【分析】根据平方差公式计算必须满足两个条件,一是相乘的两个多项式只有两项,二是两个多项是中一项相同,另一项互为相反数;判定不符合条件的是B答案.解:由平方差公式条件判断:A答案:(a+b)(a﹣b)=a2﹣b2,满足条件;B答案:(﹣a+b)(a﹣b)=﹣(a﹣b)(a﹣b),不满足条件;C答案:(﹣a﹣b)(a﹣b)=﹣(a+b)(a﹣b)=b2﹣a2,满足条件;D答案:(a+b)(b﹣a)=b2﹣a2,满足条件;故选:B.9.已知a>b,a>c,若M=a2﹣ac,N=ab﹣bc,则M与N的大小关系是()A.M<N B.M=N C.M>N D.不能确定【分析】直接利用M﹣N进而分解因式,再利用已知判断各式的符号进而得出答案.解:∵M=a2﹣ac,N=ab﹣bc,∴M﹣N=a2﹣ac﹣(ab﹣bc)=a(a﹣c)﹣b(a﹣c)=(a﹣c)(a﹣b),∵a>b,a>c,∴a﹣c>0,a﹣b>0,∴M﹣N=(a﹣c)(a﹣b)>0,∴M>N.故选:C.10.如图所示:在长为30米,宽为20米的长方形花园里,原有两条面积相等的小路,其余部分绿化.现在为了增加绿地面积,把公园里的一条小路改为绿地,只保留另一条小路,并且使得绿地面积是小路面积的4倍,则x 与y的值为()A.B.C.D.【分析】由题意可知:20x=30y,30×20﹣30y=30y×4,由此联立方程组求得答案即可.解:由题意可知:解得:.故选:D.二、填空题(每题5分,满分30分,将答案填在答题纸上)11.在二元一次方程x+3y=8的解中,当x=2时,对应的y的值是2.【分析】把x=2代入方程计算即可求出y的值.解:把x=2代入方程得:2+3y=8,解得:y=2,故答案为:2.12.计算:﹣2x(x﹣3y)=﹣2x2+6xy.【分析】利用单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加,可得结果.解:﹣2x(x﹣3y)=﹣2x•x+(﹣2x)•(﹣3y)=﹣2x2+6xy,故答案为:﹣2x2+6xy.13.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是25°.【分析】根据两直线平行,内错角相等求出∠3的内错角,再根据三角板的度数求差即可得解.解:∵直尺的对边平行,∠1=20°,∴∠3=∠1=20°,∴∠2=45°﹣∠3=45°﹣20°=25°.故答案为:25°.14.若∠α与∠β的两边分别平行,且∠α=(2x+10)°,∠β=(3x﹣20)°,则∠α的度数为70°或86°.【分析】根据两边互相平行的两个角相等或互补列出方程求出x,然后求解即可.解:∵∠α与∠β的两边分别平行,∴①∠α=∠β,∴(2x+10)°=(3x﹣20)°,解得x=30,∠α=(2×30+10)°=70°,或②∠α+∠β=180°,∴(2x+10)°+(3x﹣20)°=180°,解得x=38,∠α=(2×38+10)°=86°,综上所述,∠α的度数为70°或86°.故答案为:70°或86°.15.方程x2﹣y2=31的正整数解为.【分析】先将方程左边分解因数,再利用方程的解为正整数,建立方程组求解,即可得出结论.解:原方程可化为(x+y)(x﹣y)=31×1,∵x,y为正整数,∴x+y>x﹣y,∴,解得,,方程x2﹣y2=31的正整数解为,故答案为:.16.如图,直线l1⊥直线l2,垂足为O,Rt△ABC如图放置,过点B作BD∥AC交直线l2于点D,在△ABC内取一点E,连接AE,DE.(1)若∠CAE=15°,∠EDB=25°,则∠AED=40.(2)若∠EAC=∠CAB,∠EDB=∠ODB,则∠AED=()°.(用含n的代数式表示)【分析】(1)过点E作EF∥AC,利用平行线的性质解答即可;(2)根据平行线的性质和角的关系解答即可.解:(1)过点E作EF∥AC,∵AC∥EF,∵AC∥BD,∴AC∥EF∥BD,∴∠CAE=∠AEF,∠EDB=∠FED,∴∠AED=∠AEF+∠FED=∠CAE+∠EDB=15°+25°=40°;(2)∵AC∥BD,∴∠AGD=∠ODB,∠CAO+∠AGD=90°,∴∠CAB+∠ODB=90°,∵∠EAC=∠CAB,∠EDB=∠ODB,由(1)同理可得:∠AED=∠CAE+∠EDB=(∠CAB+∠ODB)=,故答案为:40°;().三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:(1)2a2b•(﹣3b2c)÷4ab3;(2).【分析】(1)直接利用单项式乘以单项式运算法则计算,进而利用整式的除法运算法则计算得出答案;(2)直接利用绝对值的性质和零指数幂的性质、负整数指数幂的性质分别化简得出答案.解:(1)2a2b•(﹣3b2c)÷4ab3=﹣6a2b3c÷4ab3=﹣ac;(2)=3﹣1+4=6.18.(1)解方程:;(2)简便计算:19.92+19.9×0.2+0.12.【分析】(1)方程组利用加减消元法求出解即可;(2)利用完全平方公式计算即可.解:(1),①+②得,6x=42,解得x=7,将x=7代入①,得2×7+y=23,解得y=9,故原方程组的解为;(2)19.92+19.9×0.2+0.12=(19.9+0.1)2=202=400.19.先化简,再求值:(2x﹣1)2﹣(2x+1)(2x﹣1)+(x+1)(3﹣x),其中x=.【分析】首先计算完全平方、平方差和多项式乘以多项式,然后再去括号,合并同类项,化简后,再代入x的值计算即可.解:原式=4x2﹣4x+1﹣(4x2﹣1)+(3x﹣x2+3﹣x),=4x2﹣4x+1﹣4x2+1+3x﹣x2+3﹣x,=﹣x2﹣2x+5,将代入,原式=.20.已知:如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF,若∠EFD=72°,则∠EGC等于多少度?【分析】根据两直线平行,同旁内角互补求出∠BEF,再根据角平分线的定义可得∠BEG=∠BEF,然后根据两直线平行,内错角相等即可得解.解:∵AB∥CD,∴∠BEF=180°﹣∠EFD=180°﹣72°=108°,∵EG平分∠BEF,∴∠BEG=∠BEF=×108°=54°,∵AB∥CD,∴∠EGC=∠BEG=54°.21.已知关于x,y的方程组的解满足4x+y=3,求m的值.【分析】根据等式的性质,二元一次方程组的解法即可得到答案.解:由题意可得,解得,将代入mx+(m﹣1)y=3,得m+(m﹣1)=3,解得.22.在(x2+ax+b)(2x2﹣3x﹣1)的结果中,x3项的系数为﹣5,x2项的系数为﹣6,求a,b的值.解:原式=2x4﹣3x3﹣x2+2ax3﹣3ax2﹣ax+2bx2﹣3bx﹣b①=2x4﹣(3+2a)x3﹣(1﹣3a+2b)x2﹣(a﹣3b)x﹣b②由题可知,解得③(1)上述解答过程是否正确?若不正确,从第②步开始出现错误.(2)请你写出正确的解答过程.【分析】(1)根据解答过程可得答案,注意符号的变化问题;(2)合并同类项时,注意符号的确定,然后根据题意列出方程组,再解即可.解:(1)解答过程不正确,从第②步开始出现错误;(2)原式=2x4﹣3x3﹣x2+2ax3﹣3ax2﹣ax+2bx2﹣3bx﹣b,=2x4﹣(3﹣2a)x3﹣(1+3a﹣2b)x2﹣(a+3b)x﹣b,由题可知,解得.23.“两果问价”问题出自我国古代算书《四元玉鉴》,原题如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个?又问各该几个钱?将题目译成白话文,内容如下:九百九十九文钱买了甜果和苦果共一千个,已知十一文钱可买九个甜果,四文钱可买七个苦果,那么甜果、苦果各买了多少个?买甜果和苦果各需要多少文钱?【分析】设甜果买了x个,苦果买了y个,根据九百九十九文钱买了甜果和苦果共一千个,即可得出关于x,y 的二元一次方程组,解之即可得出x,y的值,再将其代入x,y中即可求出结论.解:设甜果买了x个,苦果买了y个,依题意,得:,解得:,∴x=803,y=196.答:甜果买了657个,需要803文钱;苦果买了343个,需要196文钱.24.教科书中这样写道:“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等问题.例如:分解因式x2+2x﹣3=(x2+2x+1)﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1);求代数式2x2+4x﹣6的最小值,2x2+4x﹣6=2(x2+2x﹣3)=2(x+1)2﹣8.可知当x=﹣1时,2x2+4x﹣6有最小值,最小值是﹣8,根据阅读材料用配方法解决下列问题:(1)分解因式:x2﹣4x﹣5=(x+1)(x﹣5).(2)当x为何值时,多项式﹣2x2﹣4x+3有最大值?并求出这个最大值.(3)利用配方法,尝试解方程﹣2ab﹣2b+1=0,并求出a,b的值.【分析】(1)根据题目中的例子,可以将题目中的式子因式分解;(2)根据题目中的例子,先将所求式子配方,然后即可得到当x为何值时,所求式子取得最大值,并求出这个最大值;(3)将题目中的式子化为完全平方式的形式,然后根据非负数的性质,即可得到a、b的值.解:(1)x2﹣4x﹣5=(x﹣2)2﹣9=(x﹣2+3)(x﹣2﹣3)=(x+1)(x﹣5),故答案为:(x+1)(x﹣5);(2)∵﹣2x2﹣4x+3=﹣2(x+1)2+5,∴当x=﹣1时,多项式﹣2x﹣4x+3有最大值,这个最大值是5;(3)∵,∴(﹣2ab+2b2)+(b2﹣2b+1)=0∴(a﹣b)2+(b﹣1)2=0∴a﹣b=0,b﹣1=0,解得,a=2,b=1.。
2014-2015学年度第二学期南昌市期中形成性测试卷-七年级(初一)数学学校 班级 考号 姓名__________________________◆◆◆◆◆◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆说明:考试可以使用计算器一、选择题(每小题3分,共8小题,满分24分,每小题只有一个正确的选项,请把正确答案前的字母填入题后的括号内)1、如图,直线AB 、CD 相交于点O ,所形成∠1,∠2,∠3和∠4中,一定相等的角有( ) A 、0对 B 、1对 C 、2对 D 、4对2、下列图形中,由∠1=∠2,能推导出AB ∥CD 成立的是( )3、下列四个实数中,绝对值最大的数是( ) A 、-20 B 、15 C 、319 D 、-3624、在算式(–0.3)□(–0.3)的□中填上运算符号,使其结果最大,这个运算符号( ) A 、加号 B 、减号 C 、乘号 D 、除号5、在平面直角坐标系中,点P (m ,m –2)不可能在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限6、若点A (m+2,3)向上平移1个单位,再向下平移2个单位得到点B (–4,n+5), 则( )A 、m=–7,n=-4B 、m=-4,n=-4C 、m=-4,n=-1D 、m=-5,n=37、已知⎩⎨⎧a+b=45a+2b=8,则2a+b 等于( )A 、1B 、2C 、3D 、48、方程20x+15y=316的正整数解的个数是( ) A 、0 B 、1 C 、2 D 、无数 二、填空题(每空2分,共8空,满分16分) 9、图“E”中同旁内角有 对;10、设9–11与9+11的小数部分分别为x ,y ,则x+y= ;11、有如下一组点的坐标(1,1)、(3,-2)、(5,4)、(7,–8),(9,16)、(11,-32)……根据这组规律,第7个点的坐标为 ;第8个点的坐标是 ;12、已知关于x 、y 的方程组⎩⎨⎧x+3y=4–a x –y=3a 的解是⎩⎨⎧x=my=n ;当m=n 是,a= ,当m 、n 互为相相反数时,a= ;13、如果一个两位数的十位数字与个位数字的和为6,那么这个两位数共有 个,它们分别是 ;三、解答题(每小题4分,共2小题,满分8分)14、求0.01的平方根(填空) 15、计算:5–25)× 5解:∵( )²=0.01∴0.01的平方根是 ,即±0.01= ,四、解下列方程组(每小题5分,共2小题,满分10分)16、⎩⎨⎧3x –5y=24x 2–y 3=117、⎩⎨⎧3(x –1)=y+55(y –1)=3(x+5)五、解答题(每小题6分,共3小题,满分18分)18、(列方程组解应用题)某高校共有5个一样规模的大餐厅3个一样规模的小餐厅.经过测试同时开放3个大餐厅、2个小餐厅,可供3300名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2100名学生就餐.(1)求1个大餐厅,1个小餐厅分别可供多少名学生就餐(2)若8个餐厅同时开放,能否供全校5300名学生就餐?请说明理由19、如图①,是由5个边长为1的正方形组成的“十”字形,把图②中的4个浅色直角三角形对应剪拼到4个深色直角三角形的位置从而得到图③,试求: (1)如图②中1个浅色直角三角形的面积? (2)图③中大正方形的边长20、已知(-4,-1)、(-2,0)、(-1,4)、(0,-5)、(0,0)、(0,1)、(1,4)、(2,2)、(3,0)、 (4,1)、(4,3)、(6,4)将这12个点按要求进行不同的分类(1)在坐标轴上的点有: ; 不在坐标轴上的点有: ; (2)横纵坐标的积等于4的有 ; 横纵坐标的积不等于4的有 ; 六、(本大题共3小题,每小题8分,共24分) 21、设α为无理数,n 为整数,我们定义:当|n –α|<|n+1–α|时,称α靠近n ;当|n –α|>|n+1–α|时,称α靠近n+1 例如:因为|1–2|<|2–2|,|1–3|>|2–3|,∴2靠近1,3靠近2 利用计算器探究:(1)在5、6、7、8中哪些靠近2?哪些靠近3?(2)在10、11、12、13、14、15中哪些靠近3?哪些靠近4?(3)在17、18、19、20、21、22、23、24中哪些靠近4?哪些靠近5? (4)猜想:在n²+1、n²+2、n²+3、……(n+1)²–1共有多少个无理数?其中多少个靠近n ?(友情提示:(n+1)²–1=n²+2n)22、如图,我们把杜甫《绝句》整齐排列放在平面直角坐标系中:(1)“东”、“窗”、和“柳”的坐标依次为 、 和 ;(2)将第1行与第3行对调,再将第4列与第6列对调,“里”由开始的坐标 依次变换到: 和 ;(3)“门”开始的坐标是(1,1)使它的坐标到(3,2)应该哪两行对调,同时哪两列对调?23、在平面直角坐标系中,若横坐标、纵坐标均为整数点成为格点,若一个多边形的顶点都在格点,则成为格点多边形,记格点多边形的面积为S ,其内部的格点数记为n ,边界的格点数记为l ,例如图中的△ABC 是格点三角形,其对应的S=1,n=0,l=4 (1)写出图中格点四边形DEFG 对应的S,n ,l ;(2)奥地利数学家皮克发现格点多边形的面积可表示为S=n+al+b ,其中a 、b 为常数 ①利用图中条件求a 、b 的值②若某个格点多边形对应的n=20,l=15,求s 的字 ③在图中画出面积等于5的格点正方形PQRS图③图②图①2014—2015学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共8小题,每小题3分,共24分)1. C2. B 3.A 4.D 5.B 6. C 7. D 8.A 二、填空题(本大题共8小空,每小空2分,共16分) 9.3 10.1 11.(13,64),(15,-128) 12. 0,-2 13. 6,15、24、33、42、51、60 三、(本大题共2小题,每小题4分,共8分) 14.解:∵( ±0.1 )2=0.01, …………………………………………2分∴0.01的平方根是 ±0.1 ,即= ±0.1 . …………………………………………4分15.解:原式=5-2=3 …………………………………………4分 四、解下列方程组(本大题共2小题,每小题5分,共10分) 16.解:方程组整理得:3524326x y x y -=⎧⎨-=⎩,②﹣①得:3y = -18,即y = -6, ………………………2分将y = -6代入①得:x = -2, 则方程组的解为2;6.x y =-⎧⎨=-⎩. ………………………5分17.解:方程组整理得:383520.x y x y -=⎧⎨-=-⎩,,①﹣②得:4y =28,即y = 7, ………………………2分将y = 7代入①得:x = 5, 则方程组的解为5;7.x y =⎧⎨=⎩. ………………………5分 五、(本大题共3小题,每小题6分,共18分) 18.解:(1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得323300;22100.x y x y +=⎧⎨+=⎩ 解之得900;300.x y =⎧⎨=⎩答:1个大餐厅可供900名学生就餐,1个小餐厅可供300名学生就餐.…5分(2)因为9005300354005300⨯+⨯=>,所以如果同时开放8个餐厅,能够供全校的5300名学生就餐. ……………6分 19.解:(1)图②中1个浅色直角三角形的面积1111=224⨯⨯; …………………2分 (2)=5=5大正方形的面积个小正方形面积之和 …………………4分…………………6分20.解:(1)在坐标轴上的点有:(-2,0)、(0,-5),(0,0),(0,1),(3,0), …………1分不在坐标轴上的点有:(-4,-1)、(-1,4)、(1,4),(2,2),(4,1),(4,3),(6,4);…………2分 (2)横、纵坐标的积等于4的有:(-4,-1)、(1,4),(2,2),(4,1), …………4分横、纵坐标的积不等于4的有:(-2,0)、(-1,4)、(0,-5),(0,0),(0,1),(3,0),(4,3),(6,4).…………6分六、(本大题共3小题,每小题8分,共24分) 21.解:(1靠近23; ……………………………………2分(234; ……………4分 (34,5;………………………6分 (4)猜测:共有2n 个无理数,其中n 个靠近n . ………………………8分22.解:(1)“东”(3,1)、“窗”(1,2)和“柳”(7,4); ………………3分(2)将第1行与第3行对调,“里”从(6,1)变成(6,3),(4,3);…6分 (3)将第1行与第2行对调,再将第1列与第3列对调. …………………8分23.解:(1)观察图形,可得S =3,n =1,l =6; …………………………………2分(2)①根据格点三角形ABC 及格点四边形DEFG 中的S 、n 、l 的值可得,41;16 3.a b a b +=⎧⎨++=⎩ 解得:1;21.a b ⎧=⎪⎨⎪=-⎩∴112S n l =+- , ……………………………………………………5分 ②将n =20,l =15代入可得12015126.52S =+⨯-=. ………………7分 ③如图 ……………………8分说明:其它正确图形均给满分.。
E2014-2015学年度第二学期期中考试试卷初一数学班级_____姓名_____学号_____分层班级_____成绩_____ 注意:时间100分钟,满分120分;一、选择题(每题3分,共30分) ( )B. C. 2. 下列图形中,不能..通过其中一个四边形平移得到的是 ( )3. 若a <b ,则下列结论正确的是( )A. -a <-bB.a 2>b 2C. 1-a <1-bD.a +3>b +34. 在平面直角坐标系xoy 中,若点P 在第四象限,且点P 到x 轴的距离为1,到y 轴的P 的坐标为( )A . (1,5- )B . (1,5-)C . (1,5-)D . (5,1-)5. 如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .1个B .2个C .3个D .4个6. 在坐标平面上两点A (-a +2,-b +1)、B (3a , b ),若点A 向右移动2个单位长度后,再向下移动3个单位长度后与点B 重合,则点B 所在的象限为( ). A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限7. 下列命题中,是真命题的个数是( )①两条直线被第三条直线所截,同位角相等②过一点有且只有一条直线与已知直线垂直③两个无理数的积一定是无理数④A.1个B.2个C.3个D.4个8.如图,∠ACB=90º,CD⊥AB于D,则下面的结论中,正确的是()①AC与BC互相垂直②CD和BC互相垂直③点B到AC的垂线段是线段CA④点C到AB的距离是线段CD⑤线段AC的长度是点A到BC的距离.A.①⑤B.①④C.③⑤D.④⑤9. 车库的电动门栏杆如图所示,BA垂直于地面AE于A,CD平行于地面AE,则∠ABC+∠BCD的大小是()A.150°B.180°C.270°D.360°10. 对于不等式组⎩⎨⎧<>bxax(a、b是常数),下列说法正确的是()A.当a<b时无解B.当a≥b时无解C.当a≥b时有解D.当ba=时有解二、填空题(每题2分,共20分)11. 在下列各数0.51525354、0、0.2、3π、227、13111无理数有.12. 若一个数的算术平方根与它的立方根相同,则这个数是.13. 当x_________14. 如图所示,直线AB与直线CD相交于点O,EO⊥AB,∠EOD=25°,则∠AOC=__________,∠BOC=__________班级_____姓名_____学号_____分层班级_____A BC15. 已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b的值为__________16. 把命题“在同一平面内,垂直于同一直线的两直线互相平行”改写成“如果……,那么……”的形式:17. 已知点M (3a -8, a -1).(1) 若点M 在第二象限, 并且a 为整数, 则点M 的坐标为 _________________; (2) 若N 点坐标为 (3, -6), 并且直线MN ∥x 轴, 则点M 的坐标为 ___________ .18. 如图,一条公路修到湖边时,需拐弯绕湖而过; 如果第一次拐角∠A 是120°,第二次拐角∠B 是150°,第三次拐角是∠C ,这时的道路恰好和 第一次拐弯之前的道路平行,则∠C 是__________19. 如图,点A (1,0)第一次跳动至点A 1(-1,1), 第二次跳动至点A 2(2,1),第三次跳动至点 A 3(-2,2),第四次跳动至点A 4(3,2),…, 依此规律跳动下去,点A 第100次跳动至 点A 100的坐标是______________.20.如图a , ABCD 是长方形纸带(AD ∥BC ), ∠DEF =19°, 将纸带沿EF 折叠成图b , 再沿BF 折叠成图c , 则图c 中的∠CFE 的度数是_____________;如果按照这样的方式再继续折叠下去,直到不能折叠为止,那么先后一共折叠的次数是_____________.三、解答题(21-23每题4分,24-25每题5分,26-29每题6分,30题3分,共49分)第18题图图a图c ABCD EFBGD F第19题图21.计算:1. 22.解方程:3(1)64x -=23. 解不等式5122(43)x x --≤,并把解集在数轴上表示出来.24. 解不等式组⎪⎩⎪⎨⎧+<-+-≤-32121212x x x x ,并写出该不等式组的整数解.25. 已知:)0,4(A ,),3(y B ,点C 在x 轴上,5=AC . (1)直接写出点C 的坐标; (2)若10=∆ABC S ,求点B 的坐标.26. 某地为更好治理湖水水质,治污部门决定购买10台污水处理设备.现有A B ,两种型A 型设备比购买3台B 型设备少6万元. (1)求a b ,的值.(2)经预算:治污部门购买污水处理设备的资金不超过105万元,你认为该部门有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理的污水量不低于2040吨,为了节约资金,请你为治污部门设计一种最省钱的购买方案.7. 如图,点A 在∠O 的一边OA 上.按要求画图并填空:(1)过点A 画直线AB ⊥OA ,与∠O 的另一边相交于点B ; (2)过点A 画OB 的垂线段AC ,垂足为点C ; (3)过点C 画直线CD ∥OA ,交直线AB 于点D ; (4)∠CDB= °;(5)如果OA=8,AB=6,OB=10,则点A 到直线OB 的距离为 .28. 完成证明并写出推理根据:已知,如图,∠1=132o ,∠ACB =48o ,∠2=∠3,FH ⊥AB 于H , 求证:CD ⊥AB .证明:∵∠1=132o ,∠ACB =48o ,∴∠1+∠ACB =180° ∴DE ∥BC∴∠2=∠DCB(____________________________) 又∵∠2=∠3 ∴∠3=∠DCB∴HF ∥DC(____________________________) ∴∠CDB=∠FHB. (____________________________) 又∵FH ⊥AB,∴∠FHB=90°(____________________________) ∴∠CDB=________°.∴CD ⊥AB. (____________________________)29. 在平面直角坐标系中, A 、B 、C 三点的坐标分别为(-6, 7)、(-3,0)、(0,3).O(1)画出△ABC ,则△ABC 的面积为___________(2)在△ABC 中,点C 经过平移后的对应点为 C ’(5,4),将△ABC 作同样的平移得到△A ’B ’C ’画出平移后的△A ’B ’C ’,写出点A ’,B ’的坐标为 A ’ (_______,_____),B ’ (_______,______); (3)P (-3, m )为△ABC 中一点,将点P 向右平移4个单位后,再向下平移6个单位得到点Q (n ,-3),则m = ,n = .30.两条平行线中一条直线上的点到另一条直线的垂线段的长度叫做两条平行线间的距离。
2014-2015学年陕西省西安市碑林区七年级(下)期中数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.(3分)下列运算正确的是( ) A .x•x 2=x 2 B .(xy )2=xy 2 C .(x 2)3=x 6D .x 2+x 2=x 42.(3分)如图,直线AB 和CD 相交于点O ,∠AOD 和∠BOC 的和为202°,那么∠AOC 的度数为( )A .89°B .101°C .79°D .110°3.(3分)父亲告诉小明:“距离地面越高,温度越低”,并且出示了下面的表格:那么根据表格中的规律,距离地面6千米的高空温度是( ) A .﹣10℃ B .﹣16℃ C .﹣18℃ D .﹣20℃4.(3分)若a=0.32,b=(﹣)﹣2,c=(﹣)0,则( ) A .a <b <c B .b <c <a C .a <c <b D .b <a <c5.(3分)如图,已知:∠1=∠2,那么下列结论正确的是( )A .∠C=∠DB .AD ∥BC C .AB ∥CD D .∠3=∠46.(3分)如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a ﹣1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则该矩形的面积是( )A.2cm 2 B .2acm 2 C .4acm 2 D .(a 2﹣1)cm 27.(3分)将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是( )A .1B .2C .3D .48.(3分)在动画片(喜羊羊与灰太狼)中,有一次灰太狼追赶懒羊羊,在距离羊村60米处的地方上追上了懒羊羊,如图反映了这一过程,其中a 表示与羊村的距离,t 表示时间.根据相关信息,以下说法错误的是( )A .一开始懒羊羊与灰太狼之间的距离是30米B .15秒后灰太狼追上了懒羊羊C .灰太狼跑了60米追上懒羊羊D .灰太狼追上懒羊羊时,懒羊羊跑了60米9.(3分)如图所示,下列各组判断错误的是( )A .∠1和∠4是对顶角B .∠2和∠3是同位角C .∠2和∠4是同旁内角D .∠1和∠2是内错角 10.(3分)已知(m 为任意实数),则P 、Q 的大小关系为( )A .P >QB .P=QC .P <QD .不能确定二、填空题(共6小题,每小题3分,满分18分)11.(3分)雾霾(PM2.5)含有有毒有害物质,对健康有很大的危害,被称为大气元凶,雾霾的直径大约是0.0000025m,把数据0.0000025用科学记数法表示为.12.(3分)如果x2+2(k﹣3)x+1是一个用完全平方公式得到的结果,则k的值是.13.(3分)“早穿皮袄,午穿纱,围着火炉吃西瓜.”这句谚语反映了我国新疆地区一天中,随变化而变化,其中自变量是,因变量是.14.(3分)现有2015条直线a1,a2,a3,…,a2015,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2015的位置是.15.(3分)已知:如图,∠EAD=∠DCF,要得到AB∥CD,则需要的条件.(填一个你认为正确的条件即可)16.(3分)观察:你发现了什么规律?根据你发现的规律,请你用含一个字母的等式将上面各式呈现的规律表示出来..三、作图题(共2小题,第1小题3分,第2小题4分,满分7分)17.(3分)已知∠AOB,点P在OA上,请以P为顶点,PA为一边作∠APC=∠O(不写作法,但必须保留作图痕迹)问:(1)PC与OB一定平行吗?答:(2)简要说明理由:18.(4分)如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.四、解答题(共5小题,满分30分)19.计算与化简:(1)(﹣2a2b)2•3ab3÷(﹣6a3bc)(2)(2x+3)(x﹣4)﹣2(x+2)(x﹣3)(3)运用公式计算:20152 (4)(a﹣2b+c)(a+2b﹣c)(5)[(a﹣2b)(a+2b)﹣(﹣a+2b)(﹣a+2b)﹣4b]÷(﹣4b)20.(4分)一个角的补角与这个角的余角的和是平角的还多1°,求这个角.21.(10分)如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠1,可得AD平分∠BAC,理由如下:∵AD⊥BC于点D,EG⊥BC于点G(已知),∴∠ADC=∠EGB=90°∴∠ADC+∠EGB=180°∴AD∥EG∴∠1=∠2=∠3又∵∠E=∠1(已知)∴=()∴AD平分∠BAC.22.(10分)图①是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)图②中的阴影部分的面积为;(2)观察图②,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)观察图③,你能得到怎样的代数等式呢?(4)试画出一个几何图形,使它的面积能表示(m+n)(m+3n);(5)若x+y=﹣6,xy=2.75,求x﹣y的值.23.(6分)一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩油量为y (升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这车辆在中途不加油的情况下最远能行驶多少千米?2014-2015学年陕西省西安市碑林区七年级(下)期中数学试卷参考答案一、选择题(共10小题,每小题3分,满分30分)1.C;2.C;3.B;4.C;5.C;6.C;7.D;8.D;9.D;10.C;二、填空题(共6小题,每小题3分,满分18分)11.2.5×10﹣6;12.2或4;13.温度;时间;时间;温度;14.垂直;15.∠EAD=∠B;16.n (n+2)+1=(n+1)2(n为正整数);三、作图题(共2小题,第1小题3分,第2小题4分,满分7分)17.不一定平行;18.;四、解答题(共5小题,满分30分)19.;20.;21.垂直的定义;等式的性质;同旁内角互补,两直线平行;两直线平行,内错角相等;∠E;两直线平行,同位角相等;∠2;∠3;等量代换;角平分线的定义;22.(m﹣n)2;(m+n)2﹣(m﹣n)2=4mn;23.;。
D BECA2014-2015学年第二学期期中考试初一数学试卷(考试时间:100分钟 满分:100分)一、选择题:(请把每题的答案填在答题卷...相应的表格中,每题2分,共20分) 1.以下列各组线段为边,能组成三角形的是( ▲ ) A .2cm 、2cm 、4cm B .8cm 、6cm 、3cm C .2cm 、6cm 、3cmD .11cm 、4cm 、6cm2.下列计算正确的是( ▲ )A .a 2²a 3=a 6B .y 3÷y 3=yC .3m+3n=6mnD .(x 3) 2=x 6 3.下列各多项式中,能用公式法分解因式的是 ( ▲ )A .a 2-b 2 +2abB .a 2+b 2 +abC .4a 2+12a +9D .25n 2+15n+9 4.如图,下列条件中:不能..判定AB//CD 的条件是( ▲ ) A .∠B +∠BCD =180° B .∠1=∠2 C .∠3=∠4 D .∠B =∠55.下列各式中能用平方差公式计算的是( ▲ ) A .)3)(3(b a b a +--- B .))(3(b a b a -+ C .)3)(3(b a b a --+ D .)3)(3(b a b a -+-6.一个多边形的每个内角都是144°,这个多边形是( ▲ )A .八边形B .十四边形C .十边形D .十二边形7.从边长为a 的正方形中去掉一个边长为b 的小正方形,如图,然后将剩余部分剪开拼成一个矩形,上述操作所能验证的等式是 ( ▲ ) A .a 2-b 2=(a+b)(a -b) B .(a -b) 2=a 2-2ab+b 2 C .(a+b) 2=a 2+2ab+b 2 D . a 2+ab=a(a+b) 8.下列说法中错误..的是 ( ▲ ) A .三角形的中线、角平分线、高都是线段 B .任意凸多边的外角和都是360°C .有一个内角是直角的三角形是直角三角形D .三角形的一个外角大于任何一个内角9.如图,若∠DBC =∠D ,BD 平分∠ABC ,∠ABC =50°,则∠BCD 的大小为( ▲ )A .100°B .130°C .50°D .150°10.在下列条件中①∠A +∠B =∠C ②∠A :∠B :∠C =1:2:3③∠A =21∠B =13∠C ④∠A =∠B =2∠C ⑤∠A =∠B =12∠C中能确定△ABC 为直角三角形的条件有 ( ▲ ) A 、2个 B 、3个 C 、4个 D 、5个第4题图第9题图第7题图二、填空(请把每题的答案填在答题卷...相应的横线上每小题2分,共20分) 11.若0.0000502=5.02³10n ,则n =___▲__. 12.等腰三角形两边长分别为3、6,则其周长为__▲__. 13.如果x 2+mx -n =(x+3)(x -2),则m +n 的值为__▲____. 14.若a +b =5,ab =6,则a 2+b 2=____▲___.15.一个多边形的内角和与外角和的和是1260°,那么这个 多边形的边数n =___▲___.16.若4x 2+mx +9是一个完全平方式,则数m 的值是___▲___. 17.如图,则∠A+∠B+∠C+∠D+∠E=___▲_____°.18.计算:1011004)25.0(⨯-=____▲_____.比较大小:333__▲___224. 19.分解因式:=--62x x ▲ .已知a m =2,a n =3,则a m +2n =__▲___. 20.已知13)(2=+b a ,1=ab ,则=-33b a _____▲_____.三、解答题(请写出必要的演算或推理过程, 请把每题的答案填在答题卷...相应 的位置上,8题共60分.) 21.计算:(共15分)(1) 0131(2009)()(2)2--++-; (2) a 3²a 3+(-3a 3)2+a 7÷a(3)⎪⎭⎫⎝⎛+-⋅22212b a b a ; (4) 2)1()1)(1(---+a a a ;(5)()()3232a b a b +--+ ;22.因式分解:(共12分)(1)x xy x 2422+-; (2)3244y y y -+-; (3)1822-x ; (4)(x +3y)2-9(x -y)2;23.(4分)如图,已知△ABC(1)画出△ABC 的中线AD ;(2)在图中分别画出△ABD 的高BE ,△ACD 的高CF ; (3)图中BE ,CF 的位置关系是______________.24.(4分)先化简,再求值:))(3(2))(()2(2b a b a b a b a b a ----++-,其中21=a ,b =-3. 25、(8分)(1)如图,∠1=∠B,∠A=35°,求∠2的度数.第17题图E F21DC B AED CBAC图1A OD B321EC图2A GOD B(2)如图,BD 是△ABC 的角平分线,DE∥BC,交AB 于点E ,∠A=45°,∠BDC=60°. 求∠ABD 、∠C 、∠BED 的度数.26.(本题5分)如图,已知∠1=∠2,∠B =∠D .AD 与BC 平行吗?为什么?27.(本题6分)阅读下列材料:“a 2≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完全平方式.例如:x 2+4x +5=x 2+4x +4+1=(x +2)2+1,∵(x +2)2≥0,∴(x +2)2+1≥1,∴x 2+4x +5≥1.试利用“配方法”解决下列问题: (1)填空:x 2-4x +5=(x )2+ ;(2)已知x 2-4x +y 2+2y +5=0,求x +y 的值; (3)比较代数式:x 2-1与2x -3的大小. 28.(本题6分)(1)如图1,试证明∠A+∠D=∠C+∠B ; 用第一题的结论解决直接下列问题:(2)如图2,CG 为∠ACB 的平分线,GD 为∠ADB 的平分线,AC 、BD 交于点O . ①若∠1=20°,∠2=26°,∠COD=100°则3∠= ,∠G= ; ②试说明∠A+∠B=2∠G .初一数学参考答案及评分标准一、选择题:(把每题的答案填在下表中,每题2分,共20分)题号12 3 4 5 6 7 8 9 10 答案 BDCBACADBC二、填空题:(每题2分,共20分)11. -5 12. 15 13. 7 14. 1315. 7 16. ±12 17. 180° 18. 4﹥ 19.(x -3)(x+2) 18 20. ±36 三、解答题:(共06分)21.(每小题3分,共15分)计算:(分步给分)(1) -5 (2)611a (3)3232b a b a +- (4)2a -2 (5)44922-+-b b a 22.把下列各式分解因式(每题3分,共12分)(分步给分)(1))12(2+-y x x (2)2)2(--y y (3)2(x +3)(x -3) (4))3(8x y x - 23.(4分)(1)画图 1分 (2)画图 2分 (3)平行 1分 24.(4分)原式=234b ab -……3分(分步给分) =-33 … 1分25.(4分) ∵∠1=∠B ∴DC ∥BA 2分 ∠2=145° 2分(4分) ∠ABD=15°1分、∠C=105°2分、∠BED =150° 1分 26.(5分) DC ∥B A 1分 证明略 4分(分步给分)27.(6分)(1)-2 1分 1 1分 (2)1 2分 (分步给分)(3)12-x ﹥2x-3 2分(分步给分)28.(6分)⑴证明略 2分 ⑵∠3=74°1分 ∠G=86°⑶证明略 2分。
2013~2014学年第二学期期中考试试卷七 年 级 数 学(考试时间:120分钟 满分:150分)一、选择题:(本大题共10小题,每小题4分,满分40分)1、在实数1415926.3,27,2,3.0,23π∙-中,无理数有 ( )A .1个B .2个C .3个D .4个2、-27的立方根与81的平方根之和是( ) A 、0 B 、-6C 、0或-6D 、63、在x 1·21,212+x ,πxy 3,y x +3,a+m1中,分式的个数有( )A 、2个B 、3个C 、4个D 、5个4.、生物小组要在温箱里培养A 、B 两种菌苗,A 种菌苗的生长温度)(C x ︒的范围是3835≤≤x ,B 种菌苗的生长温度)(C y ︒的范围是3436y ≤≤,那么温箱里的温度)(C T ︒应该设定的范围是 ( )A .3835≤≤TB .3635≤≤TC .3634≤≤TD .3836≤≤T5、关于不等式a x +-2≥2的解集如图所示,则a 的值是( )A 、0B 、2C 、-2D 、-4 6.下列运算正确的是 ( )A.3412a a a ⋅= .B.3362a a a += C.330a a ÷= D.2353515x x x ⋅=7. 1nm(纳米)=0.000000001m,则2.5纳米用科学记数法表示为( )A.2.5×10-8mB.2.5×10-9mC.2.5×10-10mD.0.25×10-9m8.已知230.5x y z==,则32x y z x y z +--+的值是( )A .17 B.7 C.1 D.139. 下列等式中正确的是( )A 、1-=-+-b a b a B 、0=++ba baC 、b a b a b a b a +-=+-232.03.01.0D 、ba b a b a ba -+=-+3121 10. 如图是测量一颗玻璃球体积的过程:(1)将300ml 的水倒进一个容量为500ml 的杯子中; (2)将四颗相同的玻璃球放入水中,结果水没有满; (3)再加一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在( )A.20cm 3以上,30cm 3以下 B.30cm 3以上,40cm 3以下 C.40cm 3以上,50cm 3以下 D.50cm 3以上,60cm 3以下二、填空题(本大题共4小题,每小题5分,满分20分.)27 23x x--≤11.不等式的正整数解是。
某某省某某市江宁区2014-2015学年七年级数学下学期期中试题一、选择题(共8小题,每小题2分,满分16分)1.化简(a2)3的结果为()A.a5B.a6C.a8D.a92.下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a43.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4 B.∠D=∠DCE C.∠1=∠2 D.∠B=∠24.若□×2xy=16x3y2,则□内应填的单项式是()A.4x2y B.8x3y2 C.4x2y2 D.8x2y5.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.80° B.100°C.108°D.110°6.如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长7.若一间教室的面积为80~120m2,104m2相当于n间教室的面积,则n最接近()A.10 B.100 C.1000 D.100008.若多项式a2+ka+9是完全平方式,则常数k的值为()A.6 B.3 C.±6D.±39.多项式2a2b3+6ab2的公因式是.10.“神威1号”巨型计算机速度达每秒384000000000次,用科学记数法表示每秒运算次.11.计算(﹣2)6÷(﹣2)2=.12.当a﹣b=3时,代数式a2﹣2ab+b2=.13.如图,在边长为80cm的正方形的一个角剪去一个边长为20cm的正方形,则剩下纸片的面积为cm2.14.如图,在五边形ABCDE中,点M、N分别在AB、AE的边上.∠1+∠2=100°,则∠B+∠C+∠D+∠E=.15.若a m=2,a n=3,则a m﹣n的值为.16.一个三角形的两条边长度分别为1和4,则第三边a可取.(填一个满足条件的数)17.如图,D为△ABC的BC边上的任意一点,E为AD的中点,△BEC的面积为5,则△ABC的面积为.18.如图,在△ABC中,沿DE折叠,点A落在三角形所在的平面内的点为A1,若∠A=30°,∠BDA1=80°,则∠CEA1的度数为.三.解答题(8题.共64分)19.计算(1)()﹣2÷(﹣)0+(﹣2)3;(2)(﹣a2b)2•2ab;(3)(2a﹣3b)2﹣4a(a﹣3b).20.先化简再计算:(3﹣2x)(3+2x)+4(﹣2﹣x)2,其中x=﹣0.25.21.把下列各式因式分解(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3;(3)x2(m﹣n)+y2(n﹣m).22.幂得乘方公式为:(a m)n=.(m、n是正整数),请写出这一公式的推理过程.23.已知a+b=3,ab=﹣10.求:(1)a2+b2的值;(2)(a﹣b)2的值.24.如图,已知FG⊥AB,CD⊥AB,垂足分别为G、D,∠1=∠2,求证:∠CED+∠ACB=180°.请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G、D(已知)∴∠FGB=∠CDB=90°(),∴GF∥CD ().∵GF∥CD(已证)∴∠2=∠BCD ()又∵∠1=∠2(已知),∴∠1=∠BCD (),∴,()∴∠CED+∠ACB=180°.25.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式:152=1×2×100+25=225,252=2×3×100+25=625,352=3×4×100+25=1225,…(1)根据上述格式反应出的规律填空:952=,(2)设这类等式左边两位数的十位数字为a,请用一个含a的代数式表示其结果,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出1952的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数想成的算式,请写出89×81的简便计算过程和结果.26.如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=80,则∠ABC+∠BCD=;∠E=;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为.2014-2015学年某某省某某市江宁区七年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.化简(a2)3的结果为()A.a5B.a6C.a8D.a9【考点】幂的乘方与积的乘方.【分析】利用幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数),求出即可.【解答】解:(a2)3=a6.故选:B.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.2.下列运算正确的是()A.a3+a4=a7B.2a3•a4=2a7C.(2a4)3=8a7D.a8÷a2=a4【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.【解答】解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.【点评】本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.3.如图,点E在BC的延长线上,下列条件中能判断AB∥CD的是()A.∠3=∠4B.∠D=∠DCE C.∠1=∠2D.∠B=∠2【考点】平行线的判定.【分析】根据内错角相等,两直线平行可分析出∠1=∠2可判定AB∥CD.【解答】解:A、∠3=∠4可判定BD∥AC,故此选项不合题意;B、∠D=∠DCE可判定BD∥AC,故此选项不合题意;C、∠1=∠2可判定AB∥CD,故此选项符合题意;D、∠B=∠2不能判定直线平行,故此选项不合题意;故选:C.【点评】此题主要考查了平行线的判定,关键是掌握同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.4.若□×2xy=16x3y2,则□内应填的单项式是()A.4x2y B.8x3y2 C.4x2y2 D.8x2y【考点】单项式乘单项式.【分析】利用单项式的乘除运算法则,进而求出即可.【解答】解:∵□×2xy=16x3y2,∴□=16x3y2÷2xy=8x2y.故选:D.【点评】此题主要考查了单项式的乘除运算,正确掌握运算法则是解题关键.5.如图,∠1,∠2,∠3,∠4是五边形ABCDE的外角,且∠1=∠2=∠3=∠4=70°,则∠AED的度数是()A.80° B.100°C.108°D.110°【考点】多边形内角与外角.【分析】根据多边形的外角和定理即可求得与∠AED相邻的外角,从而求解【解答】解:根据多边形外角和定理得到:∠1+∠2+∠3+∠4+∠5=360°,∴∠5=360﹣4×70=80°,∴∠AED=180﹣∠5=180﹣80=100°.故选B.【点评】本题主要考查了多边形的外角和定理,任何多边形的外角和是360°.6.如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长【考点】生活中的平移现象.【专题】探究型.【分析】可理解为将最左边一组电线向右平移所得,由平移的性质即可得出结论.【解答】解:∵a、b、c三户家用电路接入电表,相邻电路的电线等距排列,∴将a向右平移即可得到b、c,∵图形的平移不改变图形的大小,∴三户一样长.故选D.【点评】本题考查的是生活中的平移现象,熟知图形平移的性质是解答此题的关键.7.若一间教室的面积为80~120m2,104m2相当于n间教室的面积,则n最接近()A.10 B.100 C.1000 D.10000【考点】科学记数法—表示较大的数.【分析】利用有理数的除法运算法则化简求出即可.【解答】解:∵104÷100=100,∴104m2相当于n间教室的面积,则n最接近100.故选:B.【点评】此题考查了科学记数法的表示方法以及有理数除法,正确掌握运算法则是解题关键.8.若多项式a2+ka+9是完全平方式,则常数k的值为()A.6 B.3 C.±6D.±3【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵a2+ka+9=a2+ka+32,∴ka=±2×a×3,解得k=±6.故选为:C.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.9.多项式2a2b3+6ab2的公因式是2ab2.【考点】公因式.【分析】根据确定多项式中各项的公因式,可概括为三“定”:①定系数,即确定各项系数的最大公约数;②定字母,即确定各项的相同字母因式(或相同多项式因式);③定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂找出公因式即可.【解答】解:多项式2a2b3+6ab2的公因式是2ab2.故答案为:2ab2.【点评】此题主要考查了找公因式,关键是掌握找公因式的方法.10.“神威1号”巨型计算机速度达每秒384000000000次,用科学记数法表示每秒运算 3.84×1011次.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于384000000000有12位,所以可以确定n=12﹣1=11.【解答】解:384 000 000 000=3.84×1011.故答案为:3.84×1011.【点评】此题考查了科学记数法表示较大的数的方法,准确确定a与n值是关键.11.计算(﹣2)6÷(﹣2)2= 16 .【考点】同底数幂的除法.【分析】根据同底数幂的除法,可得答案.【解答】解:(﹣2)6÷(﹣2)2=(﹣2)6﹣2=(﹣2)4=16,故答案为:16.【点评】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.12.当a﹣b=3时,代数式a2﹣2ab+b2= 9 .【考点】完全平方公式.【分析】根据完全平方公式,即可解答.【解答】解:a2﹣2ab+b2=(a﹣b)2=32=9,故答案为:9.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.13.如图,在边长为80cm的正方形的一个角剪去一个边长为20cm的正方形,则剩下纸片的面积为6000 cm2.【考点】平方差公式的几何背景.【专题】计算题.【分析】由大正方形的面积减去小正方形的面积,求出剩下纸片的面积即可.【解答】解:根据题意得:802﹣202=(80+20)×(80﹣20)=6000(cm2).故答案为:6000.【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.14.如图,在五边形ABCDE中,点M、N分别在AB、AE的边上.∠1+∠2=100°,则∠B+∠C+∠D+∠E= 460°.【考点】多边形内角与外角;三角形内角和定理.【分析】先求出∠BMN+∠ENM=360°﹣(∠1+∠2)=360°﹣100°=260°,再用六边形内角和减去∠BMN+∠ENM的和即可.【解答】解:∠BMN+∠ENM=360°﹣(∠1+∠2)=360°﹣100°=260°,六边形BCDENM的内角和为:(6﹣2)•180°=720°,∠B+∠C+∠D+∠E=720°﹣260°=460°.故答案为:460°.【点评】本题主要考查了平角的定义、多边形的内角和公式,熟记公式是解题的关键.15.若a m=2,a n=3,则a m﹣n的值为.【考点】同底数幂的除法.【分析】根据同底数幂的除法底数不变指数相减,可得答案.【解答】解:a m﹣n=a m÷a n=2÷3=,故答案为:.【点评】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减.16.一个三角形的两条边长度分别为1和4,则第三边a可取 4 .(填一个满足条件的数)【考点】三角形三边关系.【分析】根据三角形的三边关系可得4﹣1<第三边<4+1,再解可得第三边的X围,然后再确定答案.【解答】解:设第三边长为x,由题意得:4﹣1<x<4+1,解得:3<x<5,故答案为:4.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的X围是:大于已知的两边的差,而小于两边的和.17.如图,D为△ABC的BC边上的任意一点,E为AD的中点,△BEC的面积为5,则△ABC的面积为10 .【考点】三角形的面积.【分析】由于△BCE和△ABC等底,且高的关系为1:2,所以△ABC的面积是△BEC的面积的2倍.【解答】解:过点A和点E作AF⊥BC,EG⊥BC,如图,,∵AF⊥BC,EG⊥BC,E为AD的中点,∴AF=2EG,∵△BCE和△ABC等底,∴△ABC的面积是△BEC的面积的2倍,即为10,故答案为:10.【点评】此题考查三角形面积,关键是根据△BCE和△ABC等底,且高的关系为1:2来分析.18.如图,在△ABC中,沿DE折叠,点A落在三角形所在的平面内的点为A1,若∠A=30°,∠BDA1=80°,则∠CEA1的度数为20°.【考点】翻折变换(折叠问题).【分析】由∠BDA1=80°,可知邻补角的度数,根据折叠的性质知∠ADE=∠A1DE,又∠A=30°,运用三角形的外角和求出∠DEC=80°,再根据邻补角定义和折叠的性质知∠AED=∠A1ED=100°,从而∠CEA1=∠A1ED﹣∠DEC=20°.【解答】解:∵∠BDA1=80°,∴∠ADA1=100°,根据折叠的性质知∠ADE=∠A1DE=,∠ADA1=50°,又∵∠A=30°,∴∠DEC=80°,∴∠AED=∠A1ED=100°,∴∠CEA1=∠A1ED﹣∠DEC=20°.故答案为:20°.【点评】本题考查了翻折变换(折叠问题)、三角形内角和及角的和差,熟悉折叠的性质是解决问题的关键.折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三.解答题(8题.共64分)19.计算(1)()﹣2÷(﹣)0+(﹣2)3;(2)(﹣a2b)2•2ab;(3)(2a﹣3b)2﹣4a(a﹣3b).【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)先算负整数指数幂、0指数幂与乘方,再算除法,最后算加法;(2)先算积的乘方,再利用单项式的乘法计算;(3)利用完全平方公式和整式的乘法计算方法计算合并即可.【解答】解:(1)原式=9÷1+(﹣8)=9﹣8=1;(2)原式=a4b2•2ab=2a5b3;(3)原式=4a2﹣12ab+9b2﹣4a2+12ab=9b2.【点评】此题考查整式的混合运算,掌握计算方法与计算公式是解决问题的关键.20.先化简再计算:(3﹣2x)(3+2x)+4(﹣2﹣x)2,其中x=﹣0.25.【考点】整式的混合运算—化简求值.【分析】先算乘法,再合并同类项,最后代入求出即可.【解答】解:(3﹣2x)(3+2x)+4(﹣2﹣x)2=9﹣4x2+16+16x+4x2=25+16x,当x=﹣0.25时,原式=25+16×(﹣0.25)=21.【点评】本题考查了整式的混合运算和求值的应用,能运用整式的混合运算法则进行化简是解此题的关键,难度适中.21.把下列各式因式分解(1)2x2﹣8y2;(2)2x3y﹣4x2y2+2xy3;(3)x2(m﹣n)+y2(n﹣m).【考点】提公因式法与公式法的综合运用.【专题】计算题.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式变形后,提取公因式,再利用平方差公式分解即可.【解答】解:(1)原式=2(x2﹣4y2)=2(x+2y)(x﹣2y);(2)原式=2xy(x2﹣2xy+y2)=2xy(x﹣y)2;(3)原式=(m﹣n)(x2﹣y2)=(m﹣n)(x+y)(x﹣y).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.幂得乘方公式为:(a m)n= a mn.(m、n是正整数),请写出这一公式的推理过程.【考点】幂的乘方与积的乘方.【分析】首先判断出(a m)n=a mn(m,n是正整数),然后根据同底数幂的乘法法则,写出这一公式的推理过程即可.【解答】解:幂得乘方公式为:(a m)n=a mn,∵(a m)n=a m•a m•a m…a m,==a mn,∴(a m)n=a mn成立.故答案为:a mn.【点评】(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.23.已知a+b=3,ab=﹣10.求:(1)a2+b2的值;(2)(a﹣b)2的值.【考点】完全平方公式.【分析】(1)将a+b=3两边平方,利用完全平方公式展开,把ab的值代入计算即可求出所求式子的值;(2)利用完全平方公式变形,将a+b与ab的值代入计算即可求出值.【解答】解:(1)将a+b=3两边平方得:(a+b)2=a2+b2+2ab=9,把ab=﹣10代入得:a2+b2=29;(2)(a﹣b)2=(a+b)2﹣4ab=29+20=49.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.24.如图,已知FG⊥AB,CD⊥AB,垂足分别为G、D,∠1=∠2,求证:∠CED+∠ACB=180°.请你将小明的证明过程补充完整.证明:∵FG⊥AB,CD⊥AB,垂足分别为G、D(已知)∴∠FGB=∠CDB=90°(垂直的定义),∴GF∥CD (同位角相等,两直线平行).∵GF∥CD(已证)∴∠2=∠BCD (两直线平行,同位角相等)又∵∠1=∠2(已知),∴∠1=∠BCD (等量代换),∴DE∥BC,(错角相等,两直线平行)∴∠CED+∠ACB=180°两直线平行,同旁内角互补.【考点】平行线的判定与性质.【专题】推理填空题.【分析】由FG⊥AB,CD⊥AB,得到∠FGB=∠CDB=90°,根据平行线的判定和性质得到∠2=∠BCD 由等量代换得到∠1=∠BCD,证出DE∥BC,从而证得结论.【解答】证明:∵FG⊥AB,CD⊥AB,垂足分别为G、D(已知)∴∠FGB=∠CDB=90°(垂直的定义),∴GF∥CD (同位角相等,两直线平行).∵GF∥CD(已证)∴∠2=∠BCD (两直线平行,同位角相等)又∵∠1=∠2(已知),∴∠1=∠BCD (等量代换),∴DE∥BC,(内错角相等,两直线平行)∴∠CED+∠ACB=180.(两直线平行,同旁内角互补)故答案为:垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;等量代换;DE∥BC;内错角相等,两直线平行;两直线平行,同旁内角互补.【点评】本题考查了平行线的判定与性质,属于基础题,关键是正确利用平行线的性质与判定定理证明.25.我们知道简便计算的好处,事实上,简便计算在好多地方都存在,观察下列等式:152=1×2×100+25=225,252=2×3×100+25=625,352=3×4×100+25=1225,…(1)根据上述格式反应出的规律填空:952= 9025 ,(2)设这类等式左边两位数的十位数字为a,请用一个含a的代数式表示其结果100a(a+1)+25 ,(3)这种简便计算也可以推广应用:①个位数字是5的三位数的平方,请写出1952的简便计算过程及结果,②十位数字相同,且个位数字之和是10的两个两位数想成的算式,请写出89×81的简便计算过程和结果.【考点】平方差公式;规律型:数字的变化类;完全平方公式.【分析】(1)根据152=1×2×100+25=225,252=2×3×100+25=625,352=3×4×100+25=1225,…,可得952=9×10×100+25,据此解答即可.(2)根据152=1×2×100+25=225,252=2×3×100+25=625,352=3×4×100+25=1225,…,可得(a5)2=a×(a+1)×100+25,据此解答即可.(3)①1952=前两位数字×(前两位数字+1)×100+25,据此解答即可.②根据89×81=(80+9)×(80+1),求出89×81的结果是多少即可.【解答】解:(1)∵152=1×2×100+25=225,252=2×3×100+25=625,352=3×4×100+25=1225,…,∴952=9×10×100+25=9025.(2)∵152=1×2×100+25=225,252=2×3×100+25=625,352=3×4×100+25=1225,…,∴(a5)2=a×(a+1)×100+25=100a(a+1)+25.(3)①1952=19×20×100+25=38025.②89×81=(80+9)×(80+1)=80×80+80×(9+1)+9×1=6400+800+9=7209故答案为:9025、100a(a+1)+25.【点评】(1)此题主要考查了平方差公式,要熟练掌握,应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方;③公式中的a和b可以是具体数,也可以是单项式或多项式;④对形如两数和与这两数差相乘的算式,都可以运用这个公式计算,且会比用多项式乘以多项式法则简便.(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(3)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(4)此题还考查了合并同类项的方法,要熟练掌握.26.如图,四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F.(1)若∠F=80,则∠ABC+∠BCD=200°;∠E=100°;(2)探索∠E与∠F有怎样的数量关系,并说明理由;(3)给四边形ABCD添加一个条件,使得∠E=∠F所添加的条件为AB∥CD.【考点】多边形内角与外角;三角形内角和定理.【分析】(1)先根据三角形内角和定理求出∠FBC+∠BCF=180°﹣∠F=100°,再由角平分线定义得出∠ABC=2∠FBC,∠BCD=2∠BCF,那么∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;由四边形ABCD的内角和为360°,得出∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=160°.由角平分线定义得出∠DAE=∠BAD,∠ADE=∠CDA,那么∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=80°,然后根据三角形内角和定理求出∠E=180°﹣(∠DAE+∠ADE)=100°;(2)由四边形ABCD的内角和为360°得到∠BAD+∠CDA+∠ABC+∠BCD=360°,由角平分线定义得出∠DAE+∠ADE+∠FBC+∠BCF=180°,又根据三角形内角和定理有∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,那么∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,于是∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)由(2)可知∠E+∠F=180°,如果∠E=∠F,那么可以求出∠E=∠F=90°,根据三角形内角和定理求出∠DAE+∠ADE=90°,再利用角平分线定义得到∠BAD+∠CDA=180°,于是AB∥CD.【解答】解:(1)∵∠F=80,∴∠FBC+∠BCF=180°﹣∠F=100°.∵∠ABC、∠BCD的角平分线交于点F,∴∠ABC=2∠FBC,∠BCD=2∠BCF,∴∠ABC+∠BCD=2∠FBC+2∠BCF=2(∠FBC+∠BCF)=200°;∵四边形ABCD的内角和为360°,∴∠BAD+∠CDA=360°﹣(∠ABC+∠BCD)=160°.∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∴∠DA E=∠BAD,∠ADE=∠CDA,∴∠DAE+∠ADE=∠BAD+∠CDA=(∠BAD+∠CDA)=80°,∴∠E=180°﹣(∠DAE+∠ADE)=100°;(2)∠E+∠F=180°.理由如下:∵∠BAD+∠CDA+∠ABC+∠BCD=360°,word∵四边形ABCD的内角∠BAD、∠CDA的角平分线交于点E,∠ABC、∠BCD的角平分线交于点F,∴∠DAE+∠ADE+∠FBC+∠BCF=180°,∵∠DAE+∠ADE+∠E=180°,∠FBC+∠BCF+∠F=180°,∴∠DAE+∠ADE+∠E+∠FBC+∠BCF+∠F=360°,∴∠E+∠F=360°﹣(∠DAE+∠ADE+∠FBC+∠BCF)=180°;(3)AB∥CD.故答案为200°;100°;AB∥CD.【点评】本题考查了三角形、四边形内角和定理,角平分线定义,平行线的判定,等式的性质,利用数形结合,理清角度之间的关系是解题的关键.21 / 21。
2014-2015学年上海市浦东新区第四教育署七年级(下)期中数学试卷一、单项选择题(共6题,每题2分,满分12分)1.下列各数中:0、﹣、、、π、0.3737737773…(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),无理数有()A.1个B.2个C.3个D.4个2.下列四个式子中,正确的是()A.=±9 B.﹣=6 C.(+)2=5 D.16=43.如图,要使AD∥BC,那么可以选择下列条件中的()A.∠1=∠4 B.∠2=∠3 C.∠1+∠B=180°D.∠B=∠D4.点P为互相垂直的直线a、b外一点,过点P分别画直线c、d,使c∥a、d⊥a,那么下列判断中正确的是()A.c∥b B.c∥d C.b⊥c D.b⊥d5.下列说法中,正确的是()A.两条直线被第三条直线所截,同位角相等B.联结直线外一点到直线上各点的所有线段中,垂线最短C.经过一点,有且只有一条直线与已知直线平行D.经过一点,有且只有一条直线与已知直线垂直6.如图,在数轴上表示1、的对应点分别为A、B,B关于点A的对称点为点C,则点C所表示的数是()A.﹣2 B.2﹣C.﹣1 D.1﹣二、填空题(共14题,每题2分,满分28分)7.16的平方根是.8.如果a4=81,那么a=.9.比较大小:﹣2﹣3(填“<”或“=”或“>”)10.计算:8=.11.计算:(+2)2013•(﹣2)2013=.12.根据浦东新区2010年第六次全国人口普查公报,浦东新区常住人口为5 044 430人,数字5 044 430可用科学记数法表示为(保留3个有效数字).13.在数轴上,如果点A、点B所对应的数分别为﹣、2,那么A、B两点的距离AB=.14.写出图中∠B的一个同位角.15.如图,直线c与a、b都相交,a∥b,如果∠2=110°,那么∠1=.16.如图,若∠BOC=44°,BO⊥DE,垂足为O,则∠AOD=度.17.如图,△ABC中,CD⊥AC,CE⊥AB,垂足分别是C、E,那么点C到线段AB的距离是线段的长度.18.如图,直线a∥b,点A、B位于直线a上,点C、D位于直线b上,且AB:CD=2:3,如果△ABC 的面积为6,那么△BCD的面积为.19.如图,将两个大小一致的小正方形沿对角线剪开,拼成一个大正方形ABCD,若小正方形的边长是1厘米,则大正方形ABCD的边长是厘米.20.一个角的两边与另一个角的两边分别平行,其中一个角为40°,则另一角为.三、计算题(共5题,21、22每题5分,23、24、25每题6分,满分28分)21.计算:﹣++.22.计算:×()﹣1÷.23.计算:×(﹣)2×÷.24.计算:3﹣27+()﹣2﹣(+2)0.25.利用幂的运算性质计算:2×÷.四、解答题(共4题,26、27、28每题6分,29题8分,满分26分)2)在图中画出表示点P到直线a距离的线段PM;(2)过点P画出直线b的平行线c,与直线a交于点N;(3)如果直线a与b的夹角为40°,那么∠MPN=°.27.如图,已知AB∥CD,∠1=(4x﹣25)°,∠2=(85﹣x)°,求∠1的度数.28.已知:如图,∠A=∠D,∠B=∠C,那么∠1与∠2互补吗?为什么?2)如图(a),如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系?为什么?解:过点E作EF∥AB,如图(b),则∠ABE+∠BEF=180°()因为∠ABD+∠BED+∠EDC=360°(已知)所以∠FED+∠EDC=°()所以()所以AB∥CD时,∠1,∠2,∠3,∠4满足.五、综合题(满分6分)30.皓皓同学在学习了“平方根”这节课后知道了“负数在实数范围内没有平方根”,她对这句话产生了兴趣,她想知道负数在其他范围内是否有平方根,所以她上网查找了以下一些资料.数的概念是从实践中产生和发展起来的,在学习了实数以后,像x2=﹣1这样的方程还是没有实数解的,因为没有一个实数的平方等于﹣1,即负数在实数范围内没有平方根,所以为了了解形如x2=﹣1这类方程的解,就要引入一个新的数i.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.在这种情况下,i可以与实数b相乘再同实数a相加从而得到形如“a+bi”(a、b为实数)的数,人们把这种数叫作复数,a叫这个复数的实部,b叫做这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.比如:(1)(2+i)+(4﹣3i)=6﹣2i(2)(i)2=﹣3(3)(5+i)(5﹣i)=52﹣i2=25﹣(﹣1)=26这样数的范围就由实数扩充到了复数,在这种规定下,负数在复数范围内就有平方根.比如:±i就是﹣1的平方根.根据上面的材料解答以下问题:(1)计算:①(2+i)﹣(3﹣2i)=②i3=③(3+i)2=(2)在负数范围内﹣9的平方根是(3)在复数范围内分解因式x4﹣4=.2014-2015学年上海市浦东新区第四教育署七年级(下)期中数学试卷参考答案与试题解析一、单项选择题(共6题,每题2分,满分12分)1.下列各数中:0、﹣、、、π、0.3737737773…(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),无理数有()A.1个B.2个C.3个D.4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解答:解:无理数有:﹣,π,0.3737737773…(它的位数无限且相邻两个“3”之间“7”的个数依次加1个),共3个.故选C.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.下列四个式子中,正确的是()A.=±9 B.﹣=6 C.(+)2=5 D.16=4考点:实数的运算;分数指数幂.分析:A、表示81的算术平方根;B、先算﹣6的平方,然后再求的值;C、利用完全平方公式计算即可;D、=.解答:解:A、,故A错误;B、﹣==﹣6,故B错误;C、=2+2+3=5+2,故C错误;D、==4,故D正确.故选:D.点评:本题主要考查的是实数的运算,掌握算术平方根、平方根和二次根式的性质以及完全平方公式是解题的关键.3.如图,要使AD∥BC,那么可以选择下列条件中的()A.∠1=∠4 B.∠2=∠3 C.∠1+∠B=180°D.∠B=∠D考点:平行线的判定.分析:根据内错角相等两直线平行即可做出选择.解答:解:A、欲证AD∥BC,那可以选择:同位角相等,内错角相等,同旁内角互补,∵∠1和∠4是内错角,且∠1=∠4,∵要使AD∥BC,那么可以选择∠1=∠4.故本选项正确;B、∵∠2=∠3,可以证明AB∥CD,而不能证明AD∥BC,故本选项错误;C、∵∠1和∠B不是同旁内角,故本选项错误;D、∵∠B和∠D不是同位角,也不是内错角,所以不能证明AB∥CD;故选A.点评:此题主要考查学生对平行线的判定这一知识点的理解和掌握,比较简单,属于基础题.4.点P为互相垂直的直线a、b外一点,过点P分别画直线c、d,使c∥a、d⊥a,那么下列判断中正确的是()A.c∥b B.c∥d C.b⊥c D.b⊥d考点:平行线的判定与性质;垂线.分析:根据题意作出图形后即可得到正确结论.解答:解:根据题意作出如下图形:根据图形知:b⊥c.故选C.点评:本题考查了平行线的性质与判定及垂线的定义,解题的关键是根据题意作出图形,也可以一步步的推导.5.下列说法中,正确的是()A.两条直线被第三条直线所截,同位角相等B.联结直线外一点到直线上各点的所有线段中,垂线最短C.经过一点,有且只有一条直线与已知直线平行D.经过一点,有且只有一条直线与已知直线垂直考点:命题与定理.分析:分别利用平行线的性质、垂线段最短、平行线的判定以及垂直的判定分析得出即可.解答:解:A、两条平行线被第三条直线所截,同位角相等,错误;B、联结直线外一点到直线上各点的所有线段中,垂线段最短,错误;C、经过直线外一点,有且只有一条直线与已知直线平行,错误;D、经过一点,有且只有一条直线与已知直线垂直,正确;故选D.点评:此题主要考查了命题与定理,正确把握相关定义是解题关键.6.如图,在数轴上表示1、的对应点分别为A、B,B关于点A的对称点为点C,则点C所表示的数是()A.﹣2 B.2﹣C.﹣1 D.1﹣考点:实数与数轴.分析:首先根据表示1、的对应点分别为点A、点B可以求出线段AB的长度,然后根据点B和点C关于点A对称,求出AC的长度,最后可以计算出点C的坐标.解答:解:∵表示1、的对应点分别为点A、点B,∴AB=﹣1,∵点B关于点A的对称点为点C,∴CA=AB,∴点C的坐标为:1﹣(﹣1)=2﹣.故选B.点评:本题考查的知识点为实数与数轴,解决本题的关键是求数轴上两点间的距离就让右边的数减去左边的数.知道两点间的距离,求较小的数,就用较大的数减去两点间的距离.二、填空题(共14题,每题2分,满分28分)7.16的平方根是±4.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.8.如果a4=81,那么a=3或﹣3.考点:有理数的乘方.分析:根据有理数的开方运算计算即可.解答:解:∵a4=81,∴(a2)2=81,∴a2=9,∴a=3或﹣3.故答案为:3或﹣3.点评:本题考查了有理数的乘方运算的逆运算,解题时注意不用漏解.9.比较大小:﹣2>﹣3(填“<”或“=”或“>”)考点:实数大小比较.分析:根据负数比较大小的法则进行解答即可.解答:解:因为|﹣2|=2≈2.828<|﹣3|=3,所以:﹣2>﹣3,故答案为:>.点评:本题考查的是实数的大小比较,熟知负数比较大小的法则是解答此题的关键.10.计算:8=.考点:分数指数幂.分析:首先把8化成23,然后根据幂的乘方的计算方法,求出算式8的值是多少即可.解答:解:8=(23)==.故答案为:.点评:(1)此题主要考查了分数指数幂问题,要熟练掌握,解答此题的关键是把8化成23.(2)此题还考查了幂的乘方,要熟练掌握,解答此题的关键是要明确:(a m)n=a mn(m,n是正整数).11.计算:(+2)2013•(﹣2)2013=﹣1.考点:二次根式的混合运算.分析:首先逆用积的乘方公式将原式变形为[()()]2013,然后利用平方差公式计算出()(\sqrt{3}.﹣2)的值,最后再计算乘方即可解答:解:原式=[()()]2013=(﹣1)2013=﹣1.点评:本题主要考查的是二次根式的计算,逆用积的乘方公式和平方差公式是解题的关键.12.根据浦东新区2010年第六次全国人口普查公报,浦东新区常住人口为5 044 430人,数字5 044 430可用科学记数法表示为 5.04×106(保留3个有效数字).考点:科学记数法与有效数字.分析:较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.解答:解:数据5 044 430用科学记数法(结果保留三个有效数字)表示为:5.04×106,故答案为:5.04×106.点评:此题考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.13.在数轴上,如果点A、点B所对应的数分别为﹣、2,那么A、B两点的距离AB=3.考点:两点间的距离;实数的运算.分析:求数轴上两点之间的距离:数轴上表示两个点所对应的两个数的差的绝对值,即用较大的数减去较小的数即可.解答:解:∵点A、点B所对应的数分别为﹣、2,∴A、B两点的距离AB=2﹣(﹣),=3.故答案为:3.点评:本题主要考查了两点间的距离,能根据求数轴上两点间的距离的方法,列出式子是本题的关键.14.写出图中∠B的一个同位角∠ECD或∠ACD.考点:同位角、内错角、同旁内角.专题:开放型.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,进行分析可得答案.解答:解:∠B的同位角是∠ECD,∠ACD,故答案为:∠ECD或∠ACD.点评:此题主要考查了三线八角,关键是掌握同位角的边构成“F“形.15.如图,直线c与a、b都相交,a∥b,如果∠2=110°,那么∠1=70°.考点:平行线的性质.分析:先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.解答:解:∵a∥b,∠2=110°,∴∠3=∠2=110°,∴∠1=1820°﹣∠3=180°﹣110°=70°.故答案为:70°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.16.如图,若∠BOC=44°,BO⊥DE,垂足为O,则∠AOD=46度.考点:垂线.分析:本题需先根据已知条件和所给的图形,列出所要求的式子,即可求出答案.解答:解:∵∠BOC=44°,BO⊥DE,∴∠AOD=180°﹣44°﹣90°=46°.故答案为:46°.点评:本题主要考查了垂线,在解题时要根据已知有条件,再结合图形列出式子是本题的关键.17.如图,△ABC中,CD⊥AC,CE⊥AB,垂足分别是C、E,那么点C到线段AB的距离是线段CE的长度.考点:点到直线的距离.专题:常规题型.分析:根据点到直线的距离的定义,找出点C到AB的垂线段即可.解答:解:如图,∵CE⊥AB,垂足是E,∴点C到线段AB的距离是线段CE的长度.故答案为:CE.点评:本题考查了点到直线的距离的定义,点到直线的距离就是这个点到这条直线的垂线段的长度.18.如图,直线a∥b,点A、B位于直线a上,点C、D位于直线b上,且AB:CD=2:3,如果△ABC 的面积为6,那么△BCD的面积为9.考点:平行线之间的距离;三角形的面积.分析:根据两平行线间的距离处处相等,结合三角形的面积公式,知△BCD和△ABC的面积比等于CD:AB,从而进行计算.解答:解:∵a∥b,∴△BCD的面积:△ABC的面积=CD:AB=3:2,∴△BCD的面积=6×=9.故答案为:9.点评:此题考查了平行线间的距离以及三角形的面积比的一种方法,即等高的两个三角形的面积比等于它们的底的比.19.如图,将两个大小一致的小正方形沿对角线剪开,拼成一个大正方形ABCD,若小正方形的边长是1厘米,则大正方形ABCD的边长是厘米.考点:正方形的性质.专题:数形结合.分析:易得大正方形的面积,求得大正方形面积的算术平方根即为所求的边长.解答:解:∵小正方形的边长是1厘米,∴小正方形的面积为1平方厘米,∴大正方形的面积为2平方厘米,∴大正方形的边长为厘米,故答案为.点评:考查有关正方形的计算;根据正方形的面积求边长是解决此类问题的基本思路.20.一个角的两边与另一个角的两边分别平行,其中一个角为40°,则另一角为40°或140°.考点:平行线的性质.分析:由一个角的两边与另一个角的两边分别平行,可得这两个角相等或互补,又由其中一个角为40°,则可求得另一角的度数.解答:解:∵一个角的两边与另一个角的两边分别平行,∴这两个角相等或互补,∵一个角为40°,∴另一角为:40°或140°.故答案为:40°或140°.点评:此题考查了平行线的性质.此题比较简单,解题的关键是掌握若一个角的两边与另一个角的两边分别平行,则这两个角相等或互补.三、计算题(共5题,21、22每题5分,23、24、25每题6分,满分28分)21.计算:﹣++.考点:二次根式的加减法.分析:直接合并同类项即可.解答:解:原式=(﹣++)=(4﹣1)=3.点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.22.计算:×()﹣1÷.考点:二次根式的乘除法.分析:先算负指数幂,再从左向右的顺序运算即可.解答:解:×()﹣1÷=×÷,=3÷,=3.点评:本题主要考查了二次根式的乘除法,解题的关键是熟记二次根式的乘除法的法则.23.计算:×(﹣)2×÷.考点:二次根式的乘除法.分析:先开方及乘方,再从左向右运算即可.解答:解:×(﹣)2×÷=(﹣1)×3×÷,=(9﹣3),=9﹣3.点评:本题主要考查了二次根式的乘除法,解题的关键是熟记二次根式的乘除法的法则.24.计算:3﹣27+()﹣2﹣(+2)0.考点:二次根式的混合运算;分数指数幂;零指数幂;负整数指数幂.分析:利用分数指数幂,零指数幂及负整数指数幂的法则结合二次根式的混合运算顺序求解即可.解答:解:3﹣27+()﹣2﹣(+2)0=﹣3+3﹣1,=﹣1.点评:本题主要考查了二次根式的混合运算,解题的关键是熟记分数指数幂,零指数幂及负整数指数幂的法则.25.利用幂的运算性质计算:2×÷.考点:分数指数幂.分析:首先分别求出2、、的值各是多少,然后根据同底数幂的乘法、同底数幂的除法的运算方法,求出算式2×÷的值是多少即可.解答:解:2×÷=2×=23=8点评:(1)此题主要考查了分数指数幂问题,要熟练掌握,解答此题的关键是求出2的值是多少.(2)此题还考查了同底数幂的乘法、同底数幂的除法的运算方法,要熟练掌握.四、解答题(共4题,26、27、28每题6分,29题8分,满分26分)2)在图中画出表示点P到直线a距离的线段PM;(2)过点P画出直线b的平行线c,与直线a交于点N;(3)如果直线a与b的夹角为40°,那么∠MPN=50°.考点:作图—基本作图.分析:(1)以点P为圆心,以大于点P到a的距离的长度为半径画弧,与直线a相交于两点,再分别以这两点为圆心,以大于它们之间距离的一半为半径画弧,两弧相交于一点,过这一点与点P 作直线,与a相交于点M,PM就是所要求作的垂线段;(2)以点P为顶点,画一条直线为一边,作∠P等于这条直线与直线b所成的夹角,则∠P的另一边所在的直线就是所要求作的直线c;(3)根据两直线平行,内错角相等求出∠MNP=∠40°,再根据直角三角形的两锐角互余即可求出∠MPN的度数.解答:解:(1)如图1所示,PM就是所要求作的点P到直线a距离的垂线段;(2)如图2所示,直线c就是所要求作的直线b的平行线;(3)如图3,∵直线a与b的夹角为40°,∴∠PNM=40°,∴∠MPN=90°﹣40°=50°.故答案为:50°.点评:本题考查了过直线外一点作已知直线的垂线,过直线外一点作已知直线的平行线,以及平行线的性质,直角三角形两锐角互余的性质,是小综合题,难度不大,只要细心便不难求解27.如图,已知AB∥CD,∠1=(4x﹣25)°,∠2=(85﹣x)°,求∠1的度数.考点:平行线的性质.专题:探究型.分析:先根据平行线的性质得出∠3的度数,再根据∠1=∠3可知∠1+∠2=180°,把,∠1=(4x﹣25)°,∠2=(85﹣x)°代入求出x的值,进而可得出结论.解答:解:∵AB∥CD,∴∠2+∠3=180°(两直线平行,同旁内角互补).∵∠1=∠3(对顶角相等)∴∠1+∠2=180°,即(4x﹣25)+(85﹣x)=180,解得x=40.∴∠1=4x﹣25°=135°.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.28.已知:如图,∠A=∠D,∠B=∠C,那么∠1与∠2互补吗?为什么?考点:平行线的判定与性质.分析:首先根据内错角相等得两条直线平行,再根据平行线的性质得内错角相等,运用等量代换的方法得∠AFC=∠D,再根据平行线的判定得两条直线平行,从而根据平行线的性质证明结论.解答:解:∠1与∠2互补.理由如下:∵∠C=∠B,∴AB∥DC,∴∠A=∠AFC,∵∠A=∠D,∴∠AFC=∠D;∴AF∥ED,∴∠1+∠2=180°.点评:此题考查平行线的判定和性质,注意综合运用平行线的性质与判定.2)如图(a),如果∠B+∠E+∠D=360°,那么AB、CD有怎样的关系?为什么?解:过点E作EF∥AB,如图(b),则∠ABE+∠BEF=180°(两直线平行,同旁内角互补)因为∠ABD+∠BED+∠EDC=360°(已知)所以∠FED+∠EDC=180°(等式的性质)所以EF∥CD(同旁内角互补,两直线平行)所以AB∥CD时,∠1,∠2,∠3,∠4满足∠1+∠3=∠2+∠4.考点:平行线的性质.分析:过点E作EF∥AB,由平行线的性质可得出∠ABE+∠BEF=180°,∠ABD+∠BED+∠EDC=360°可得出∠FED+∠EDC=180°,故可得出FE∥CD,由此可得出结论.解答:解:过点E作EF∥AB,如图(b),则∠ABE+∠BEF=180°(两直线平行,同旁内角互补).因为∠ABD+∠BED+∠EDC=360°(已知),所以∠FED+∠EDC=180°(等式的性质),所以EF∥CD(同旁内角互补,两直线平行),所以AB∥CD时,∠1,∠2,∠3,∠4满足∠1+∠3=∠2+∠4.故答案为:两直线平行,同旁内角互补,180,等式的性质,同旁内角互补,两直线平行,∠1+∠3=∠2+∠4.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.五、综合题(满分6分)30.皓皓同学在学习了“平方根”这节课后知道了“负数在实数范围内没有平方根”,她对这句话产生了兴趣,她想知道负数在其他范围内是否有平方根,所以她上网查找了以下一些资料.数的概念是从实践中产生和发展起来的,在学习了实数以后,像x2=﹣1这样的方程还是没有实数解的,因为没有一个实数的平方等于﹣1,即负数在实数范围内没有平方根,所以为了了解形如x2=﹣1这类方程的解,就要引入一个新的数i.定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.在这种情况下,i可以与实数b相乘再同实数a相加从而得到形如“a+bi”(a、b为实数)的数,人们把这种数叫作复数,a叫这个复数的实部,b叫做这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.比如:(1)(2+i)+(4﹣3i)=6﹣2i(2)(i)2=﹣3(3)(5+i)(5﹣i)=52﹣i2=25﹣(﹣1)=26这样数的范围就由实数扩充到了复数,在这种规定下,负数在复数范围内就有平方根.比如:±i就是﹣1的平方根.根据上面的材料解答以下问题:(1)计算:①(2+i)﹣(3﹣2i)=﹣1+3i②i3=﹣i③(3+i)2=8+6i(2)在负数范围内﹣9的平方根是±3i(3)在复数范围内分解因式x4﹣4=(x+)(x﹣)(x+i)(x﹣i).考点:实数的运算;因式分解的应用.专题:阅读型.分析:(1)①根据合并同类项法则计算即可;②根据积的乘方进行运算,③根据完全平方公式计算;(2)根据平方根的概念计算;(3)根据因式分解的方法进行计算即可.解答:解:(1)①(2+i)﹣(3﹣2i)=2+i﹣3+2i=﹣1+3i,②i3=i2•i=﹣i,③(3+i)2=9+6i+i2=8+6i;(2)±=±3i;(3)x4﹣4=(x2+2)(x2﹣2)=(x+i)(x﹣i)(x﹣)(x+).故答案为:(1)①﹣1+3i②﹣i③8+6i;(2)±3i;(3)(x+i)(x﹣i)(x﹣)(x+).点评:本题考查的是实数的运算和因式分解的应用,理解新定义、正确运用因式分解的方法是解题的关键.。
2014-2015学年第二学期期中考试初二数学参考答案及评分标准
一、选择题:本题共15小题,每小题3分,共45分.
1-5 C D B B A 6-10 C D A D B 11-15 B C D A B
二、填空题:本题共5小题,每小题4分,共20分.
16、 15° 17、10
1 18、24 19、(1,2) 20、①②④ 三、解答题 21、解:(1)3419x y x y +=⎧⎨
-=4.⎩,①②. 由②,得x=4+y ,③
把③代入①,得3(4+y)+4y=19,...............................................................................................1分
12+3y+4y=19,
y=1 ...........................................................................................................2分
把y=1代入③,得x=4+1=5.....................................................................................................3分
∴方程组的解为⎩⎨⎧==15y x . ....................................................................................................4分..
(2)原方程组整理得:535111y x x y -=⎧⎨-=-⎩
①② 由①得:x =5y -3 ③
将③代入②得25y -15-11y =1 ...................................................................................1分
14y =14,
y =1.............................................................................................................................................2分
将y =1代入③得 x =2.................................................................................................................3分
∴原方程组的解为21x y =⎧⎨=⎩
.......................................................................................4分 22.解:把⎩⎪⎨⎪⎧ x =1,y =-1代入方程组得⎩⎪⎨⎪⎧ A -B =-2,C =-5.
即A =2+B ,C =-5, ....................................................................................... 2分
把⎩⎪⎨⎪
⎧ x =2,y =-6代入Ax +By =2,得2A -6B =2,
即A -3B =1, .......................................................................................4分
联立⎩⎪⎨⎪⎧ A =2+B ,A =1+3B ,得⎩⎪⎨⎪⎧ A =52,B =12. .......................................................................................8分
23、解:c∥d.理由如下:……………………………………………………………2分如图,∵∠1+∠5=∠4+∠6,∠1=∠4,……………………………………………4分∴∠5=∠6,
∵∠2=∠3,
∴∠2+∠5=∠3+∠6(等式的性质),……………………………………………6分∴c∥d(内错角相等,两直线平行).……………………………………………7分
24、证明:∵AD⊥BC,EF⊥BC(已知)
∴AD∥EF(垂直于同一条直线的两直线平行) .............................................................2分
∴∠2=∠CAD(两直线平行,同位角相等).........................................................3分
∵∠4=∠C(已知)∴DG∥AC(同位角相等,两直线平行).............................................5分
∴∠1=∠CAD(两直线平行,内错角相等).................................................................6分∴∠1=∠2(等量代换)..............................................................................................................8分25、解:(1)取出的卡片可以是写有2 cm,3 cm,4 cm和5 cm的卡片中任一张,
∴P(构成三角形)=. 4分
(2)取出的是写有3 cm的卡片才能构成直角三角形,
P(构成直角三角形)=. 8分
26.解:(1)设该运动员共出手x个3分球,根据题意,得.................................................1分
=12,..................................................................................................................................3分
解得x=640,
0.25x =0.25×640=160(个),.....................................................................................................4分
答:运动员去年的比赛中共投中160个3分球; ..................................................................5分
(2)小亮的说法不正确;.........................................................................................................6分
3分球的命中率为0.25,是相对于40场比赛来说的,而在其中的一场比赛中,虽然该运动员3分球共出手20次,但是该运动员这场比赛中不一定投中了5个3分
球. ............................................................................................................................................8分
27.解:设甲的速度为x 千米/小时,乙的速度为y 千米/小时,...........................................1分
根据题意,得()()
⎩⎨⎧-=-=++y x y x 53025303033.....................................................................................4分 解得⎩
⎨⎧==54x y ...................................................................................................................... 7分 答:甲的速度为4千米/小时,乙的速度为5千米/小时 .....................................................8分。