2016学年河北省沧州市八年级下学期数学期末试卷带答案(新人教版)
- 格式:doc
- 大小:509.00 KB
- 文档页数:26
沧州市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2016九上·和平期中) 下列图形中,可以看作是中心对称图形的是()A .B .C .D .2. (2分)(2019·禅城模拟) 将多项式x﹣x3因式分解正确的是()A . x(1﹣x2)B . x(x2﹣1)C . x(1+x)(1﹣x)D . x(x+1)(x﹣1)3. (2分) (2020八上·安陆期末) 若分式有意义,则的取值范围是()A .B .C .D .4. (2分)下列运算正确的是()A . 2(2x﹣3)=4x﹣3B . 2x+3x=5x2C . (x+1)2=x2+1D . +=05. (2分) (2016高一下·岳阳期末) 内角和等于外角和2倍的多边形是()A . 五边形B . 六边形C . 七边形D . 八边形6. (2分)如图,▱ABCD中,∠C=108°,BE平分∠ABC,则∠ABE等于()A . 18°B . 36°C . 72°D . 108°7. (2分) (2018八上·双城期末) 若关于x的方程无解,则m的值是()A . 3B . 2C . 1D . -18. (2分)点(1,-2)关于原点的对称点的坐标是()A . (1,2)B . (-1,2)C . (-1,-2)D . (1,-2)9. (2分) (2016七上·乳山期末) 如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,BE=4,则AD的长是()A . 4B . 2C . 6D . 210. (2分) (2017八下·无锡期中) 如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG,DF.若CF=6,AC=AF+2,则四边形BDFG的周长为()A . 9.5B . 10C . 12.5D . 2011. (2分) (2018八上·婺城期末) “若a2>b2 ,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A . a=3,b=﹣2B . a=﹣2,b=3C . a=2,b=﹣3D . a=﹣3,b=212. (2分)如图,对折矩形纸片ABCD,使BC与AD重合,折痕为EF,把纸片展平;再一次折叠纸片,使BC 与EF重合,折痕为GH,把纸片展平;再一次折叠纸片,使点A落在GH上的点N处,并使折痕经过点B,折痕BM 交GH于点I.若AB=4cm,则GI的长为()A . cmB . cmC . cmD . cm13. (2分)施工队要铺设一段全长2000米的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x米,则根据题意所列方程正确的是()A . ﹣ =2B . ﹣ =2C . ﹣ =2D . ﹣ =214. (2分)下列各式中不成立的是()A .B .C .D .15. (2分)如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.若∠BAC=45°,AM=4,DM=3,则BC的长度为()A . 8B . 7C . 6D . 5二、填空题 (共6题;共7分)16. (1分)不等式组的解集为________.17. (1分) (2017八上·下城期中) 如图,在平面直角坐标系中,,两点的坐标分别为,,连接,若以点,,为顶点的三角形是等腰直角三角形,则点坐标为________.18. (1分)分式方程+=3的解是________ .19. (1分)如图,在□ABCD中,BE⊥CD ,BF⊥AD ,垂足分别为E , F , CE=2,DF=1,∠EBF=600 ,则□ABCD的周长为________.20. (2分)在正三角形、正方形、正五边形、正六边形中不能镶嵌成一个平面图案的是________ .21. (1分) (2018八上·长春期末) □ 中,是对角线,且,,则________度.三、解答题 (共7题;共58分)22. (10分) (2017八上·安定期末) 计算题(1)分解因式①x3-6x2+9x;②a2(x-y)+4(y-x).(2)利用乘法公式简便计算:①-992 ;②20152-2016×2014.23. (10分)(2017·江阴模拟) 计算下列各题:(1)解方程:x2+3=3(x+1)(2)解不等式组:.24. (5分)(2016·双柏模拟) 先化简,再求值:,其中x=2.25. (11分) (2018八下·灵石期中) 如图,在Rt△ABC,∠ABC=90°,AB=20,BC=15,点D为AC边上的动点,点D从点C出发,沿CA往A运动,当运动到点A时停止.若设点D的运动时间为t秒,点D运动的速度为每秒2个单位长度.(1)当t=2时,求CD、AD的长;【答案】解:t=2时,CD=2×2=4∵∠ABC=90°,AB=20,BC=15∴AC=AD=AC-CD=25-4=21(1)当t=2时,求CD、AD的长;(2)在D运动过程中,△CBD能否为直角三角形,若不能,请说明理由,若能,请求出t的值;(3)当t为何值时,△CBD是等腰三角形,请直接写出t的值.26. (2分)如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
沧州市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)在下列式子,,,,,中,分式的个数是().A . 2个B . 4个C . 3个D . 5个2. (2分) (2018九上·东台月考) 如果一组数据同时减去一个数a,那么它的方差()A . 增大aB . 减小aC . 不变D . 无法确定3. (2分)如图,某个函数的图象由线段AB和BC组成,其中点A(0,),B(1,),C(2,),则此函数的最小值是()A . 0B .C . 1D .4. (2分) (2018九上·紫金期中) 正方形具有而菱形不具有的性质是()A . 对角线相等B . 对角线互相平分C . 对角线平分一组对角D . 对角线互相垂直5. (2分) (2018八上·惠山期中) 如图,在等腰三角形ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF的值等于()A .B . 3C .D . 66. (2分)如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6 cm,OD=4 cm.则DC的长为()cm.A . 5B . 2.5C . 2D . 17. (2分) (2018九上·钦州期末) 下列函数的图象位于第一、第三象限的是()A . y=﹣x2B . y=x2C . y=D . y=﹣8. (2分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E为CD的中点,则下列式子中不一定成立的是()A . BC=2OEB . CD=2OEC . CE=OED . OC=OE二、填空题 (共8题;共9分)9. (2分)(2014•丹东)若式子有意义,则实数x的取值范围是________.10. (1分)若双曲线过两点(-1,y1),(-3,y2),则有y1________ y2(可填“”、“”、“”).11. (1分) (2019七下·盐田期中) 佳佳用三根长度均为整数的木棒搭一个等腰三角形,其中一根木棒长为5,则另两根木棒最短可以为________.12. (1分)(2020·江西) 祖冲之是中国数学史上第一个名列正史的数学家,他把圆周率精确到小数点后7位,这是祖冲之最重要的数学贡献,胡老师对圆周率的小数点后100位数字进行了如下统计:数字0123456789频数881211108981214那么,圆周率的小数点后100位数字的众数为________.13. (1分) (2020八下·鄂城期中) 如图,已知中,,,三角形的顶点在相互平行的三条直线,,上,且,之间的距离为2,,之间的距离为3,则的长是________.14. (1分)甲、乙两同学参加跳远训练,在相同条件下各跳了6次,统计两人的成绩得:平均数=,方差S2甲>S2乙,则成绩较稳定的是________ .(填甲或乙)15. (1分)(2017·嘉祥模拟) 每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其扰,据测定,杨絮纤维的直径约为0.0000105m,该数值用科学记数法表示为________.16. (1分) (2018八上·黑龙江期中) 在△ABC中,已知AB=7,BC=6,∠B=30°,那么S△ABC=________.三、综合题 (共10题;共90分)17. (5分)综合题。
2016-2017学年河北省八年级(下)期末数学试卷一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=52.(3分)由下列条件不能判定△ABC为直角三角形的是()A.(b+c)(b﹣c)=a2B.a=3+k,b=4+k,c=5+k(k>0)C.∠A+∠B=∠C D.∠A:∠B:∠C=1:3:23.(3分)在▱ABCD中,如果∠A+∠C=160°,那么∠B等于()A.20°B.100°C.60°D.80°4.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE的长是()A.4 B.5 C.6 D.75.(3分)如图,在▱ABCD中,AD=8,AB=6,DE平分∠ADC交BC于点E,则BE 的长是()A.2 B.3 C.4 D.56.(3分)已知一次函数y=kx﹣1,若y随x的增大而增大,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x <ax+4的解集为()A.x<B.x<3 C.x>D.x>38.(3分)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)要使分式有意义,x的取值范围为.10.(3分)在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为.11.(3分)在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为.12.(3分)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积是.13.(3分)如图,在平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC 的中点,若EF=7,则四边形EACF的周长是.14.(3分)已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为.15.(3分)已知一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),那么此一次函数的解析式为.三、解答题(本大题共8小题,共75分)16.(6分)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0﹣.17.(6分)一次函数图象经过(3,5)和(﹣4,﹣9)两点,求这个一次函数的解析式.18.(9分)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=4,求BD的长.19.(10分)如图,在▱ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:△ABE≌△DCF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.20.(10分)如图,已知,直线y=2x+3与直线y=﹣2x﹣1,求△ABC的面积.21.(12分)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)614322.(10分)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是队.23.(12分)如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.2016-2017学年河北省八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2010•南宁)下列计算结果正确的是()A.+=B.3﹣=3 C.×=D.=5【分析】按照二次根式的运算法则进行计算即可.【解答】解:A、和不是同类二次根式,不能合并,故A错误;B、3﹣=(3﹣1)=2,故B错误;C、×==,故C正确;D、,故D错误.故选:C.【点评】此题需要注意的是:二次根式的加减运算实质是合并同类二次根式的过程,不是同类二次根式的不能合并.2.(3分)(2017春•河北期末)由下列条件不能判定△ABC为直角三角形的是()A.(b+c)(b﹣c)=a2B.a=3+k,b=4+k,c=5+k(k>0)C.∠A+∠B=∠C D.∠A:∠B:∠C=1:3:2【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【解答】解:A、∵(b+c)(b﹣c)=a2,∴b2﹣c2=a2,即a2+c2=b2,故是直角三角形,正确B、∵(3+k)2+(4+k)2≠(5+k)2,故不能判定是直角三角形C、∵∠A+∠B=∠C,∴∠C=90°,故是直角三角形,正确;D、∵∠A:∠B:∠C=1:3:2,∴∠B=×180°=90°,故是直角三角形,正确;故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.(3分)(2017春•河北期末)在▱ABCD中,如果∠A+∠C=160°,那么∠B等于()A.20°B.100°C.60°D.80°【分析】直接利用平行四边形的对角相等,邻角互补即可得出答案.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=160°,∴∠A=∠C=80°,∴∠B=100°.故选:B.【点评】此题主要考查了平行四边形的性质,正确把握平行四边形各角之间的关系是解题关键.4.(3分)(2007•西藏)如图,在△ABC中,D、E分别是AB、AC的中点,BC=12,则DE的长是()A.4 B.5 C.6 D.7【分析】直接利用三角形中位线定理可求DE.【解答】解:∵△ABC中,D、E分别是AB、AC的中点,∴DE为三角形ABC的中位线,∴DE=BC=×12=6.故选C.【点评】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边并等于第三边的一半.5.(3分)(2017春•河北期末)如图,在▱ABCD中,AD=8,AB=6,DE平分∠ADC 交BC于点E,则BE的长是()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,可得BC=AD=8,CD=AB=6,AD∥BC,得∠ADE=∠DEC,又由DE平分∠ADC,可得∠CDE=∠DEC,根据等角对等边,可得EC=CD=6,所以求得BE=BC﹣EC=2.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,CD=AB=6,AD∥BC,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴EC=CD=6,∴BE=BC﹣EC=2.故选A.【点评】此题考查了平行四边形的性质、角平分线的定义与等腰三角形的判定定理.注意当有平行线和角平分线出现时,会出现等腰三角形.6.(3分)(2017春•河北期末)已知一次函数y=kx﹣1,若y随x的增大而增大,则该函数的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的性质得到k>0,然后根据一次函数与系数的关系判断图象经过的象限.【解答】解:∵y随x的增大而增大,∴k>0,∴一次函数经过第一、三象限,而b=﹣1,∴一次函数与y轴的交点在x轴下方,∴一次函数经过第一、三、四象限.∴一次函数不经过第二象限;故选B.【点评】本题考查了一次函数与系数的关系:对于一次函数y=kx+b,k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降;当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b 的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.7.(3分)(2013•黔西南州)如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x<ax+4的解集为()A.x<B.x<3 C.x>D.x>3【分析】先根据函数y=2x和y=ax+4的图象相交于点A(m,3),求出m的值,从而得出点A的坐标,再根据函数的图象即可得出不等式2x<ax+4的解集.【解答】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,m=,∴点A的坐标是(,3),∴不等式2x<ax+4的解集为x<;故选A.【点评】此题考查的是用图象法来解不等式,充分理解一次函数与不等式的联系是解决问题的关键.8.(3分)(2014•盘锦)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A.B.C.D.【分析】根据题意求出2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,进而根据相遇前、相遇后两个阶段得出相应的分段函数,从而找出符合题意的图象.【解答】解:根据题意,两人同时相向出发,甲到达B地时间为:=6小时,乙到达A地:=3小时.根据题意,分成两个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地;相遇前,s=120﹣(20+40)t=120﹣60t(0≤t≤2),当两者相遇时,t=2,s=0,相遇后,当乙到达A地前,甲乙均在行驶,即s=(20+40)(t﹣2)=60t﹣120(2≤t≤3),当乙到达A地时,此时两者相距60千米;当乙到达A地后,剩下甲在行驶,即s=60+20(t﹣3)=20t(3≤t≤6),故:法二:本题可无需列出方程,只需弄清楚题意,分清楚s与t的变化可分为几个阶段:相遇前、相遇后;相遇后可分成乙到达A地、甲到达B地,故求出各个时间点便可.∵A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A,∴两人同时出发,2小时两人就会相遇,甲6小时到达B地,乙3小时到达A地,故两人之间的距离为s(千米),甲行驶的时间为t(小时),则正确反映s与t 之间函数关系的是B.故选:B.【点评】此题主要考查了函数图象,根据题意得出关键转折点是解题关键.二、填空题(本大题共7小题,每小题3分,共21分)9.(3分)(2016•新县校级模拟)要使分式有意义,x的取值范围为x≥0.【分析】根据已知得出x≥0且x+5≠0,求出即可.【解答】解:要使分式有意义,必须x≥0且x+5≠0,解得:x≥0.故答案为:x≥0.【点评】本题考查了二次根式有意义的条件和分式有意义的条件的应用,能根据题意得出x≥0和x+5≠0是解此题的关键.10.(3分)(2017春•河北期末)在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为81,81.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中81是出现次数最多的,故众数是81;而将这组数据从小到大的顺序排列后,处于中间位置的那个数的是第5、6个数的平均数,则这组数据的中位数是=81.故答案为:81,81.【点评】本题考查了中位数和众数的概念.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;一组数据中出现次数最多的数据叫做众数.11.(3分)(2007•哈尔滨模拟)在Rt△ABC中,∠C=90°,D为BC上的一点,AD=BD=2,AB=,则AC的长为.【分析】根据题意作出图形,设CD=x,在直角三角形ACD中,根据勾股定理表示出AC的长,再在直角三角形ABC中,根据勾股定理求出x的值,从而可得AC 的长.【解答】解:如图:设CD=x,在Rt△ACD中,AC2=22﹣x2;在Rt△ACB中,AC2+BC2=AB2,即22﹣x2+(2+x)2=(2)2,解得x=1.则AC==.故答案为.【点评】本题考查了解直角三角形,利用勾股定理是解题的关键,正确设出未知数方可解答.12.(3分)(2015•鼓楼区校级自主招生)已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积是7.【分析】由∠ACB=90°,CD是斜边上的中线,求出AB=6,根据AB+AC+BC=14,求出AC+BC,根据勾股定理得出AC2+BC2=AB2=36推出AC•BC=14,根据S=AC•BC 即可求出答案.【解答】解:如图,∵∠ACB=90°,CD是斜边上的中线,∴AB=2CD=6,∵AB+AC+BC=14,∴AC+BC=8,由勾股定理得:AC2+BC2=AB2=36,∴(AC+BC)2﹣2AC•BC=36,AC•BC=14,∴S=AC•BC=7.故答案为:7.【点评】本题主要考查对直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,能根据性质求出AC•BC的值是解此题的关键.13.(3分)(2011•福州校级模拟)如图,在平行四边形ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是29.【分析】首先根据平行四边形的性质可求出AD和CD,再由E、F分别是AD、DC的中点,可求出AE和CF,根据三角形中位线性质可求出AC,从而求出四边形EACF的周长.【解答】解:∵已知平行四边形ABCD,∴AD=BC=6,CD=AB=10,又E、F分别是AD、DC的中点,∴AC=2EF=14,AE=AD=3,CF=CD=5,所以四边形EACF的周长为:AE+EF+CF+AC=3+7+5+14=29.故答案为:29.【点评】此题考查的知识点是平行四边形的性质,解题的关键是运用平行四边形的性质和三角形中位线性质求解.14.(3分)(2017春•河北期末)已知一个平行四边形的一条对角线将其分为全等的两个等腰直角三角形,且这条对角线的长为8,则另一条对角线长为8或8.【分析】分两种情形①平行四边形是正方形,②这个平行四边形的四个角分别为45°,135°,45°,135°.【解答】解:①当平行四边形是正方形时,满足条件,∵一条对角线的长为8,∴另一条对角线长为:8.②当这个平行四边形的四个角分别为45°,135°,45°,135°.此时另外一条对角线的长度=2•=8.故另一条对角线长为8或8.【点评】此题主要考查了平行四边形的性质以及等腰直角三角形的性质,解题的关键是学会用分类讨论是思想思考问题,注意一题多解.15.(3分)(2017春•河北期末)已知一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),那么此一次函数的解析式为y=﹣x﹣1.【分析】根据两直线平行结合一次函数图象上点的坐标特征,即可得出关于k、b的二元一次方程组,解之即可得出结论.【解答】解:∵一次函数y=kx+b的图象与直线y=﹣x+1平行,且过点(1,﹣2),∴,解得:,∴此一次函数的解析式为y=﹣x﹣1.故答案为:y=﹣x﹣1.【点评】本题考查了两条直线相交或平行问题以及一次函数图象上点的坐标特征,根据两直线平行结合一次函数图象上点的坐标特征,列出关于k、b的二元一次方程组是解题的关键.三、解答题(本大题共8小题,共75分)16.(6分)(2017春•河北期末)计算:(﹣1)(+1)﹣(﹣)﹣2+|1﹣|﹣(π﹣2)0﹣.【分析】利用平方差公式、零指数幂和负整数指数的意义计算.【解答】解:原式=5﹣1﹣9+﹣1﹣1﹣=﹣7.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.17.(6分)(2017春•河北期末)一次函数图象经过(3,5)和(﹣4,﹣9)两点,求这个一次函数的解析式.【分析】根据点的坐标,利用待定系数法即可求出该一次函数解析式.【解答】解:设这个一次函数的解析式为y=kx+b(k≠0),将(3,5)、(﹣4,﹣9)代入y=kx+b,,解得:,∴该一次函数的解析式为y=2x﹣1.【点评】本题考查了待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的方法及步骤是解题的关键.18.(9分)(2017春•河北期末)如图,△ABC中,CD⊥AB于D,若AD=2BD,AC=6,BC=4,求BD的长.【分析】设BD=x,根据勾股定理列出方程,解方程即可.【解答】解:设BD=x,则AD=2x,在Rt△ACD中,由勾股定理得,AC2﹣AD2=CD2,在Rt△BCD中,BC2﹣BD2=CD2,∴AC2﹣AD2=BC2﹣BD2,即62﹣(2x)2=42﹣x2,解得,x=,则BD=.【点评】本题考查的是勾股定理的应用,直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.19.(10分)(2015•黄岛区校级模拟)如图,在▱ABDC中,分别取AC、BD的中点E和F,连接BE、CF,过点A作AP∥BC,交DC的延长线于点P.(1)求证:△ABE≌△DCF;(2)当∠P满足什么条件时,四边形BECF是菱形?证明你的结论.【分析】(1)根据平行四边形的对角相等可得∠BAC=∠D,对边相等可得AB=CD,AC=BD,再根据中点定义求出AE=DF,然后利用“边角边”证明即可;(2)∠P=90°时,四边形BECF是菱形.先判断出四边形ABCP是平行四边形,根据平行四边形的对角相等可得∠ABC=∠P,再根据直角三角形斜边上的中线等于斜边的一半可得BE=CE,利用一组对边平行且相等的四边形是平行四边形判断出四边形BECF是平行四边形,然后根据邻边相等的平行四边形是菱形证明.【解答】(1)证明:在▱ABDC中,∠BAC=∠D,AB=CD,AC=BD,∵E、F分别是AC、BD的中点,∴AE=DF,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS);(2)解:∠P=90°时,四边形BECF是菱形.理由如下:在▱ABCD中,AB∥CD,∵AP∥BC,∴四边形ABCP是平行四边形,∴∠ABC=∠P=90°,∵E是AC的中点,∴BE=CE=AC,∵E、F分别是AC、BD的中点,∴BF=CE,又∵AC∥BD,∴四边形BECF是平行四边形,∴四边形BECF是菱形(邻边相等的平行四边形是菱形).【点评】本题考查了平行四边形的性质,全等三角形的判定与性质,菱形的判定,直角三角形斜边上的中线等于斜边的一半的性质,熟记各性质是解题的关键.20.(10分)(2017春•河北期末)如图,已知,直线y=2x+3与直线y=﹣2x﹣1,求△ABC的面积.【分析】将直线y=2x+3与直线y=﹣2x﹣1组成方程组,求出方程组的解即为C 点坐标,求出A、B的坐标,得到AB的长,再利用C点横坐标即可求出△ABC 的面积;【解答】解:将直线y=2x+3与直线y=﹣2x﹣1组成方程组得,,解得.即C点坐标为(﹣1,1),∵直线y=2x+3与y轴的交点坐标为(0,3),直线y=﹣2x﹣1与y轴的交点坐标为(0,﹣1),∴AB=4,=×4×1=2.∴S△ABC【点评】本题考查了两条直线相交或平行的问题,熟悉函数图象上点的坐标特征是解题的关键.21.(12分)(2017春•河北期末)某商场欲购进果汁饮料和碳酸饮料共50箱,两种饮料每箱的进价和售价如下表所示.设购进果汁饮料x箱(x为正整数),且所购进的两种饮料能全部卖出,获得的总利润为W元(注:总利润=总售价﹣总进价).(1)设商场购进碳酸饮料y箱,直接写出y与x的函数关系式;(2)求总利润w关于x的函数关系式;(3)如果购进两种饮料的总费用不超过2100元,那么该商场如何进货才能获利最多?并求出最大利润.饮料果汁饮料碳酸饮料进价(元/箱)5136售价(元/箱)6143【分析】(1)根据购进果汁饮料和碳酸饮料共50箱即可求解;(2)根据总利润=每个的利润×数量就可以表示出w与x之间的关系式;(3)由题意得55x+36(50﹣x)≤2100,解得x的值,然后可求y值,根据一次函数的性质可以求出进货方案及最大利润.【解答】解:(1)y与x的函数关系式为:y=50﹣x;(2)总利润w关于x的函数关系式为:w=(61﹣51)x+(43﹣36)(50﹣x)=3x+350;(3)由题意,得51x+36(50﹣x)≤2100,解得x≤20,∵y=3x+350,y随x的增大而增大,=3×20+350=410元,此时购进B品牌的饮料50﹣20=30箱,∴当x=20时,y最大值∴该商场购进A、B两种品牌的饮料分别为20箱、30箱时,能获得最大利润410元.【点评】本题考查了一次函数的实际运用,由销售问题的数量关系求出函数的解析式,列一元一次不等式解实际问题的运用,一次函数的性质的运用,解答时求出函数的解析式是关键.22.(10分)(2014•扬州)八(2)班组织了一次经典诵读比赛,甲、乙两队各10人的比赛成绩如下表(10分制):甲789710109101010乙10879810109109(1)甲队成绩的中位数是9.5分,乙队成绩的众数是10分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4,则成绩较为整齐的是乙队.【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【解答】解:(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:×(10×4+8×2+7+9×3)=9,则方差是:×[4×(10﹣9)2+2×(8﹣9)2+(7﹣9)2+3×(9﹣9)2]=1;(3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点评】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.23.(12分)(2017春•河北期末)如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.【分析】(1)根据点B、C的坐标求出BC的长度,再根据平行四边形的对边相等列式求出点D的横坐标,然后写出D点坐标即可;(2)设直线BD的解析式为y=kx+b,然后利用待定系数法求一次函数解析式解答;过点B作BE⊥AD于E,求出BE、DE的长,然后利用勾股定理列式计算即可得解;(3)根据向右平移横坐标加,向下平移纵坐标减求出A1、B1、C1、D1的坐标,然后求出重叠部分平行四边形的底边和高,再根据平行四边形的面积公式列式计算即可得解.【解答】解:(1)∵B(﹣2,4),C(5,4),∴BC=5﹣(﹣2)=5+2=7,∵A(﹣5,1),∴点D的横坐标为﹣5+7=2,∴点D的坐标为(2,1);(2)设直线BD的解析式为y=kx+b,将B(﹣2,4)、D(2,1)代入得:,解得,∴经过B、D两点的直线的解析式为y=﹣x+,过B点作AD的垂线,垂足为E,则BE=4﹣1=3,DE=2﹣(﹣2)=2+2=4,在Rt△BDE中,BD===5;(3)∵▱ABCD向右平移1个单位长度,再向下平移1个单位长度,∴A1(﹣4,0),B1(﹣1,3),C1(6,3)D1(3,0),∴重叠部分的底边长7﹣1﹣1=5,高为3﹣1=2,∴重叠部分的面积S=5×2=10.【点评】本题是一次函数综合题型,主要利用了平行四边形的性质,待定系数法求一次函数解析式,勾股定理的应用,难点在于(3)判断出重叠部分是平行四边形并且求出底边和高的长度.。
2016-2017学年河北省沧州市八年级(下)期末数学试卷一、正确选择(本大题共10个小题,每小题3分,共30分)1.(3分)要了解某校七至九年级的课外作业负担情况,下列抽样调查样本的代表性较好的是()A.调查七年级全体女生B.调查八年级全体男生C.调查八年级全体学生D.随机调查七、八、九各年级的100名学生2.(3分)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点坐标为()A.(﹣3,﹣5)B.(3,5)C.(3,﹣5)D.(5,﹣3)3.(3分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.14.(3分)下列关于变量x,y的关系中:①y=x;②y2=x;③2x2=y.其中y是x 的函数有()A.3个B.2个C.1个D.0个5.(3分)对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A.通常不可互相转换B.扇形统计图能清楚地表示出各部分在总体中所占的百分比C.折线统计图能清楚地表示出每个项目的具体数目D.条形统计图能清楚地反映事物的变化情况6.(3分)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm7.(3分)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB 上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+108.(3分)如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对9.(3分)根据如图的程序,计算当输入值x=﹣2时,输出结果y为()A.1 B.5 C.7 D.以上都有可能10.(3分)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A.20kg B.25kg C.28kg D.30kg二、填空(本题共8个小题,每小题3分,共24分)11.(3分)某市为了分析全市9600名初中毕业生的中考数学考试成绩,共抽取15本试卷进行调查,其中每本试卷都是30份,该调查的样本容量是.12.(3分)如果M(a,b),N(c,d)是平行于y轴的一条直线上的两点,那么a与c的关系是.13.(3分)在函数y=x中,若自变量x的取值范围是50≤x≤75,则函数值y 的取值范围为.14.(3分)已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解.15.(3分)一个五边形有三个内角是直角,另两个内角都等于n°,则n= .16.(3分)聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是.17.(3分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为.18.(3分)如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是米.三、解答与计算(本题共4个小题,每小题7分,共28分)19.(7分)如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的平面直角坐标系.并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?20.(7分)如图,E、F是▱ABCD的对角线AC上的两点,且AE=CF,请你以点F 为一个端点与图中已标明字母的某一点连成一条线段,猜想并说明它与图中已有的某一条线段相等(只需说明一组线段相等即可).(1)连结;(2)猜想:= ;(3)证明:21.(7分)今年我国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m= ,n= ,扇形统计图中E组所占的百分比为%;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数.22.(7分)在弹性限度内,弹簧的长度y是所挂物体质量x的一次函数,当所挂物体的质量为1kg时弹簧长15cm,当所挂物体的质量为3kg时弹簧长16cm,写出y与x之间的关系式,并求出当所挂物体的质量为4kg时弹簧伸长了多少厘米?23.(9分)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求点E的坐标.24.(9分)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.25.(9分)已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:(1)直线AB的解析式;(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.26.(11分)某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.2016-2017学年河北省沧州市八年级(下)期末数学试卷参考答案与试题解析一、正确选择(本大题共10个小题,每小题3分,共30分)1.(3分)(2017春•沧州期末)要了解某校七至九年级的课外作业负担情况,下列抽样调查样本的代表性较好的是()A.调查七年级全体女生B.调查八年级全体男生C.调查八年级全体学生D.随机调查七、八、九各年级的100名学生【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【解答】解:A、B、C中进行抽查,对抽取的对象划定了范围,因而不具有代表性;D、随机调查七、八、九各年级的100名学生,调查具有代表性;故选:D.【点评】考查了抽样调查的可靠性,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.2.(3分)(2017春•沧州期末)如图,在平面直角坐标系xOy中,点P(﹣3,5)关于x轴的对称点坐标为()A.(﹣3,﹣5)B.(3,5)C.(3,﹣5)D.(5,﹣3)【分析】利用平面内两点关于x轴对称时:横坐标不变,纵坐标互为相反数,进行求解.【解答】解:点P(﹣3,5)关于x轴的对称点坐标为(﹣3,﹣5),故选:A.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.(3分)(2014•重庆)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.1【分析】把点的坐标代入函数解析式计算即可得解.【解答】解:∵点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,解得k=1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,准确计算是解题的关键.4.(3分)(2017春•沧州期末)下列关于变量x,y的关系中:①y=x;②y2=x;③2x2=y.其中y是x的函数有()A.3个B.2个C.1个D.0个【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【解答】解:∵对于x的每一个取值,y都有唯一确定的值,①y=x;③2x2=y.当x取值时,y有唯一的值对应;故选:B.【点评】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5.(3分)(2017春•沧州期末)对于条形统计图、折线统计图和扇形统计图这三种常见的统计图,下列说法正确的是()A.通常不可互相转换B.扇形统计图能清楚地表示出各部分在总体中所占的百分比C.折线统计图能清楚地表示出每个项目的具体数目D.条形统计图能清楚地反映事物的变化情况【分析】根据条形统计图和扇形统计图、折线统计图的概念判断.【解答】解:A、这三种统计图可以互相转化,但是各有利弊,不是经常互相转化,故此选项错误;B、扇形统计图直接反映部分占总体的百分比大小,故此选项正确;C、折线统计图能清楚地反映事物的变化情况,故此选项错误;D、条形统计图能清楚地表示出每个项目的数据,故此选项错误;故选;B.【点评】本题考查的是条形统计图和扇形统计图、折线统计图的不同,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小,折线统计图能清楚地反映事物的变化情况.6.(3分)(2007•日照)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.【点评】此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.7.(3分)(2016•温州)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是()A.y=x+5 B.y=x+10 C.y=﹣x+5 D.y=﹣x+10【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据题意可得到x、y之间的关系式,可得出答案.【解答】解:设P点坐标为(x,y),如图,过P点分别作PD⊥x轴,PC⊥y轴,垂足分别为D、C,∵P点在第一象限,∴PD=y,PC=x,∵矩形PDOC的周长为10,∴2(x+y)=10,∴x+y=5,即y=﹣x+5,故选C.【点评】本题主要考查矩形的性质及点的坐标的意义,根据坐标的意义得出x、y之间的关系是解题的关键.8.(3分)(2011•海南)如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论①MN∥BC,②MN=AM,下列说法正确的是()A.①②都对B.①②都错C.①对②错D.①错②对【分析】根据题意,推出∠B=∠D=∠AMN,即可推出结论①,由AM=DA推出四边形AMND为菱形,因此推出②.【解答】解:∵平行四边形ABCD,∴∠B=∠D=∠AMN,∴MN∥BC,∵AM=DA,∴四边形AMND为菱形,∴MN=AM.故选A.【点评】本题主要考查翻折变换的性质、平行四边形的性质、菱形的判定和性质,平行线的判定,解题的关键在于熟练掌握有关的性质定理,推出四边形AMND为菱形.9.(3分)(2017春•沧州期末)根据如图的程序,计算当输入值x=﹣2时,输出结果y为()A.1 B.5 C.7 D.以上都有可能【分析】先由x=﹣2≤﹣1,确定x与y的关系式为y=x2+3,然后代值计算即可.【解答】解:∵x=﹣2≤﹣1,∴y=x2+3=(﹣2)2+3=7,故选:C.【点评】本题考查了代数式求值:把满足题意的字母的值代入代数式,然后进行实数运算即可.10.(3分)(2009•成都)某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量()A.20kg B.25kg C.28kg D.30kg【分析】根据图中数据,用待定系数法求出直线解析式,然后求y=0时,x对应的值即可.【解答】解:设y与x的函数关系式为y=kx+b,由题意可知,所以k=30,b=﹣600,所以函数关系式为y=30x﹣600,当y=0时,即30x﹣600=0,所以x=20.故选A.【点评】本题重点考查了一次函数的图象及一次函数的应用,是一道难度中等的题目.二、填空(本题共8个小题,每小题3分,共24分)11.(3分)(2017春•沧州期末)某市为了分析全市9600名初中毕业生的中考数学考试成绩,共抽取15本试卷进行调查,其中每本试卷都是30份,该调查的样本容量是450 .【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:由题意,得抽取了15×30=450份,故答案为:450.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.12.(3分)(2017春•沧州期末)如果M(a,b),N(c,d)是平行于y轴的一条直线上的两点,那么a与c的关系是相等.【分析】根据平行于y轴的直线上的点的横坐标相等即可得出a=c.【解答】解:∵M(a,b),N(c,d)是平行于y轴的一条直线上的两点,∴a=c.故答案为相等.【点评】本题考查了坐标与图形性质,熟记平行于y轴的直线上的点的横坐标相等是解题的关键.13.(3分)(2017春•沧州期末)在函数y=x中,若自变量x的取值范围是50≤x≤75,则函数值y的取值范围为120≤y≤180 .【分析】根据正比例函数图象的增减性解答.【解答】解:∵函数y=x的y随x的增大而增大,∴当x=50时,y=×50=120.当x=75时,y=×75=180.则120≤y≤180.故答案是:120≤y≤180.【点评】本题考查了正比例函数的性质.解题时,利用了正比例函数图象的性质.14.(3分)(2017春•沧州期末)已知一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),直接写出方程的解.【分析】根据方程组的解即为函数图象的交点坐标解答即可.【解答】解:∵一次函数y=bx+5和y=﹣x+a的图象交于点P(1,2),∴方程组的解为.故答案为为.【点评】本题主要考查了一次函数与二元一次方程组,掌握函数图象交点坐标为两函数解析式组成的方程组的解是解题的关键.15.(3分)(2017春•沧州期末)一个五边形有三个内角是直角,另两个内角都等于n°,则n= 135 .【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给五边形有三个角是直角,另两个角都等于n,列方程可求解.【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故答案为:135.【点评】本题考查根据多边形的内角和计算公式求多边形的内角,解答时要会根据公式进行正确运算、变形和数据处理.16.(3分)(2008•达州)聪明的小明借助谐音用阿拉伯数字戏说爸爸舅舅喝酒:81979,87629,97829,8806,9905,98819,54949(大意是:爸邀舅吃酒,爸吃六两酒,舅吃八两酒,爸爸动怒,舅舅动武,舅把爸衣揪,误事就是酒),请问这组数据中,数字9出现的频率是.【分析】首先正确数出所有的数字个数和9出现的个数;再根据频率=频数÷总数,进行计算.【解答】解:根据题意,知在数据中,共33个数字,其中11个9;故数字9出现的频率是=.【点评】本题考查频率的求法:频率=.17.(3分)(2012•平原县一模)如图,矩形OABC的边OA、OC分别在x轴、y 轴上,点B的坐标为(3,2).点D、E分别在AB、BC边上,BD=BE=1.沿直线DE将△BDE翻折,点B落在点B′处.则点B′的坐标为(2,1).【分析】由四边形OABC是矩形,BE=BD=1,易得△BED是等腰直角三角形,由折叠的性质,易得∠BEB′=∠BDB′=90°,又由点B的坐标为(3,2),即可求得点B′的坐标.【解答】解:∵四边形OABC是矩形,∴∠B=90°,∵BD=BE=1,∴∠BED=∠BDE=45°,∵沿直线DE将△BDE翻折,点B落在点B′处,∴∠B′ED=∠BED=45°,∠B′DE=∠BDE=45°,B′E=BE=1,B′D=BD=1,∴∠BEB′=∠BDB′=90°,∵点B的坐标为(3,2),∴点B′的坐标为(2,1).故答案为:(2,1).【点评】此题考查了折叠的性质、矩形的性质以及坐标与图形的性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.18.(3分)(2010•安顺)如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是504 米.【分析】本题可设x≥2时,函数解析式为y=kx+b,根据待定系数法即可求出函数解析式,进而即可求出答案.【解答】解:设x≥2时,函数解析式为y=kx+b,∴2k+b=180,4k+b=288,解得k=54,b=72,∴y=54x+72,∴当x=8时,y=504.故填504.【点评】此题主要考查了函数图象,本题用到的知识点是:已知两点,可确定直线的函数解析式.当已知函数的某一点的横坐标时,也可求出相应的y值.三、解答与计算(本题共4个小题,每小题7分,共28分)19.(7分)(2017春•沧州期末)如图所示是某台阶的一部分,如果点A的坐标为(0,0),B点的坐标为(1,1).(1)请建立适当的平面直角坐标系.并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?【分析】(1)以A点为原点,水平方向为x轴,建立平面直角坐标系,根据坐标系可得答案;(2)由每级台阶高为1可得答案.【解答】解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系.所以C,D,E,F各点的坐标分别为C(2,2),D(3,3),E(4,4),F(5,5).(2)每级台阶高为1,所以10级台阶的高度是10.【点评】本题主要考查点的坐标,掌握平面直角坐标系及点的坐标是解题的关键.20.(7分)(2017春•沧州期末)如图,E、F是▱ABCD的对角线AC上的两点,且AE=CF,请你以点F为一个端点与图中已标明字母的某一点连成一条线段,猜想并说明它与图中已有的某一条线段相等(只需说明一组线段相等即可).(1)连结DF ;(2)猜想:BE = DF ;(3)证明:【分析】由平行四边形的性质和已知条件得出OB=OD,OE=OF,证出四边形BEDF 是平行四边形,即可得出结论..【解答】(1)解:连接DF;故答案为:DF;(2)解:猜想:BE=DF;故答案为:BE,DF;(3)证明:连接BF,连接BD,与AC交于点O:∵四边形ABCD是平行四边形,∴OB=OD,OA=OC,∵AE=CF,∴OA﹣AE=OC﹣CF,∴OE=OF,∴四边形BEDF是平行四边形,∴BE=DF.【点评】本题结合平行四边形的性质与判定,证明四边形BEDF是平行四边形是解决问题的关键.21.(7分)(2016•江汉区一模)今年我国中东部大部分地区持续出现雾霾天气.某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m= 40 ,n= 100 ,扇形统计图中E组所占的百分比为15 %;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数.【分析】(1)根据A组有80人,所占的百分比是20%,即可求得总人数,用总人数乘以B组所占的百分比得到B组的人数,用总人数减去A、B、D、E四个组的人数得到C组人数,然后用E组人数÷总人数即可求出E组所占的百分比;(2)利用样本估计总体,用该市人口总数乘以持D组“观点”的市民所占百分比即可求解.【解答】解:(1)调查的总人数是:80÷20%=400(人),则m=400×10%=40(人),n=400﹣80﹣40﹣120﹣60=100(人),E组所占的百分比为:60÷400=15%.故答案是:40,100,15;(2)100×=30(万).答:其中持D组“观点”的市民人数30万人…(8分)【点评】本题考查的是扇形统计图和频数分布表的综合运用,读懂统计图表,从不同的统计图表中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)(2017春•沧州期末)在弹性限度内,弹簧的长度y是所挂物体质量x的一次函数,当所挂物体的质量为1kg时弹簧长15cm,当所挂物体的质量为3kg时弹簧长16cm,写出y与x之间的关系式,并求出当所挂物体的质量为4kg 时弹簧伸长了多少厘米?【分析】设y与x的函数关系式为y=kx+b,由待定系数法求出其解即可;把x=4时代入解析式求出y的值即可.【解答】解:设y与x的函数关系式为y=kx+b,由题意,得,解得:.故y与x之间的关系式为:y=0.5x+14.5;当x=4时,y=0.5×4+14.5=16.5.所以弹簧深长的长度为16.5﹣14.5=2厘米,答:当所挂物体的质量为4kg时弹簧伸长了2厘米.【点评】本题考查了运用待定系数法求一次函数的解析式的运用,由自变量求函数值的运用,解答时求出函数的解析式是关键.23.(9分)(2017春•沧州期末)如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE∥AC,AE∥OB.(1)求证:四边形AEBD是菱形;(2)如果OA=3,OC=2,求点E的坐标.【分析】(1)易证四边形AEBD是平行四边形,再证明临边DA=DB即可;(2)连接DE,交AB于点F,分别求出EF,AF的长即可求出点E的坐标.【解答】解:(1)证明:∵BE∥AC,AE∥OB,∴四边形AEBD是平行四边形.又∵四边形OABC是矩形,∴OB=AC,且互相平分,∴DA=DB.∴四边形AEBD是菱形.(2)连接DE,交AB于点F.由(1)四边形AEBD是菱形,∴AB与DE互相垂直平分于点F.又∵OA=3,OC=2,∴EF=DF=OA=1.5,AF=AB=1.∴E点坐标为(4.5,1).【点评】本题考查了平行四边形的判定、菱形的判定、矩形的性质、坐标与图形特征,正确做出图形的辅助线是解题的关键.24.(9分)(2017春•沧州期末)如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.【分析】(1)根据三角形的面积公式S=OA•y,然后把y转换成x,即可求得△OPA△OPA的面积S与x的函数关系式;(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P 的坐标.【解答】解(1)∵A(8,0),∴OA=8,|=×8×(﹣x+10)=﹣4x+40,(0<x<10).S=OA•|yP(2)当S=10时,则﹣4x+40=10,解得x=,当x=时,y=﹣+10=,∴当△OPA的面积为10时,点P的坐标为(,).【点评】本题考查了一次函数图象上点的坐标特征和一次函数的性质,把求三角形的面积和一次函数的图象结合起来,综合性比较强.25.(9分)(2017春•沧州期末)已知函数y=kx+b的图象与x轴、y轴分别交于点A(12,0)、点B,与函数y=x的图象交于点E,点E的横坐标为3,求:(1)直线AB的解析式;(2)在x轴有一点F(a,0).过点F作x轴的垂线,分别交函数y=kx+b和函数y=x于点C、D,若以点B、O、C、D为顶点的四边形是平行四边形,求a的值.【分析】(1)将x=3代入y=x中求出y值,即得出点E的坐标,结合点A、E的坐标利用待定系数法即可求出直线AB的解析式;(2)由点F的坐标可表示出点C、D的坐标,由此即可得出线段CD的长度,根据平行四边形的判定定理即可得出CD=OB,即得出关于a的方程,解方程即可得出结论.【解答】解:(1)把x=3代入y=x,得y=3,∴E(3,3),把A(12,0)、E(3,3)代入y=kx+b中,得:,解得:,∴直线AB的解析式为y=﹣x+4.(2)由题意可知C、D的横坐标为a,∴C(a,﹣a+4),D(a,a),∴CD=|a﹣(﹣a+4)|=|a﹣4|.若以点B、O、C、D为顶点的四边形是平行四边形,则CD=OB=4,即|a﹣4|=4,解得:a=6或a=0(舍去).故:当以点B、O、C、D为顶点的四边形是平行四边形时,a的值为6.【点评】本题考查了一次函数图象上点的坐标特征、待定系数法求函数解析式以及平行四边形的判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)根据CD=OB得出关于a的方程.本体属于中档题,难度不大,解决该题型题目时,根据平行四边形的判定找出相等的线段是关键.26.(11分)(2016•卧龙区一模)某森林公园从正门到侧门有一条公路供游客运动,甲徒步从正门出发匀速走向侧门,出发一段时间开始休息,休息了0.6小时后仍按原速继续行走.乙与甲同时出发,骑自行车从侧门匀速前往正门,到达正门后休息0.2小时,然后按原路原速匀速返回侧门.图中折线分别表示甲、乙到侧门的路程y(km)与甲出发时间x(h)之间的函数关系图象.根据图象信息解答下列问题.(1)求甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式.(2)求甲、乙第一次相遇的时间.(3)直接写出乙回到侧门时,甲到侧门的路程.【分析】(1)根据函数图象可知点(0,15)和点(1,10)在甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数图象上,从而可以解答本题;(2)根据函数图象可以分别求得甲乙刚开始两端对应的函数解析式,联立方程组即可求得第一次相遇的时间;(3)根据函数图象可以得到在最后一段甲对应的函数解析式,乙到侧门时时间为2.2h,从而可以得到乙回到侧门时,甲到侧门的路程.【解答】解:(1)设甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=kx+b,∵点(0,15)和点(1,10)在此函数的图象上,∴,解得k=﹣5,b=15.∴y=﹣5x+15.即甲在休息前到侧门的路程y(km)与出发时间x(h)之间的函数关系式为:y=﹣5x+15.(2)设乙骑自行车从侧门匀速前往正门对应的函数关系式y=kx,将(1,15)代入可得k=15,∴乙骑自行车从侧门匀速前往正门对应的函数关系式y=15x,∴解得x=0.75.即第一次相遇时间为0.75h.(3)乙回到侧门时,甲到侧门的路程是7km.设甲休息了0.6小时后仍按原速继续行走对应的函数解析式为:y=kx+b.将x=1.2代入y=﹣5x+15得,y=9.∵点(1.8,9),(3.6,0)在y=kx+b上,∴,解得k=﹣5,b=18.∴y=﹣5x+18.将x=2.2代入y=﹣5x+18,得y=7.即乙回到侧门时,甲到侧门的路程是7km.【点评】本题考查一次函数的应用,解题的关键是能看懂题意,根据数形结合的数学思想,找出所求问题需要的条件.。
2016-2017学年度下学期期末考试八年级数学试卷一、选择题(3分×10)1.下列二次根式中,是最简二次根式的是()A.2.0B.12C.3D.18 2.下列各式中,正确的是()A.2<15<3B.3<15<4C.4<15<5D.14<15<16 3.以下列长度(单位:cm )为边长的三角形是直角三角形的是() A.5,6,7 B.7,8,9 C.6,8,10 D.5,7,9 4.一次函数y=-2x+1的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限 5.能判定四边形ABCD 为平行四边形的条件是() A.AB ∥CD,AD=BC; B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC; D.AB=AD,CB=CD6.8名学生的平均成绩是x ,如果另外2名学生每人得84分,那么整个组的平均成绩是() A.284x + B.101688+ C.1084x 8+ D.10168x 8+ 7.已知一个直角三角形的两边长分别为3和4,则第三边长为() A.5 B.7 C.7 D.7或5 8.如图,菱形ABCD 的对角线AC 、BD 相交于O 点,E ,F 分别是AB ,BC 边上的中点,连接EF.若EF=3,BD=4,则菱形ABCD 的周长为() A.4 B.64 C.47 D.289.A 、B 两地相距20千米,甲、乙两人都从A 地去B 地,图中21l l 和分别表示甲、乙两人所走路程s (千米)与时间t (小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地,其中正确的个数是() A.4 B.3 C.2 D.110.如图,点A 、B 、C 在一次函数y=-2x+m 的图像上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积之和是()A.1B.3C.3(m —1)D.23(m —1)二、填空题(3分×6)11.函数y=1-x 中,自变量x 的取值范围是 。
河北省沧州市八年级数学下学期期末试题 新人教版A. 4B. 6C. 8D. 123.直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线长是---------------------------------------------------------( ) AB .6C .13D.1324、下列函数中,表示y 是x 的正比例函数的是-------------------( ) A .y=﹣0.1x B .y=2x 2C .y 2=4x D .y=2x+15已知一个直角三角形的两边长分别为3和4,则第三边长为--( ) A.5 B.7 C. D.或56.如图,矩形ABCD 中,对角线AC=8cm ,△AOB 是等边三角形,则AD 的长 为()cm .----------------------------------------------( ) A. 4 B. 6 C. D.7.如图,E 是平行四边形内任一点,若平行四边形ABCD 的面积是8, 图中阴影部分面积是----------------------------------( )A. 3B. 4C. 5D. 6850%,20%,30%的比例计入学期总评成绩,,学期总评成绩优秀的是----------( )A 甲B .乙、丙C .甲、乙D .甲、丙9下列描述一次函数y=﹣2x+5的图象和性质错误的是-----------( )A y 随x 的增大而减小B 直线与x 轴交点的坐标是(0,5)C 当x >0时y <5D 直线经过第一、二、四象限10. 甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是---------------------------------------------( )A .甲B .乙C .丙D .丁11.已知四边形ABCD 是平行四边形,再从①AB=BC ,②∠ABC=90°,③AC=BD ,④AC ⊥BD 四个条件中,选两个作为补充条件后,使得四边形 ABCD 是正方形,现有下列四种选法,其中错误的是--------------( ) A.选①② B 选①③C 选②④D 选②③12.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不 等式x+b >kx+6的解集是---------------------------------( ) A .x >3 B .x <3 C .x ≥3 D .x ≤313.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为------------------------------( ) A .4 B .6 C .8 D .1014.A ,B 两地相距20千米,甲、乙两人都从A 地去B 地,图中l 1和l 2分别表示甲、乙两人所走路程s(千米)与时间t(小时)之间的关系,下列说法:①乙晚出发1小时;②乙出发3小时后追上甲;③甲的速度是4千米/小时;④乙先到达B 地.其中正确的个数是----------------( ) A . 4 B .3 C .2 D .115.如图,一直线与两坐标轴的正半轴分别交于A 、B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为20,则该直线的函数表达式是-----------------( )A .y=x+10B .y=﹣x+10C .y=x+20D .y=﹣x+2016如图,正方形ABCD 的边长为1,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S xx 的值为------------( ) A B C D 二 填空题(每空3分)17.某商场试销一种新款衬衫,一周内售出型号记录情况如表所示: 队员 平均成绩绩方差 甲 9.7 2.12 乙 9.6 0.56 丙 9.7 0.56 丁9.61.3413题图14题图12题图15题图16题图型号(厘米) 38 39 40 41 42 43 数量(件)25303650288商场经理要了解哪种型号最畅销,则上述数据的统计量中,对商场经理来 说最有意义的是 (用数学概念作答)18如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC , AC 的中点,则DE 的长为19如图,已知菱形ABCD 的对角线AC 、BD 的长分别为6cm 、8cm ,AE ⊥BC 于点E ,则AE 的长是20正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2…、正方形A n Bn C n C n ﹣按如图方式放置,点A 1、A 2、A 3、…在直线y =x +1上,点C 1、C 2、C 3、…在x 轴上.已知 A 1点的坐标是(0,1),则点B 3的坐标为__________,点B n 的坐标 是三 解答题(共67分) 21. (10分) (2)已知 求 的值.22.(8分)如图,△ABC 中,D 是BC 上的一点.若AB =10,BD =6,AD =8,AC =17,求△ABC 的面积.23.(11分)如图,直线与轴、轴分别相交于A 、C 两点,过点B (6,0),E (0,﹣6)的直线上有一点P ,满足∠PCA=135°(1)求证:四边形ACPB 是平行四边形;(2)求直线BE 的解析式及点P 的坐标.24.(12分)青县信誉楼统计了家电柜组每个营业员在五月份的销售额,绘制了如下的条形统计图以及不完整的扇形统计图:(1)计算: 18题图 19题图20题图x EC O B A P y x EC O BA P y 订 线解答下列问题:(1)设营业员的月销售额为x(单位:万元),商场规定:当x<15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.则扇形统计图中的a= ,b= .(2)所有营业员月销售额的中位数和众数分别是多少?(3)为了调动营业员的积极性,决定制定一个月销售额奖励标准,凡达到或超过这个标准的营业员将受到奖励.如果要使得营业员的半数左右能获奖,销售额应定为多少万元?并简述其理由25.(12分) xx年5月,沧州市教育局举办了首届中小学“数学古文化阅读展示”活动,为表彰在本次活动中表现优秀的学生,老师决定在六一儿童节购买笔袋或彩色铅笔作为奖品.已知1个笔袋、2筒彩色铅笔原价共需44元;2个笔袋、3筒彩色铅笔原价共需73元.(1)每个笔袋、每筒彩色铅笔原价各多少元?(2)时逢“儿童节”,商场举行“优惠促销”活动,具体办法如下:笔袋一律“九折”优惠;彩色铅笔不超过10筒不优惠,超出10筒的部分“八折”优惠. 若买x个笔袋需要元,买x筒彩色铅笔需要元. 请用含x的代数式分别表示与;(3)若在(2)的条件下购买同一种奖品95件,请你分析买哪种奖品省钱.26(14分)如图,矩形ABCD中,对角线AC、BD相交于点O,点P是线段AD上一动点(不与点D重合),PO的延长线交BC于Q点.(1)求证:四边形PBQD为平行四边形.(2)若AB=6cm,AD=8cm,P从点A出发.以1cm/秒的速度向点D匀速运动.设点P运动时间为t 秒,问四边形PBQD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.参考答案与评分标准一选择题(38分)CBDAD CBCBC DACBB B二填空题(15分)(17)众数(18),1 (19), cm (20) (7,4), (2-1, 2 )三解答题21(10分)(1)解:原式=----------3分= -----------------------2分(2)解法一:原式=----------1分=-------------3分= 4------------------------------------1分解法二:=-------------------2分把=代入得原式==5-1-------------------------------2分= 4-----------------------------------1分22(8分)解:在△ABD中,∵BD2+AD2=62+82=100=AB2∴△ABD是直角三角形--------------3分∴△ADC也是直角三角形即DC2+AD2=AC2DC2=AC2-AD2=172-82=225∴DC=15---------------------------------3分即BC=BD+DC=6+15=21-------------1分∴S△ABC==84---------------1分23 证明:(1)(5分)∵直线y=x+3与x轴的交点为A(﹣3,0),与y轴交点为C(0,3),∴OA=OC,Array∵∠AOC=90°,∴∠CAO=45°,∵∠PCA=135°,∴∠CAO+∠PCA=180°,∴AB∥CP,------------------------------2分同理由E(0,﹣6),B(6,0)得∠ABE=45°,即∠CAO=∠ABE=45°,∴AC∥BP,------------------------------2分则四边形ACPB为平行四边形;-----1分(2)(6分)(2)解:设直线BE的解析式为y=kx+b,把B(6,0),E(0,﹣6)代入得得:解得∴直线BE的解析式为-------------------4分∵AB∥CP,∴点P的纵坐标是3,代入解析式得横坐标是9用其他方法,只要推理清楚、正确即可24、(12分)(1)10 60-----------------------4分(2)中位数是21,众数是20.--------4分(3)奖励标准应订为21万元,理由:如果要使得营业员的半数左右能获奖,应该以这些员工月销售额的中位数为标准。
河北省沧州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2017八下·丹阳期中) 以下问题不适合全面调查的是()A . 调查全国中小学生课外阅读情况B . 调查某中学在职教师的身体健康状况C . 调查某班学生每周课前预习的时间D . 调查某校篮球队员的身高2. (2分)下列命题正确的是()A . 一组对边平行,另一组对边相等的四边形是平行四边形;B . 对角线互相垂直的四边形是菱形;C . 对角线相等的四边形是矩形;D . 一组邻边相等的矩形是正方形3. (2分)在▱ABCD中,AB=6,AD=8,∠ABC=60°,点E是AB的中点,EF⊥AB交BC于F,连接DF,则DF 的长为()A . 2B . 8C . 5D . 104. (2分)下列函数中,当x>0时,y随x的增大而增大的是()A . y=-x+1B . y=x2-1C .D . y=-x2+15. (2分)下列命题中正确的是()A . 一组对边平行的四边形是平行四边形B . 两条对角线相等的平行四边形是矩形C . 两边相等的平行四边形是菱形D . 对角线互相垂直且相等的四边形是正方形6. (2分)△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1 ,再将△A1B1C1绕点O旋转180°后得到△A2B2C2 .则下列说法正确的是()A . A1的坐标为(3,1)B . S四边形ABB1A1=3C . B2C=2D . ∠AC2O=45°7. (2分) (2020八上·邛崃期末) 在平面直角坐标系中,点P与点M关于y轴对称,点N与点M关于x轴对称,若点P的坐标为(-2,3),则点N的坐标为()A . (-3,2)B . (2,3)C . (2,-3)D . (-2,-3)8. (2分) (2018八下·桐梓月考) 正方形ABCD中,AC=4,则正方形ABCD面积为()A . 4B . 8C . 16D . 329. (2分)既有外接圆,又有内切圆的平行四边形是()A . 矩形B . 菱形C . 正方形D . 平行四边形10. (2分)在△ABC中,D、E分别为AB、AC边上中点,且DE=6,则BC的长度是()A . 3B . 6C . 9D . 12二、填空题 (共10题;共20分)11. (1分)(2019·宁波模拟) 如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于________.12. (4分)对于问题:从一批冰箱中抽取100台,调查冰箱的使用寿命.该问题的总体是:________;个体是:________;样本是:________;样本容量是:________.13. (1分)如图所示,在平行四边形ABCD中,分别以AB、AD为边作等边△ABE和等边△ADF,分别连接CE、CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.14. (1分)(2017·洪泽模拟) 如图,将矩形纸片的两只直角分别沿EF、DF翻折,点B恰好落在AD边上的点B′处,点C恰好落在边B′F上.若AE=3,BE=5,则FC=________.15. (1分)(2017·海淀模拟) 某小组做“用频率估计概率”的试验时,统计了某一事件发生的频率,绘制了如图所示的折线图.该事件最有可能是________(填写一个你认为正确的序号).①掷一个质地均匀的正六面体骰子,向上一面的点数是2;②掷一枚硬币,正面朝上;③暗箱中有1个红球和2个黄球,这些球除了颜色外无其他差别,从中任取一球是红球.16. (1分)(2018·清江浦模拟) 正五边形的外角和等于 ________◦.17. (1分)快车和慢车同时从甲地出发,以各自的速度匀速向乙地行驶,快车到达乙地后停留了45分钟,立即按原路以另一速度匀速返回,直至与慢车相遇.已知慢车的速度为60千米/时,两车之间的距离y(千米)与两车行驶时间x(小时)之间的函数图象如图所示,则快车从乙地返回时的速度为________千米/时.18. (1分)如图,菱形ABCD的周长为36cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于________.19. (8分)如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中,________ 是自变量,________ 是因变量.(2)甲的速度________ 乙的速度.(大于、等于、小于)(3)6时表示________ ;(4)路程为150km,甲行驶了________ 小时,乙行驶了________ 小时.(5)9时甲在乙的________ (前面、后面、相同位置)(6)乙比甲先走了3小时,对吗?________ .20. (1分)(2017·平顶山模拟) 如图,在矩形ABCD中,AB=2 ,AD=4,点E是BC边上一个动点,连接AE,作DF⊥AE于点F,当BE的长为________时,△CDF是等腰三角形.三、解答题 (共6题;共73分)21. (10分)如图(1)如图(1),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的内部,点A的对称点为点O,判断∠O、∠O DC、∠BEO的大小关系,并写出证明过程.(2)如图(2),把三角形纸片ABC的角A沿DE折起(DE为折痕),使顶点A在∠A的外部,点A的对称点为点O,判断∠O、∠ODC、∠BEO的大小关系吗?并写出证明过程.22. (15分) (2017八下·农安期末) 为加强学生课间锻炼,某校决定开设羽毛球、跳绳、踢毽子三种运动项目,为了解学生最喜欢哪一种项目,随机抽取了n名学生进行调查(每名同学选择一种体育项目),并将调查结果绘制成如图两个统计图.请结合上述信息解答下列问题:(1)求n的值;(2)请把条形统计图补充完整;(3)已知该校有1200人,请你根据统计图中的资料估计全校最喜欢踢毽子的人数.23. (18分)(2018·洪泽模拟) 如图①,直线y=﹣ x+8 与x轴交于点A,与直线y= x交于点B,点P为AB边的中点,作PC⊥OB与点C,PD⊥OA于点D.(1)填空:点A坐标为________,点B的坐标为________,∠CPD度数为________;(2)如图②,若点M为线段OB上的一动点,将直线PM绕点P按逆时针方向旋转,旋转角与∠AOB相等,旋转后的直线与x轴交于点N,试求MB•AN的值;(3)在(2)的条件下,当MB<2时(如图③),试证明:MN=DN﹣MC;(4)在(3)的条件下,设MB=t,MN=s,直接写出s与t的函数表达式.24. (5分)(2018·潘集模拟) 如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y= (k>0)的图象与BC边交于点E.当F为AB的中点时,求该函数的解析式.25. (10分) (2016九上·萧山月考) 已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形(1)求证:△DFB是等腰三角形;(2)若DA= AF,求证:CF⊥AB.26. (15分)(2019·贵池模拟) 如图(1)在正方形ABCD中,点E是CD边上一动点,连接AE ,作BF⊥AE ,垂足为G交AD于F(1)求证:AF=DE;(2)连接DG,若DG平分∠EGF,如图(2),求证:点E是CD中点;(3)在(2)的条件下,连接CG,如图(3),求证:CG=CD.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共20分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共73分) 21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、23-4、24-1、25-1、25-2、26-1、26-2、26-3、。
人教版八年级下册数学沧州数学期末试卷测试卷(含答案解析)一、选择题1.要使二次根式3x -有意义,x 的值可以是( )A .﹣1B .0C .2D .42.已知下列三角形的各边长:①3、4、5,②3、4、6,③5、12、13,④5、11、12其中直角三角形有( )A .4个B .3个C .2个D .1个3.在四边形ABCD 中,对角线AC 与BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AD ∥BC ,AB =DC C .AB ∥DC ,∠DAB =∠DCBD .AO =CO ,BO =DO4.某班有50人,一次体能测试后,老师对测试成绩进行了统计,由于张华没有参加本次体能测试,因此计算其他49人的平均分是90分,方差250s =,后来张华进行了补测,成绩为90分,关于该班50人的测试成绩,下列说法正确的是( )A .平均分不变,方差变小B .平均分不变,方差变大C .平均分和方差都不变D .平均分和方差都改变 5.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为( )A .6B .12C .24D .48 6.如图所示,在菱形ABCD 中,AC ,BD 相交于O ,∠ABC =50°,E 是线段AO 上一点则∠BEC 的度数可能是( )A .95°B .75°C .55°D .35°7.如图,等腰Rt ABC 中,AB =AC ,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:①DF =DN ;②DMN 为等腰三角形;③DM 平分∠BMN ;④AE =23EC ;⑤AE =NC ,其中正确结论有( )A .2个B .3个C .4个D .5个8.如图,已知A (3,1)与B (1,0),PQ 是直线y x =上的一条动线段且PQ 2=Q 在P 的下方),当AP+PQ+QB 最小时,Q 点坐标为( )A .(23,23)B .(23,23)C .(0,0)D .(1,1)二、填空题9.化简:()()2223x x ---=______10.菱形的两条对角线长分别为5和8,则这个菱形的的面积为__________. 11.如图,已知一根长8m 的竹竿在离地3m 处断裂,竹竿顶部抵着地面,此时,顶部距底部有____m .12.如图,矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是40厘米,矩形的周长是22厘米,则对角线AC 的长为 ___厘米.13.饮料每箱24瓶,售价48元,买饮料的总价y (元)与所买瓶数x 之间的函数________.14.如图,在矩形ABCD 中,E 是BC 的中点,矩形ABCD 的周长是20 cm ,AE =5 cm ,则AB 的长为____cm.15.如图,在平面直角坐标系中,直线y =﹣x +2与x 轴交于点A ,与y 轴交于点B ,点P 是线段AB 的三等分点(AP >BP ),点C 是x 轴上的一个动点,连接BC ,以BC 为直角边,点B 为直角顶点作等腰直角△BCD ,连接DP .则DP 长度的最小值是___.16.如图,矩形纸片ABCD 中,6cm AB =,10cm AD =,点E 、F 在矩形ABCD 的边AB 、AD 上运动,将AEF 沿EF 折叠,使点A '在BC 边上,当折痕EF 移动时,点A '在BC 边上也随之移动.则A C '的取值范围为___.三、解答题17.计算: (1)(2+5)(2﹣5);(2)1822+﹣3; (3)(π﹣2021)01112|32|()2-++-+. 18.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”翻译成现代文为:如图,秋千OA 静止的时候,踏板离地高一尺(1AC =尺),将它往前推进两步(10EB =尺),此时踏板升高离地五尺(5BD =尺),求秋千绳索(OA 或OB )的长度.19.如图所示,在77⨯的方格纸中,每个小正方形的边长均为1,线段AB 的端点A 、B 均在小正方形的顶点上.(1)在图中画出以AB 为边的菱形ABCD ,菱形的面积为8;(2)在图中画出腰长为5的等腰三角形ABE ,且点E 在小正方形顶点上;(3)连接CE ,请直接写出线段CE 的长.20.如图,在平行四边形ABCD 中,∠ABC 的平分线BE 交AD 于点E ,点F 是BC 边上的一点,且BF =AB ,连接EF .(1)求证:四边形ABFE 是菱形;(2)连接AF ,交BE 于点O ,若AB =5,BE +AF =14,求菱形ABFE 的面积.21.(1)若实数m 、n 满足等式|2|40m n --=,求2m+3n 的平方根;(2)已知24248y x x =--35x y -22.某电商在线销售甲、乙、丙三种水果,已知每千克乙水果的售价比每千克甲水果的售价多3元,每千克丙水果的售价是每千克甲水果售价的2倍,用200元购买丙水果的数量是用80元购买乙水果数量的2倍.(1)求丙水果每千克的售价是多少元?(2)电商推出如下销售方案:甲、乙、丙三种水果搭配销售共7千克,其中乙水果的数量是丙水果数量的2倍,且甲、乙两种水果数量之和不超过丙水果数量的6倍.请直接写出按此方案购买7千克水果最少要花费 元.23.如图,在▱ABCD 中,连接BD ,AB BD ⊥,且AB BD =,E 为线段BC 上一点,连接AE 交BD 于F .(1)如图1,若22AB =BE =1,求AE 的长度;(2)如图2,过D 作DH ⊥AE 于H ,过H 作HG ⊥AD 交AD 于G ,交BD 于M ,过M 作MN ∥AD 交AE 于N ,连接BN ,证明:2NH BN =;(3)如图3,点E 在线段BC 上运动时,过D 作DH ⊥AE 于H ,延长DH 至Q ,使得12QH AH =,M 为AD 的中点,连接QM ,若42AD =,当QM 取最大值时,请直接写出△ADH 的面积.24.已知:在平面直角坐标系中,点O 为坐标原点,直线y x b =-+交x 轴于点()8,0A ,交y 轴于点B .(1)如图1,求点B 的坐标;(2)如图2,点P 为线段AB 上一点,点Q 为x 轴负半轴上一点,连接BQ ,PQ ,且PQ BQ =,设点P 的横坐标为t ,AQ 的长为d ,求d 与t 之间的函数解析式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,过点P 作BQ 的垂线,分别交x 轴,BQ 于点C ,D ,过点O 作OE CD ⊥于点E ,连接QE ,若QE 平分PQD △的周长,求d 的值.25.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围.(3)在x轴正半轴上存在点Q,使得QMN是等腰三角形,请直接写出不少于4个符合条件的点Q的坐标(用x的式子表示)26.如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D(0,0),B(3,4),矩形ABCD沿直线EF折叠,点B落在AD边上的G处,E、F分别在BC、AB边上且F(1,4).(1)求G点坐标(2)求直线EF解析式(3)点N在坐标轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,直接写出M点坐标;若不存在,请说明理由【参考答案】一、选择题1.D解析:D【分析】二次根式的被开方数大于等于零,由此计算解答.【详解】x-≥,解:∵30x≥,∴3观察只有D选项符合,故选:D.【点睛】此题考查二次根式有意义的条件:被开方数大于等于零.2.C解析:C判断是否可以构成直角三角形,只需验证两小边的平方和是否等于最长边的平方,即可得出答案.【详解】解:①222+=,能构成直角三角形;345②222+≠,不能构成直角三角形;346③222+=,能构成直角三角形;51213④222+≠,不能构成直角三角形;51112∴其中直角三角形有2个;故选:C.【点睛】本题主要考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足222a b c,那么+=这个三角形就是直角三角形.3.B解析:B【解析】【分析】依据平行四边形的定义和判定方法逐一判断即可得解;【详解】A、∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,故选项A不符合题意;B、由AD∥BC,AB=DC,即一组对边平行,一组对边相等,无法判断四边形ABCD是平行四边形,举反例如等腰梯形,故选项B符合题意;C、∵AB∥DC,∴∠ABC+∠DCB=180°,∠DAB+∠ADC=180°,∵∠DAB=∠DCB,∴∠ABC=∠ADC,∴四边形ABCD是平行四边形,故选项C不符合题意;D、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故选项D不符合题意;故选:B.【点睛】本题主要考查平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键,同时注意一组对边平行,一组对边相等得四边形不一定是平行四边形.4.A解析:A【解析】【分析】根据平均数和方差的性质判断即可;∵张华的成绩和其他49人的平均分相同,都是90分,∴该班50人的测试成绩的平均分为90分,方差变小;故选A .【点睛】本题主要考查了方差和算术平均数,准确分析判断是解题的关键.5.C解析:C【分析】先根据三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,即求出原三角形的边长分别为6、8、10,再根据勾股定理的逆定理判断原三角形的形状,即可根据三角形面积公式求得面积.【详解】解:∵三角形三条中位线的长为3、4、5,∴原三角形三条边长为3264285210⨯=⨯=⨯=,,,2226810+=,∴此三角形为直角三角形,168242S ∴=⨯⨯=, 故选C .【点睛】本题考查的是三角形的中位线定理、勾股定理的逆定理,属于基础应用题,熟知性质定理是解题的关键.6.B解析:B【解析】【分析】由菱形的性质,得∠AOB =90°,∠ABO =1=252∠ABC ,从而得:∠BAO =65°,进而可得:65°<BEC ∠<90°,即可得到答案.【详解】解:∵在菱形ABCD 中,∴AC BD ⊥,即:∠AOB =90°,∴BEC ∠<90°,∵50ABC ∠=,∴∠ABO =1150=2522ABC ∠=⨯, ∴∠BAO =65°,∵BEC ∠=∠BAO +∠ABE ,∴BEC ∠>55°,即:55°<BEC ∠<90°.故选B .【点睛】本题主要考查菱形的性质定理以及三角形内角和定理与外角的性质,掌握菱形的性质是解题的关键.7.C解析:C【解析】【分析】先根据等腰直角三角形的性质得出BD AD =,DBF DAN ∠=∠,BDF ADN ∠=∠,进而证DFB DAN △≌△,即可判断①,再证ABF CAN △≌△,推出CN AF AE ==,即可判断⑤;根据全等三角形的判定与性质可得M 为AN 的中点,进而可证得12DM AM NM AN ===,由次可判断②,再根据等腰三角形的性质及外角性质可判断③,最后再根据垂直平分线的判定与性质以及直角三角形的勾股定理可判断④.【详解】解:90BAC ∠=︒,AC AB =,AD BC ⊥,45ABC C ∴∠=∠=︒,AD BD CD ==,90ADN ADB ∠=∠=︒, 45BAD CAD ∴∠=︒=∠, BE 平分ABC ∠,122.52ABE CBE ABC ∴∠=∠=∠=︒, 9022.567.5BFD AEB ∴∠=∠=︒-︒=︒,67.5AFE BFD AEB ∴∠=∠=∠=︒,AF AE ∴=,又∵M 为EF 的中点,∴AM BE ⊥,90AMF AME ∴∠=∠=︒,9067.522.5DAN CAN MBN ∴∠=∠=︒-︒=︒=∠,在FBD 和NAD 中,FBD DAN BD ADBDF ADN ∠=∠⎧⎪=⎨⎪∠=∠⎩FBD NAD ∴△≌△(ASA ),DF DN ∴=,故①正确;在AFB △和CNA 中4522.5BAF C AB ACABF CAN ∠=∠=︒⎧⎪=⎨⎪∠=∠=︒⎩AFB CAN ∴△≌△(ASA ), AF CN ∴=,AF AE =,AE CN ∴=,故⑤正确; 在ABM 和NBM 中ABM NBM BM BMAMB NMB ∠=∠⎧⎪=⎨⎪∠=∠⎩ABM NBM ∴△≌△(ASA ), AM NM ∴=,∴点M 是AN 的中点, 又∵90ADN ∠=︒, ∴12DM AM NM AN ===, DM NM =, DMN ∴是等腰三角形,故②正确; DM AM =,22.5DAM ADM ∴∠=∠=︒, 45DMN DAM ADM ∴∠=∠+∠=︒, 9045DMB DMN DMN ∴∠=︒-∠=︒=∠, DM ∴平分BMN ∠,故③正确; 如图,连接EN ,∵AM NM =,AM BE ⊥, ∴BE 垂直平分AN ,∴EA =EN ,22.5ENA EAN ∴∠=∠=︒, 45CEN ENA EAN ∴∠=∠+∠=︒, 又∵45C ∠=︒,∴90ENC ∠=︒,且EN CN =, 在Rt ENC 中,22222EC EN CN EN =+=,∴22EC EN AE ==,22AE EC ∴=,故④错误, 即正确的有4个,故选:C .【点睛】本题考查了全等三角形的判定与性质,三角形外角性质,三角形内角和定理,直角三角形斜边上中线性质,等腰三角形的判定与性质,垂直平分线的判定与性质以及勾股定理等相关知识的应用,能熟练运用相关图形的判定与性质是解此题的关键,主要考查学生的推理能力.8.A解析:A【分析】作点B 关于直线y=x 的对称点'B (0,1),过点A 作直线MN ,使得MN 平行于直线y=x ,并沿MN 向下平移2单位后,得'A (2,0),连接''A B 交直线y=x 于点Q ,求出直线''A B 解析式,与y=x 组成方程组,即可求出Q 点的坐标.【详解】解:作点B 关于直线y=x 的对称点'B (0,1),过点A 作直线MN ,使得MN 平行于直线y=x ,并沿MN 向下平移2单位后,得'A (2,0),连接''A B 交直线y=x 于点Q ,如下图所示.∵'2AA PQ ==,'//AA PQ ,∴四边形'APQA 是平行四边形,∴'AP A Q =,∵''AP PQ QB B Q A Q PQ ++=++且2PQ =,∴当''A Q B Q +值最小时,AP PQ QB ++值最小.根据两点之间线段最短,即''A Q B 、、三点共线时,''A Q B Q +值最小.∵'B (0,1),'A (2,0),∴直线''A B 的解析式112y x =-+, ∴112x x =-+,即23x =, ∴Q 点的坐标为(23,23). 故答案选A .【点睛】本题主要考查了一次函数图像上点的坐标特征、最短路径问题.二、填空题9.-1【解析】【分析】根据二次根式有意义的条件,求出x的范围,再根据二次根式的性质和绝对值的性质化简,即可得到答案.【详解】20x-≥,∴2x≤,30x∴-<223x x---,∴()2323231x x x x x x---=---=--+=-故答案为:1-.【点睛】本题考查了二次根式化简求值,正确掌握二次根式有意义的条件,二次根式的性质,绝对值的性质是解题关键.10.20【解析】【分析】菱形的面积是对角线乘积的一半,由此可得出结果.【详解】解:∵菱形的两条对角线长分别为5和8,∴菱形的面积:158202S=⨯⨯=.故答案为:20.【点睛】本题考查了菱形的面积,菱形面积的求解方法有两种:①底乘以高,②对角线积的一半,解题关键是对面积公式的熟练运用.11.A解析:4【解析】【详解】解:解如图所示:在Rt∆ABC中,BC=3,AC=5,由勾股定理可得:AB2+BC2=AC2设旗杆顶部距离底部AB=x米,则有32+x2=52,解得x=4故答案为:4.【点睛】本题考查勾股定理.12.A解析:5【分析】根据矩形性质得出OA=OB=OC=OD,AB=CD,AD=BC,求出8OA+2AB+2BC=40厘米和2AB+2BC=22厘米,求出OA,即可求出答案.【详解】解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,AC=BD,AO=OC,OD=OB,∴AO=OC=OD=OB,∵矩形ABCD被两条对角线分成四个小三角形的周长的和是40厘米,∴OA+OD+AD+OD+OC+CD+OC+OB+BC+OA+OB+AB=40厘米,即8OA+2AB+2BC=40厘米,∵矩形ABCD的周长是22厘米,∴2AB+2BC=22厘米,∴8OA=18厘米,∴OA=2.25厘米,即AC=BD=2OA=4.5厘米.故答案为:4.5.【点睛】本题考查了矩形的性质的应用,注意:矩形的对边相等,矩形的对角线互相平分且相等.13.y=2x.【详解】试题解析:每瓶的售价是4824=2(元/瓶),则买的总价y(元)与所买瓶数x之间的函数关系式是:y=2x.考点:根据实际问题列一次函数关系式.14.A解析:4【解析】试题分析:设AB=xcm,则由矩形ABCD的周长是20cm可得BC=10﹣xcm,∵E是BC的中点,∴BE=12BC=10x2.在Rt△ABE中,AE=5cm,根据勾股定理,得AB2+BE2=AE2,即x2+(10x2-)2=52,解得:x=4.∴AB的长为4cm.15.【分析】过点B作BM⊥轴于点B,使BM=OB,利用SAS证得△BOC△BMD,再证明M、D、A三点共线,推出四边形AMBO是正方形,当且仅当PD⊥AM时,线段DP的长度取得最小值,利用勾股定理即解析:4 3【分析】过点B作BM⊥y轴于点B,使BM=OB,利用SAS证得△BOC≅△BMD,再证明M、D、A 三点共线,推出四边形AMBO是正方形,当且仅当PD⊥AM时,线段DP的长度取得最小值,利用勾股定理即可求解.【详解】解:过点B作BM⊥y轴于点B,使BM=OB,连接DM,AD,∵直线y=﹣x+2与x轴交于点A,与y轴交于点B,∴令0y=,则2x=;令0x=,则2y=;∴点A的坐标为(2,0),点B的坐标为(0,2),∴OA=OB=BM=2,∵BM⊥y轴,∴∠OBM=90°,∴点M的坐标为(2,2),∵△BCD是等腰直角三角形,∴BC=BD,∠CBD=90°,∴∠CBD=∠OBM=90°,∴∠CBD-∠OBD=∠OBM-∠OBD,∴∠CBO=∠DBM,在△BOC和△BMD,BC BD CBO DBM OB MB =⎧⎪∠=∠⎨⎪=⎩, ∴△BOC ≅△BMD (SAS ),∴∠BOC =∠BMD =90°,∴BM ⊥DM ,∴DM ∥OB ,∵M 、D 、A 三点的横坐标相同,都为2,∴M 、D 、A 三点共线,∴四边形AMBO 是正方形,∴∠BAM =45°,∵AB=点P 是线段AB 的三等分点(AP >BP ),∴AP =23AB当且当PD ⊥AM 时,线段DP 的长度取得最小值,此时,△PAD 为等腰直角三角形,∴PD=43, ∴线段DP 长度最小值为43, 故答案为:43. 【点睛】本题考查了一次函数的的图象与坐标轴的交点问题,正方形的判定和性质,等腰直角三角形的判定和性质,全等三角形的判定和性质等知识点,证得四边形AMBO 是正方形,以及当PD ⊥AM 时,线段DP 的长度取得最小值是解题的关键.16.【分析】根据矩形的性质得∠C=90°,BC=AD=10cm ,CD=AB=6cm ,当折痕EF 移动时点A′在BC 边上也随之移动,由此可以得到,当点E 与B 重合时,最小,当F 与D 重合时,最大,据此画图求解析:4cm 8cm A C '≤≤【分析】根据矩形的性质得∠C =90°,BC =AD =10cm ,CD =AB =6cm ,当折痕EF 移动时点A ′在BC 边上也随之移动,由此可以得到,当点E 与B 重合时,A C '最小,当F 与D 重合时,A C '最大,据此画图求解即可.【详解】解:∵四边形ABCD 是矩形∴∠C =90°,BC =AD =10cm ,CD =AB =6cm当点E 与B 重合时,A C '最小,如图所示:此时6cm BA BA '==∴4cm A C BC BA ''=-=当F 与D 重合时,A C '最大,如图所示:此时10cm AD A D '== ∴228cm A C A D DC ''=-=∴A C '的取值范围为:4cm 8cm A C '≤≤故答案为:4cm 8cm A C '≤≤.【点睛】本题主要考查了矩形与折叠,勾股定理等等,解题的关键在于确定E 、F 的位置.三、解答题17.(1)﹣1;(2)1;(3)5+【分析】(1)利用平方差公式计算即可;(2)先化简二次根式,再计算分子上的加法,继而计算除法,最后计算减法即可;(3)先计算零指数幂、负整数指数幂、化简二次根解析:(1)﹣1;(2)1;(3)3【分析】(1)利用平方差公式计算即可;(2)先化简二次根式,再计算分子上的加法,继而计算除法,最后计算减法即可;(3)先计算零指数幂、负整数指数幂、化简二次根式,去绝对值符号,再计算加减即可.【详解】解:(1)原式=2252=4﹣5=﹣1;(23222+3 422﹣3 =4﹣3=1;(3)原式==【点睛】本题考查实数的混合运算.主要考查二次根式的混合运算,零指数幂和负整数指数幂,平方差公式,化简绝对值等.掌握相关法则,能分别化简是解题关键.18.秋千绳索的长度为尺.【分析】设OA=OB=x 尺,表示出OE 的长,在中,利用勾股定理列出关于x 的方程求解即可.【详解】解:设尺,由题可知:尺,尺,∴(尺),尺,在中,尺,尺,尺,由勾股解析:秋千绳索的长度为14.5尺.【分析】设OA =OB =x 尺,表示出OE 的长,在Rt OEB 中,利用勾股定理列出关于x 的方程求解即可.【详解】解:设OA OB x ==尺,由题可知:5EC BD ==尺,1AC =尺,∴514EA EC AC =-=-=(尺),()4OE OA AE x =-=-尺,在Rt OEB 中,()4OE x =-尺,OB x =尺,10EB =尺,由勾股定理得:()222410x x =-+,解得:14.5x =,则秋千绳索的长度为14.5尺.【点睛】本题考查了勾股定理的应用,熟练掌握勾股定理,学会利用方程解决问题是解题的关键. 19.(1)见解析;(2)见解析;(3).【解析】【分析】(1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可;(2)根据图中所给的AB 计算出AB 的长不等于5,即AB 为底,然后利用勾解析:(1)见解析;(2)见解析;(3)CE =【解析】【分析】(1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可;(2)根据图中所给的AB计算出AB的长不等于5,即AB为底,然后利用勾股定理找出E点即可;(3)利用勾股定理进行相应的计算即可得到答案.【详解】解:(1) 根据菱形的性质:菱形的四边都相等,菱形的面积为8,画出的图形如下图所示(2)如图所示22105∵AB BP AP=+=≠∴AB为等腰三角形ABE的底∴AE=BE=5225∵=+==BE BT ET AE∴下图即为所求(3)如图所示,连接EC则由题意得2217=+=CE CH EH【点睛】本题主要考查了应用设计与作图,正确利用网格结合勾股定理是解题的关键. 20.(1)见解析;(2)24【分析】(1)证,则,,得四边形是平行四边形,再由,即可得出结论;(2)由菱形的性质得,,,则,再由勾股定理得出方程:,解方程即可.【详解】(1)证明:四边形是平行解析:(1)见解析;(2)24【分析】(1)证AB AE =,则AE BF =,//AE BF ,得四边形ABFE 是平行四边形,再由AB AE =,即可得出结论;(2)由菱形的性质得AF BE ⊥,12OB OE BE ==,12OA OF AF ==,则1()72OA OB BE AF +=+=,再由勾股定理得出方程:222(7)5OA OA +-=,解方程即可. 【详解】(1)证明:四边形ABCD 是平行四边形,//AD BC ∴,AEB FBE ∴∠=∠,ABC ∠的平分线BE 交AD 于点E ,ABE FBE ∴∠=∠,AEB ABE ∴∠=∠,AB AE =∴,BF AB =,AE BF ∴=,//AE BF ,∴四边形ABFE 是平行四边形,又AB AE =,∴平行四边形ABFE 是菱形;(2)解:由(1)得:四边形ABFE 是菱形,AF BE ∴⊥,12OB OE BE ==,12OA OF AF ==,14BE AF +=,1()72OA OB BE AF ∴+=+=, 在Rt AOB ∆中,由勾股定理得:222OA OB AB +=,即222(7)5OA OA +-=,解得:3OA =或4OA =,当3OA =时,4OB =,则6AF =,8BE =;当4OA =时,3OB =,则8AF =,6BE =;∴菱形ABFE 的面积168242=⨯⨯=. 【点睛】本题考查了平行四边形的性质、菱形的判定和性质、勾股定理等知识,熟练掌握菱形的判定与性质是解题的关键.21.(1);(2)4【解析】【分析】(1)根据绝对值的非负性和算数平方根的非负性得出m 和n 的值,代入即可(2)根据二次根式有意义的范围求解x ,进而求得y ,最后代入即可求解.【详解】(1解析:(1)4±;(2)4【解析】【分析】(1)根据绝对值的非负性和算数平方根的非负性得出m 和n 的值,代入即可求解; (2)根据二次根式有意义的范围求解x ,进而求得y ,最后代入即可求解.【详解】(1)∵|2|0m -=∴2m =,4n =∴2316m n +=∴16的平方根为4±;(2)∵8y =∴根据使二次根式有意义的条件得240240x x -≥⎧⎨-≥⎩∴x=24,y=-8 ∴4=∴原式的值为4.【点睛】本题考查了绝对值的非负性,算术平方根的非负性,二次根式的定义,关键是掌握使二次根式有意义的条件.22.(1)10;(2)46【分析】(1)设每千克甲水果的售价是元,则每千克乙水果的售价是元,每千克丙水果的售价是元,利用数量总价单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即解析:(1)10;(2)46【分析】(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元,利用数量=总价÷单价,结合用200元购买丙水果的数量是用80元购买乙水果数量的2倍,即可得出关于x 的分式方程,解之经检验后即可得出结论; (2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克,根据甲、乙两种水果数量之和不超过丙水果数量的6倍,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,设购买7千克水果的费用为w 元,利用总价=单价⨯数量,即可得出w 关于m 的函数关系式,再利用一次函数的性质即可解决最值问题.解:(1)设每千克甲水果的售价是x 元,则每千克乙水果的售价是(3)x +元,每千克丙水果的售价是2x 元, 依题意得:80200232x x⨯=+, 解得:5x =,经检验,5x =是原方程的解,且符合题意,3538x ∴+=+=,22510x =⨯=.答:每千克丙水果的售价是10元.(2)设搭配方案中含丙水果m 千克,则含乙水果2m 千克,甲水果(72)m m --千克, 依题意得:7226m m m m --+,解得:1m .设购买7千克水果的费用为w 元,则5(72)82101135w m m m m m =--+⨯+=+.110>,w ∴随m 的增大而增大,∴当1m =时,w 取得最小值,最小值1113546=⨯+=(元).故答案为:46.【点睛】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.23.(1)见解析;(2)见解析;(3).【分析】(1)分别过点作,垂足分别为,勾股定理解即可;(2)连接,过点作于点,设,经过角度的变换得出,再证明,得出,,结合已知条件,继而证,得出,,进而得到解析:(1)见解析;(2)见解析;(3 【分析】(1)分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S R ,勾股定理解Rt ARE △即可; (2)连接BH ,过点N 作NT AD ⊥于点T ,设BAN α∠=,经过角度的变换得出BAN HDB ∠=∠,再证明ATN △≌HGD △,得出,AN HD =,结合已知条件,继而证BAN ≌BDH △,得出ABN DBH ∠=∠,NB HB =,进而得到NBH △是等腰直角三角形,从而得证;(3)分别作,AD AQ 的中垂线,交于点O ,根据作图,先判断MQ 最大的时候的位置,进而由12QH AH =,AD =,AH HD ,从而求得△ADH 的面积 .【详解】(1)如图,分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S RAB BD ⊥,AB BD =,22AB =ABD ∴是等腰直角三角形,ASB △是等腰直角三角形224AD AB BD ∴=+=∴122AS SD AD ===,2BS AS == 四边形ABCD 是平行四边形//AD BC ∴,BS AD ER AD ⊥⊥,1BE =∴四边形SBER 是矩形∴SR BE =1=,2RE SB ==3AR AS SR ∴=+=在Rt ARE △中22223213AE AR RE =+=+=(2)连接BH ,过点N 作NT AD ⊥于点T ,设BAN α∠=BAD 是等腰直角三角形45BAD BDA ∴∠=∠=︒45HAD BAD BAN α∴∠=∠-∠=︒-DH AE ⊥,9045ADH HAD α∴∠=︒-∠=︒+4545HDB ADH ADB αα∴∠=∠-∠=︒+-︒=BAN HDB ∴∠=∠NT AD⊥9090(45)45 ANT HADαα∴∠=︒-∠=︒-︒-=︒+,90ATN∠=︒ANT ADH HDG∴∠=∠=∠HG AD⊥90HGD∴∠=︒ATN HGD∴∠=∠又45BDA∠=︒9045DMG MDG∴∠=︒-∠=︒GD GM∴=//MN AD,HG AD⊥,NT AD⊥∴四边形TNMG是矩形GM TN∴=TN GD∴=在ATN△和HGD△中ANT HDGTN GDATN HGD∠=∠⎧⎪=⎨⎪∠=∠⎩∴ATN△≌HGD△(ASA)AN HD∴=在BAN和BDH△中AB BDBAN HDBAN HD=⎧⎪∠=∠⎨⎪=⎩∴BAN≌BDH△(SAS)ABN DBH∴∠=∠,NB HB=ABN NBD DBH NBD∠+∠=∠+∠即ABD NBH∠=∠AB BD⊥90ABD∴∠=︒90NBH∴∠=︒NBH∴△是等腰直角三角形∴NH=即NH=(3)分别作,AD AQ的中垂线,交于点O,由题意,当点E 在线段BC 上运动时,AQD ∠不变,AD 的长度不变,则,,A D Q 三点共圆,则点Q 在以O 为圆心OQ 为半径的圆上运动,DH AE ⊥,12QH AH =tan 2AH AQD QH∴∠== 在OMQ 中MQ MO OQ ≤+∴当,,M O Q 三点共线时,MQ 取得最大值,此时情形如图:,AB BD BM AD =⊥∴AM MD =,,M O Q 三点共线,∴点Q 在AB 的垂直平分线上QA QD ∴=DH AE ⊥,tan 2AH AQDQH∠== 设QH x =,则AH 2x =5AQ x ∴=QD =DH x ∴=-AD =222AH DH AD ∴+=即222(2))x x +-= 得:2x =△ADH 的面积12AH DH =⋅12)2x x =⨯⋅-21)x =1)=∴当QM 取最大值时,△ADH 【点睛】本题考查了平行四边形的性质,矩形的性质与判定,等腰三角形的性质,垂直平分线的性质,圆的性质,勾股定理,三角形三边关系,三角形全等的证明与性质,动点问题等,本题是一道综合性比较强的题,熟练平面几何的性质定理是解题的关键.24.(1)点的坐标为;(2);(3)12【解析】【分析】(1)根据点A 的坐标求出函数解析式,即可求解;(2)过点作轴于点,可用t 表示出点P 的坐标,根据(1)可知,可知,设,根据,可得:,从而,即解析:(1)点B 的坐标为()0,8;(2)16d t =-+;(3)12【解析】【分析】(1)根据点A 的坐标求出函数解析式,即可求解;(2)过点P 作PF x ⊥轴于点F ,可用t 表示出点P 的坐标,根据(1)可知OA OB =,可知45APF ∠=︒,设OBQ α∠=,根据PQ BQ =,可得:PQA QBO ∠=∠,从而BOQ PFQ ≅△△,即可解答;(3)作PF x ⊥轴于点F ,延长CD 至点M ,使DM DQ =,连接MQ ,EF ,过点F 作EF 的垂线交EO 的延长线于点N .由(2)可得:2DPQ α∠=,可证PC PQ =,进而可证EFP NFO ≅△△,可得OF PF =,列出关于t 的等式即可求解.【详解】解:(1)∵直线y x b =-+经过点()8,0A ,∴08b =-+,∴8b =∴8y x =-+当0x =时,8y =,∴点B 的坐标为()0,8;(2)如图1,过点P 作PF x ⊥轴于点F ,图1∵点P 在直线8y x =-+上,点P 的横坐标为t ,∴点P 的坐标为(),8t t -+,∴8PF t =-+,∵OA OB =,90AOB ∠=︒,∴45BAO ABO ∠=∠=︒∴45APF ∠=︒设OBQ α∠=,∵PQ BQ =,∴45QPB QBP α∠=∠=︒+∴PQA QPB BAO α∠=∠-∠=,∴PQA QBO ∠=∠,又∵90BOQ PFQ ∠=∠=︒,∴BOQ PFQ ≅△△,∴8OQ PF t ==-+,∴16AQ OQ OA t =+=-+,∴16d t =-+;(3)作PF x ⊥轴于点F ,延长CD 至点M ,使DM DQ =,连接MQ ,EF ,过点F 作EF 的垂线交EO 的延长线于点N .图2∵45QBP QPB α∠=∠=︒+,∴902BQP α∠=︒-,∵PD BQ ⊥,∴90PDQ ∠=︒,∴2DPQ α∠=∴PCQ DPQ PQC α∠=∠-∠=,∴PC PQ =,∵PF x ⊥轴,∴QF CF =,∵90QDM ∠=︒,DM DQ =,∴45M MQD ∠=∠=︒∵QE 平分PDQ 的周长,∴DQ DE PE PQ +=+,∴DM DE PE PC +=+,∴ME CE =∴//EF MQ ,∴45PEF M ∠=∠=︒∵OE CD ⊥,EF NF ⊥,∴90OEP EFN ∠=∠=︒,∴45FEN N ∠=∠=︒,∴EF NF =∵90EFP EFO ∠+∠=︒,90NFO EFO ∠+∠=︒,∴EFP NFO ∠=∠,∴EFP NFO ≅△△,∴OF PF =,∴8t t =-+,∴4t =,∴41612d =-+=.【点睛】本题是一次函数与几何综合题,在一次函数的背景下考查全等三角形的性质与判定等知识;构造合适的辅助线是解决本题的关键.25.(1)点的坐标为;(2);(3),,,【分析】(1)过点作,由“”可证,可得,,即可求点坐标;(2)由(1)可知,设OP=x ,则可得M 点坐标为(4+x ,x ),由直线OB 解析式可得N (x ,解析:(1)点M 的坐标为(51),;(2)()44y x =-()04x <<;(3)()240Q x +, ()340Q x + ,()40Q x , ()504)Q x x <【分析】(1)过点M 作ME OA ⊥,由“AAS ”可证COP PEM ∆≅∆,可得4CO PE ==,1OP ME ==,即可求点M 坐标;(2)由(1)可知COP PEM ∆≅∆,设OP=x ,则可得M 点坐标为(4+x ,x ),由直线OB 解析式可得N (x ,x ),即可知MN=4,由一组对边平行而且相等的四边形是平行四边形即可证明四边形BCNM 是平行四边形,进而可求y 与x 的函数关系式;(3)首先画出符合要求的点Q 的图形,共分三种情况,第一种情况:当MN 为底边时,第二种情况:当M 为顶点MN 为腰时,第三种情况:当N 为顶点MN 为腰时,然后根据图形特征结合勾股定理求出各种情况点的坐标即可解答.【详解】解:(1)如图,过点M 作ME OA ⊥,CP PM ⊥90CPO MPE ∴∠+∠=︒,且90CPO PCO ∠+∠=︒PCO MPE ∴∠=∠,且CP PM =,90COP PEM ∠=∠=︒()COP PEM AAS ∴∆≅∆4CO PE ∴==,1OP ME ==5OE ∴=∴点M 坐标为(5,1)故答案为(5,1)(2)由(1)可知COP PEM ∆≅∆4CO PE ∴==,OP ME x ==∴点M 坐标为(4,)x x +四边形OABC 是边长为4的正方形,∴点(4,4)B∴直线BO 的解析式为:y x =//MN AO ,交BO 于点N ,∴点N 坐标为(,)x x4MN BC ∴==,且//BC MN∴四边形BCNM 是平行四边形4(4)y x ∴=- (04)x <<(3)在x 轴正半轴上存在点Q ,使得QMN ∆是等腰三角形,此时点Q 的坐标为:1(2,0)Q x +,22(416Q x x +-0),23(416Q x x +-,240)(16Q x x -250)(16Q x x -0)其中(04)x <<,理由:当(2)可知,(04)OP x x =<<,4MN PE ==,//MN x 轴,所以共分为以下几种请:第一种情况:当MN 为底边时,作MN 的垂直平分线,与x 轴的交点为1Q ,如图2所示111222PQ PE MN ===, 12OQ x ∴=+,1(2,0)Q x ∴+第二种情况:如图3所示,当M 为顶点MN 为腰时,以M 为圆心,MN 的长为半径画弧交x 轴于点2Q 、3Q ,连接2MQ 、3MQ ,则234MQ MQ ==,2222Q E MQ ME ∴=-222416OQ OE Q E x x ∴=-=+-,22(416Q x x ∴+-0),32Q E Q E =,233416OQ OE Q E x x =+=+-23(416Q x x ∴+-0);第三种情况,当以N 为顶点、MN 为腰时,以N 为圆心,MN 长为半径画圆弧交x 轴正半轴于点4Q ,当022x <<4所示,。
河北省沧州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)一个正多边形绕它的中心旋转45°后,就与原正多边形第一次重合,那么这个正多边形()A . 是轴对称图形,但不是中心对称图形B . 是中心对称图形,但不是轴对称图形C . 既是轴对称图形,又是中心对称图形D . 既不是轴对称图形,也不是中心对称图形2. (2分) (2017七上·三原竞赛) 下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是()城市北京武汉广州哈尔滨平均气温(单位:℃)-4.6 3.813.1-19.4A . 哈尔滨B . 广州C . 武汉D . 北京3. (2分)下列函数中,自变量x的取值范围是x>2的函数是()A .B .C .D .4. (2分) (2018八上·南召期中) 下列各式中,一定成立的是()A .B .C .D .5. (2分)如图,半径为1的⊙ O 与正五边形 ABCDE 的边相切于点的 A,C ,则弧AC的长为()A .B .C .D .6. (2分)如图1,圆的周长为4个单位,在该圆的4等分点处分别标上字母m、n、p、q,如图2,先让圆周上表示m的点与数轴原点重合,再将数轴按逆时针方向环绕在该圆上,则数轴上表示﹣2011的点与圆周上重合的点对应的字母是()A . mB . nC . pD . q7. (2分)(2014·来宾) 将分式方程 = 去分母后得到的整式方程,正确的是()A . x﹣2=2xB . x2﹣2x=2xC . x﹣2=xD . x=2x﹣48. (2分) (2017八上·西安期末) 到三角形三个顶点距离相等的点是().A . 三角形三边垂直平分线的交点B . 三角形三条内角平分线的交点C . 三角形三条高线所在直线的交点D . 三角形三条中线的交点9. (2分) (2017八下·滦县期末) 如图,平行四边形ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为()A . 26B . 20C . 17D . 1310. (2分)(2019·鞍山) 如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A . x>B . x<C . x>3D . x<3二、填空题 (共9题;共9分)11. (1分) (2016七上·钦州期末) 分解因式:a2﹣6a+9﹣b2=________.12. (1分) (2016八下·鄄城期中) 不等式组的整数解共有________个.13. (1分) (2018八上·兴义期末) 已知关于x的分式方程无解,则a=________14. (1分)(2020·扬州模拟) 如图,已知四边形是平行四边形,,将它沿翻折得到四边形,若四边形是正方形,则的度数是________.15. (1分) (2019七上·正定期中) 已知、互为倒数,、互为相反数,则________.16. (1分) (2019九上·靖远期末) 从长为10cm、7cm、5cm、3cm的四条线段中任选三条能够组成三角形的概率是________.17. (1分) (2020七上·中山期末) 已知x=3是方程的解,则m的值为________。
河北省沧州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2017八上·梁子湖期末) 下列计划图形,不一定是轴对称图形的是()A . 角B . 等腰三角形C . 长方形D . 直角三角形2. (2分)(2017·安徽) 不等式4﹣2x>0的解集在数轴上表示为()A .B .C .D .3. (2分) (2018八上·建昌期末) 下列各分式中,是最简分式的是()A .B .C .D .4. (2分) (2019八上·北碚期末) 如图,▱ABCD的对角线交于点,且AC::3,那么AC的长为()A .B .C . 3D . 45. (2分) (2020八下·温州期中) 如图,四边形ABCD中,∠ADC=90°,AE=BE,BF=CF,连接EF,AD=3,CD=1,则EF的长为()A .B .C .D .6. (2分) (2019八下·碑林期末) 若x<y,则下列结论不一定成立的是()A . x﹣3<y﹣3B . ﹣5x>﹣5yC . ﹣D . x2<y27. (2分)(2018·拱墅模拟) ()A .B .C .D .8. (2分)如图,已知∠O=30°,点B是OM边上的一个点光源,在边ON上放一平面镜.光线BC经过平面镜反射后,反射光线与边OM的交点记为E,则△OCE是等腰三角形的个数有()A . 1个B . 2个C . 3个D . 3个以上9. (2分)(2019·义乌模拟) 如图,AC是平行四边形ABCD的对角线,当它满足以下:①∠1=∠2;②∠2=∠3;③∠B=∠3;④∠1=∠3中某一条件时,平行四边形ABCD是菱形,这个条件是()A . ①或②B . ②或③C . ③或④D . ①或④10. (2分) (2017八下·官渡期末) 一次函数y=kx+b的图象如图所示,则k、b的符号()A . k<0,b>0B . k>0,b>0C . k<0,b<0D . k>0,b<011. (2分) (2020七下·东丽期末) 已知三个非负数a、b、c满足若,则的最小值为()A .B .C .D . -112. (2分) (2019九上·海淀开学考) 已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A . 两组对边分别平行的四边形是平行四边形B . 对角线互相平分的四边形是平行四边形C . 一组对边平行且相等的四边形是平行四边形D . 两组对边分别相等的四边形是平行四边形二、填空题 (共4题;共4分)13. (1分)(2019·濮阳模拟) 如图,在Rt△ABC中,AB=2,BC=1.将边BA绕点B顺时针旋转90°得线段BD,再将边CA绕点C顺时针旋转90°得线段CE,连接DE,则图中阴影部分的面积是________.14. (1分)若一个正n边形的一个内角为144°,则n等于________ .15. (1分)分式方程=的解是x=________ .16. (1分)如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD.过点B作BF//DE,与AE的延长线交于点F.若AB=6,则BF的长为________.三、解答题 (共12题;共106分)17. (10分) (2017八下·盐湖期末) 因式分解:2x2﹣4x+2.18. (5分) (2019八下·莱州期末)(1)解方程组: .(2)解不等式组: .19. (5分)(2019·行唐模拟) 定义新运算:对于非零的两个实数a , b ,规定a⊕b=如:2⊕3=(1)求4⊕(﹣6)的值;(2)计算⊕ ;(3)若2⊕(2x﹣1)=1,求x的值.20. (5分) (2017九下·杭州期中) 已知x=﹣2,求的值.21. (5分)如图,在△ABC中,AB>AC,AD平分∠BAC(1)尺规作图:在AD上标出一点P,使得点P到点B和点C的距离相等(不写作法,但必须保留作图痕迹);(2)过点P作PE⊥AB于点E,PF⊥AC于点F,求证:BE=CF;(3)若AB=a,AC=b,则BE=________,AE=________.22. (10分)在△ABC中,∠A=40°:(1)如图(1)BO、CO是△ABC的内角角平分线,且相交于点O,求∠BOC;(2)如图(2)BO、CO是△ABC的外角角平分线,且相交于点O,求∠BOC;(3)如图(3)BO、CO分别是△ABC的一内角和一外角角平分线,且相交于点O,求∠BOC;(4)根据上述三问的结果,当∠A=n°时,分别可以得出∠BOC与∠A有怎样的数量关系(只需写出结论).23. (10分) (2020九上·石城期末) 如图,在Rt△ABC中,∠BAC=90°,BD是角平分线,以点D为圆心,DA为半径的⊙D与AC相交于点E(1)求证:BC是⊙D的切线;(2)若AB=5,BC=13,求CE的长。
2015-2016学年河北省沧州市八年级(下)期末数学试卷(新人教版)一、选择题(本大题12个小题,每小题3分,共36分)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.2.(3分)Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算3.(3分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.935.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°6.(3分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.17.(3分)如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.D.28.(3分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.9.(3分)下列计算中,正确的是()A.B.=2 C.=6D.﹣=4 10.(3分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣411.(3分)已知+4+m=30,则m的值为()A.3 B.5 C.6 D.812.(3分)如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为()A.9 B.9 C.27 D.27二、填空题(本大题8个小题,每小题3分,共24分)13.(3分)计算:的结果是.14.(3分)若直线y=﹣x+a和直线y=x+b的交点坐标为(m,8),则a+b=.15.(3分)数据﹣2,﹣1,0,3,5的方差是.16.(3分)如果最简二次根式与是同类二次根式,则a=.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.18.(3分)对于正比例函数y=m,y的值随x的值增大而减小,则m的值为.19.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是.20.(3分)如图,矩形纸片ABCD的长AD=9cm,宽AB=3cm,沿EF将其折叠,使点D与点B重合,则折痕EF的长为cm.三、解答题(本大题共7个小题,共60分)21.(6分)计算与化简:(1)计算:;(2)先化简,再求值:,其中,.22.(6分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.23.(8分)某中学对“希望工程捐款活动”进行抽样调查,得到一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8,又知此次调查中捐15元和20元的人数共39人.(1)他们一共抽查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1500名学生,请你估算全校学生共捐款多少元?24.(8分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.25.(10分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280(1)共需租多少辆汽车?(2)请给出最节省费用的租车方案.26.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b),且a、b满足(a+1)2+=0.(1)直接写出:a=,b=;(2)如图,点B为x轴正半轴上一点,过点B作BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,此时,OB与OC有怎样的大小关系?证明你的结论.(3)在(2)的条件下,求直线BE的解析式.27.(12分)在矩形ABCD中,AB=6,AD=8,点E在AB上,且BE=2,P是BC 上的动点(BP>2),连接EP,将线段EP绕点E逆时针旋转一定角度后,点P 落在AD上的点F处,以EP,EF为邻边作平行四边形EPGF.(1)如图1,当BP=4时,求证:四边形EPGF是正方形;(2)如图2,当BP=6时,过点G作GH⊥AD,交AD的延长线于点H,连接DG,FP.①求四边形EPGF的周长;②请直接写出∠EFP,∠BPF,∠HFG之间的数量关系;③求△DFG的面积.2015-2016学年河北省沧州市八年级(下)期末数学试卷(新人教版)参考答案与试题解析一、选择题(本大题12个小题,每小题3分,共36分)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项符合题意;D、,本选项不合题意;故选:C.2.(3分)Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算【解答】解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选:A.3.(3分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选:A.4.(3分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选:B.5.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选:D.6.(3分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.1【解答】解:∵点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,解得k=1.故选:D.7.(3分)如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.D.2【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选:B.8.(3分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.【解答】解:A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选:C.9.(3分)下列计算中,正确的是()A.B.=2 C.=6D.﹣=4【解答】解:A、原式=3×2=6,所以A选项错误;B、原式==2,所以B选项正确;C、原式=2+3,所以C选项错误;D、原式=2﹣=,所以D选项错误.故选:B.10.(3分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【解答】解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选:D.11.(3分)已知+4+m=30,则m的值为()A.3 B.5 C.6 D.8【解答】解:∵+4+m=30,∴++=30,∴5=30,∴=6,∴m=6.故选:C.12.(3分)如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为()A.9 B.9 C.27 D.27【解答】解:连接BD交AC于O,连接CD1交AC1于E,如图所示:∵四边形ABCD是菱形,∠DAB=60°,∴ACD⊥BD,∠BAO=∠DAB=30°,OA=AC,∴OA=AB•cos30°=1×=,∴AC=2OA=,同理AE=AC•cos30°=•=,AC1=3=()2,…,第n个菱形的边长为()n﹣1,∴第六个菱形的边长为()5=9;故选:B.二、填空题(本大题8个小题,每小题3分,共24分)13.(3分)计算:的结果是.【解答】解:原式=﹣=.故答案为:.14.(3分)若直线y=﹣x+a和直线y=x+b的交点坐标为(m,8),则a+b=16.【解答】解:∵直线y=﹣x+a和直线y=x+b的交点坐标为(m,8),∴8=﹣m+a①,8=m+b②,①+②,得16=a+b,即a+b=16.15.(3分)数据﹣2,﹣1,0,3,5的方差是.【解答】解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为:.16.(3分)如果最简二次根式与是同类二次根式,则a=5.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.18.(3分)对于正比例函数y=m,y的值随x的值增大而减小,则m的值为﹣2.【解答】解:∵y的值随x的值增大而减小,∴m<0,∵正比例函数y=m,∴m2﹣3=1,∴m=﹣2,故答案为:﹣2.19.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是 2.4.【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===5,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,=BC•AC=AB•CP,此时,S△ABC即×4×3=×5•CP,解得CP=2.4.故答案为:2.4.20.(3分)如图,矩形纸片ABCD的长AD=9cm,宽AB=3cm,沿EF将其折叠,使点D与点B重合,则折痕EF的长为cm.【解答】解:作FM⊥AD于M,如图所示:则∠FME=90°,FM=AB=3cm,根据题意得:BE=DE,∠BEF=∠DEF,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠BFE=∠DEF,∴∠BEF=∠BFE,∴BF=BE,设AE=x,则BE=DE=BF=9﹣x,根据勾股定理得:AB2+AE2=BE2,即32+x2=(9﹣x)2,解得:x=4,∴AE=4,∴DE=BF=5,∴CF=DM=4,∴EM=1,根据勾股定理得:EF==(cm);故答案为:.三、解答题(本大题共7个小题,共60分)21.(6分)计算与化简:(1)计算:;(2)先化简,再求值:,其中,.【解答】解:(1)原式=3﹣2﹣4+3=﹣1;(2)原式=÷=•=,当,,原式==.22.(6分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.则S四边形ABCD故四边形ABCD的面积是36.23.(8分)某中学对“希望工程捐款活动”进行抽样调查,得到一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8,又知此次调查中捐15元和20元的人数共39人.(1)他们一共抽查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1500名学生,请你估算全校学生共捐款多少元?【解答】解:(1)设捐5元、10元、15元和20元的人数分别为3x、4x、5x、8x,5x+8x=39,解得x=3,∴3x+4x+5x+8x=20x=20×3=60(人);(2)捐5元、10元、15元和20元的人数分别为9、12、15、24,∵20出现次数最多,∴众数为20元;∵共有60个数据,第30个和第31个数据落在第三组内,∴中位数为15元;(3)×1500=21750(元),∴估算全校学生共捐款21750元.24.(8分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.【解答】解:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,∠A=∠C,在△AEB和△CDG中,,∴△AEB≌△CDG,∴AE=CG,∵G为BC中点,∴,∴,∵AD=BC,∴,∴E是AD的中点;(2)如图,延长DF,BE,相交于点H,∵E为AD的中点,G为BC的中点,∴,:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∴DE=BG,DE∥BG,∴四边形EBGD为平行四边形,∴BE∥DG,∴∠H=∠2,∵∠3=∠2,∴∠H=∠3,∴BF=HF,∵∠1=∠2,∴∠H=∠1,∵E为AD的中点,∴AE=DE,在△AEB和△DEH中,,∴△AEB≌△DEH,∴AB=DH,∵AB=CD,∴CD=DH,∵DH=HF+FD,HF=BF,∴DH=BF+FD,∴CD=BF+FD.25.(10分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)4530租金/(元/辆)400280(1)共需租多少辆汽车?(2)请给出最节省费用的租车方案.【解答】解:(1)∵(234+6)÷45=5(辆)…15(人),∴保证240名师生都有车坐,汽车总数不能小于6;∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;综上可知:共需租6辆汽车.(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:,解得:≤x≤2,∵x为整数,∴x=1,或x=2.设租车的总费用为y元,则y=280x+400×(6﹣x)=﹣120x+2400,∵﹣120<0,∴当x=2时,y取最小值,最小值为2160元.故租甲种客车4辆、乙种客车2辆时,所需费用最低,最低费用为2160元.26.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b),且a、b满足(a+1)2+=0.(1)直接写出:a=﹣1,b=﹣3;(2)如图,点B为x轴正半轴上一点,过点B作BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,此时,OB与OC有怎样的大小关系?证明你的结论.(3)在(2)的条件下,求直线BE的解析式.【解答】解:(1)∵(a+1)2+=0,∴a+1=0,b+3=0,∴a=﹣1,b=﹣3,故答案为:﹣1;﹣3;(2)OB=OC,证明如下:如图,过O作OF⊥OE,交BE于F,∵BE⊥AC,OE平分∠AEB,∴△EOF为等腰直角三角形,∴∠EOC+∠DOF=∠DOF+∠FOB=90°,∴∠EOC=∠FOB,且∠OEC=∠OFB=135°,在△EOC和△FOB中,,∴△EOC≌△FOB(ASA),∴OB=OC;(3)∵△EOC≌△FOB,∴∠OCE=∠OBE,OB=OC,在△AOC和△DOB中,,∴△AOC≌△DOB(ASA),∴OD=OA,∵A(﹣1,0),C(0,﹣3),∴OD=1,OC=3,∴D(0,﹣1),B(3,0),设直线BE解析式为y=kx+b,把B、D两点坐标代入可得,解得.∴直线BE的解析式为y=x﹣1.27.(12分)在矩形ABCD中,AB=6,AD=8,点E在AB上,且BE=2,P是BC 上的动点(BP>2),连接EP,将线段EP绕点E逆时针旋转一定角度后,点P 落在AD上的点F处,以EP,EF为邻边作平行四边形EPGF.(1)如图1,当BP=4时,求证:四边形EPGF是正方形;(2)如图2,当BP=6时,过点G作GH⊥AD,交AD的延长线于点H,连接DG,FP.①求四边形EPGF的周长;②请直接写出∠EFP,∠BPF,∠HFG之间的数量关系;③求△DFG的面积.【解答】(1)证明:如图1中,∵四边形EPGF是平行四边形,又∵EF=EP,∴EPGF是菱形,∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AB=6,EB=2,∴AE=PB=4,在Rt△AEF和Rt△BPE中,∴Rt△AEF≌Rt△BPE∠AEF=∠BPE,∵∠BPE+∠BEP=90,∴∠AEF+∠BEP=90,∴∠FEP=90,∴EPGF是正方形.(2)如图2中,①解:在Rt△PBE中,∵BE=2 BP=6,∴EP==2,∵EPGF是菱形,∴四边形EPGF的周长为8;②结论:∠EFP=∠BPF﹣∠HFG.理由:∵AD∥BC,∴∠HFP=∠BPF,∵四边形EFGP是菱形,∴∠EFP=∠GFP=∠FPE=∠FPG,∴∠BPE=∠HFG,∴∠BPF﹣∠BPE=∠EPF,∴∠BPF﹣∠HFG=∠EFP.③解:在△HFG和△PBE中,∴△HFG≌△BPE,∴HG=BE=2,∵EF=EP=2,AE=4,∴AF==2,∴FD=8﹣2,∴S△DFG=•FD•GH=×(8﹣2)×2=8﹣2.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。