仪表控制系统接地方法
- 格式:doc
- 大小:18.75 KB
- 文档页数:5
仪表及控制系统的接地主要有两个目的:一是为保护人身安全和电器设备的安全运行,二是为仪表信号的传输和抗干扰。
因此仪表及控制系统的接地可分为两类,即保护接地和工作接地。
工作接地——仪表及控制系统为了抗干扰,确保正常、可靠地运行,应作工作接地,工作接地包括信号回路接地、屏蔽接地和本安仪表接地。
本安仪表地——这种接地主要是针对安全栅而言,安全栅按其结构形式分为两种,即隔离式安全栅和齐纳式安全栅,隔离式安全栅,由于结构上采用了隔离保护措施,则不需要专门接地,而齐纳式安全栅,根据其保护工作原理,则需要有可靠的接地系统,由此可见,本安系统接地就是保证齐纳式安全栅在电源发生故障时,对危险场所实现保护功能。
信号回路接地。
信号回路接地分隔离信号和非隔离信号,隔离信号一般可以不接地,如变送器的内部的电路多数是不接地的。
所谓隔离,应当是每一输入信号(或输出信号)的电路与其他输入信号(或输出信号)的电路是绝缘的,对地是绝缘的,其电源是独立的、相互隔离的。
非隔离信号通常以直流24V电源负极为统一的信号参考点并接地,接地是消除干扰的主要措施。
仪表信号公共点接地、DCS及PLC的非隔离输入的接地等,均应从接线端子排或汇流条接到接地汇总板上,以实现等电位连接,仪表非隔离信号接地,应当注意虽然最终是与电器接地相连接,但不应直接与电气接地混接。
仪表及控制系统接地不是一个新的论题,很多问题早有结论,也有正确的设计方法。
但在部分工程技术人员中,仍存在一些模糊概念和疑虑。
接地的作用、接地的分类很多文献都讨论过,由不同的方法可以有不同的分类,都有道理,本文不再讨论。
本文主要讨论接地设计怎么做,为什么。
仪表及控制系统接地的目的主要有两个:一是为人身安全和电气设备的运行,包括保护接地、本安接地、防静电接地和防雷接地等;二是为信号传输和抗干扰的工作接地。
但二者又是相关的,不能截然分开。
关于仪表系统接地,我国目前还没有制定相应的国家标准。
但电气专业关于保护接地、防雷接地的国家标准中的有关规定,是可以参照执行的。
IEC和ISA等国际组织的有关标准提供了很好的参考,特别是信息技术装置功能接地和保护接地通过等电位连接以及合用接地的规定,为设计人员提供了权威的、明确的工程设计依据。
1保护接地保护接地是为人身安全和电气设备安全而设置的接地(也称为安全接地),仪表专业的保护接地与电气专业的保护接地一样,属于低压配电系统接地,因此,应按电气专业的有关标准、规范和方法进行。
例如:GBJ65-83《工业与民用电力装置的接地设计规范》等。
对于低压配电系统接地,电气专业有一系列比较完善的设计、计算、试验、施工及验收的标准规范,对接地系统的各个环节都有较完整的理论、实验和方法,绝不是某个接地电阻值就可以概括的。
仪表专业用电一般来自不间断电源UPS或电气专业的建筑物配电,大体可分为控制室用电和现场仪表用电。
控制室用电一般采用TN-S系统(整个系统中的保护线和中线是分开的)[1]。
现场仪表用电一般采用TT系统(分散接地)。
根据等电位连接原则,仪表用电的保护接地应当是电气接地系统。
不但建筑物内实施等电位连接,石油化工装置一般还采用全装置等电位连接。
接地工程应当按电气专业的标准规范和方法来设计。
有的设计将UPS供电的仪表系统的保护接地分离出来单独设置接地系统,这是不适宜的。
多数UPS 的两路供电中的一路是不经过变压器隔离而直接切换输出的,这就不可能具备单独设置接地系统的条件。
仪表和控制系统接地和屏蔽1 仪表和控制系统接地的作用仪表和控制系统接地的作用有两个:一是安全,即保护人身安全和仪表及控制系统的安全;二是保障仪表和控制系统稳定、准确地运行,也就是保证信号通畅、抗御各种干扰。
2 仪表和控制系统接地的分类根据上述接地目的,仪表和控制系统的接地可作如下分类。
2.1保护接地、静电接地用电仪表的金属外壳及自控设备正常不带电的金属部分,由于各种原因(如绝缘破坏)而有可能带危险电压者,均应作保护接地。
保护接地就是给危险电压提供一条通路,使之不经过人体。
针对危险电压,各国都有安全电压值的规定。
有些国家规定为50V和25V,日本规定为60V,我国习惯采用36V和12V,有些规定采用36V。
绝缘体或高电阻体由于感应或摩擦等原因均可能造成电荷积聚。
积聚的电荷可能对仪表和控制信号造成干扰,静电荷放电可能损坏仪表设备。
为防止静电的危害,一方面采取措施抑制静电的产生,另一方面应采用接地的方法给静电提供宣泄的通路,使之不能积聚。
已作保护接地的地方,即可认为已作了静电接地。
2.2工作接地工作接地又可分为信号回路接地、屏蔽接地和本安接地。
在仪表和控制系统中,信号分为隔离信号和非隔离信号,隔离信号一般可以不接地,非隔离信号需要建立一个公共参考点(一般为直流电源的负极)。
同时,这种电路的共模抑制电压通常很小,为了减少由此引进的共模干扰,也需对此公共点实行接地。
屏蔽接地是用来降低电磁场干扰、电缆的屏蔽层、排扰线、电缆保护管、电缆槽等均应接地才能起到屏蔽作用。
本安接地是指齐纳安全栅的接地(隔离型安全栅采用了隔离保护技术,不必作专门的接地)。
一般齐纳安全栅由直流24~30V供电,因此齐纳安全栅接地必须与直流电源公共端相连接。
另一方面,为了实现对交流短路的保护,安全栅接地又必须与交流供电中线连接。
3 仪表和控制系统的接地方式3.1单独接地早期国内一些规定及某些DCS制造厂要求,仪表和控制系统的保护接地接入电气安全接地网,工作接地则采用独立的、干净的接地装置与大地相接,两种接地网之间距离至少保持5m。
最简单仪表接地方法一、最简单仪表接地方法嘿,宝子们!今天咱们来唠唠最简单的仪表接地方法哈。
仪表接地可是个挺重要的事儿呢。
你想啊,如果仪表接地没弄好,就可能会出现各种小麻烦,比如信号干扰之类的。
那咱先来说说第一种方法。
找一根合适的接地线,这接地线呢,得是那种导电性能比较好的材料哦。
就像铜这种材料就很不错,它导电性强,能很好地把电导入大地呢。
你可以找一根粗细合适的铜导线,然后把它的一端连接到仪表的接地端子上。
这个接地端子一般在仪表上都能找到,就像一个小螺丝口或者是专门的接口那样的东西。
接着呢,把这根导线的另一端找个合适的地方接地。
比如说啊,家里有那种接地棒的话,就把导线紧紧地固定在接地棒上。
如果没有接地棒呢,也可以找个金属水管之类的,不过要确保这个水管是真正接地的哦,可别接错了。
再说说第二种方法哈。
要是在一些特殊的环境里,比如在一些工业厂房里,可能会有那种专门的接地网。
这个时候呢,咱们就可以利用这个接地网来接地。
还是先把仪表的接地端子找出来,然后用导线连接到接地网上。
不过在连接的时候,要注意查看接地网的连接点是否牢固,有没有生锈之类的情况。
如果生锈了,就得先把锈处理干净,这样才能保证接地良好。
还有一种方法呢,就是使用接地跨接线。
这种跨接线一般是用在一些设备之间的接地连接上。
如果你的仪表是和其他设备一起使用的,而且这些设备都需要接地,那就可以用接地跨接线把它们连接起来,然后再一起接地。
这样做的好处就是可以让整个系统的接地更加统一和稳定。
另外啊,在接地的时候,还要注意接地线的长度不能太长。
如果太长的话,可能会产生电感,影响接地效果。
而且接地线的安装要尽量避免弯曲太多,最好是能走直线就走直线。
还有哦,接地的地方周围最好不要有太多的杂物。
要是有一些易燃物或者是容易导电的东西堆在接地的地方,那也是很危险的。
接地的时候也要考虑到环境的湿度。
如果环境比较潮湿的话,可能需要采取一些额外的措施,比如使用防水的接地端子盒之类的东西,防止水汽进入影响接地效果。
5 接地连接方法5.1 现场仪表接地连接方法5.1.1对于现场仪表电缆槽、仪表电缆保护管以及36V以上的仪表外壳的保护接地,每隔30米用接地连接线与就近已接地的金属构件相联,并应保证其接地的可靠性及电气的连续性。
严禁利用储存、输送可燃性介质的金属设备、管道以及与之相关的金属构件进行接地。
5.1.2现场仪表的工作接地一般应在控制室侧接地。
见图5.1.2。
5.1.3对于被要求或必须在现场接地的现场仪表,应在现场侧接地。
见图5.1.3。
5.1.4对于现场仪表被要求或必须在现场接地,同时又要将控制室接收仪表在控制室侧接地的,应将两个接地点作电气隔离。
见图5.1.4。
5.1.5现场仪表接线箱两侧的电缆的屏蔽层应在箱内跨接。
现场仪表接线箱内的多芯电缆备用芯宜在箱内作跨接,然后根据3.3.2处理。
见图5.1.5。
5.2 控制室仪表接地连接方法5.2.1控制室(集中)安装仪表的自控设备(仪表柜、台、盘、架、箱)内应分类设置保护接地汇流排、信号及屏蔽接地汇流排和本安接地汇流条。
各仪表设备的保护接地端子和信号及屏蔽接地端子通过各自的接地连线分别接至保护接地汇流排和工作接地汇流排。
各类接地汇流排经各自的接地分干线分别接至保护接地汇总板和工作接地汇总板。
齐纳式安全栅的每个汇流条(安装轨道)可分别用两根接地分干线接到工作接地汇总板。
齐纳式安全栅的每个汇流条也可由接地分干线于两端分别串接,再分别接至工作接地汇总板。
见图5.2.1。
5.2.2保护接地汇总板和工作接地汇总板经过各自的接地干线接到总接地板。
见图5.2.2。
5.2.3用接地总干线连接总接地板和接地极。
浅谈仪表系统接地及安装摘要:仪表系统存在的绝缘强度低,过电压和过电流耐受能力差、对电磁干扰敏感等不足之处,严重影响仪表设备的正常控制。
为确保生产装置安全运行,仪表系统的正确接地也很重要,分别介绍了保护接地、工作接地和防雷接地3种仪表系统接地技术,阐述了接地连接方法、接地体的设置、接地连接线的要求,针对仪表系统接地安装应注意的问题作出了具体说明,同时就仪表系统安装质量问题提出了一些参考建议。
关键词:仪表系统;保护接地;工作接地;屏蔽接地;本质安全接1仪表系统接地分类1.1保护接地保护接地,是保证仪表、电气设备及人身安全所需的接地,就是将仪表设备或系统不带电的金属部分与接地体之间做良好的金属连接。
正常情况下,仪表或系统设备的金属外壳和正常不带电的金属部分为防止绝缘部分破坏而带危险电压时都要做保护接地。
如:仪表盘、仪表柜、仪表箱、DCS/PLC的机柜、操作站仪表供电设备、电缆桥架、穿线管、接线盒及铠装电缆的铠装层,以及控制室内的防静电地板。
如果保护接地良好,就可以避免触电事故,当出现某意外事故时,就必然出现较大接地电流,保护接地能大幅降低人身承受的接地电压,因此不会产生设备损坏及电击致命的严重后果。
同样现场仪表桥架、穿线管应每隔30m与已接地的金属构件相连。
一般来讲,使用直流24V的现场仪表、变送器等无特殊要求的可不作保护接地。
控制室的仪表自控设备、机柜、仪表盘等应单独设置保护接地汇流排,接至厂区电气专业接地网,接地电阻小于4Ω。
1.2信号回路接地信号回路接地一般有2种情况,一种是仪表设备本身结构形成的事实上的信号回路接地。
例如:为减少测量滞后而采取热电偶与金属套焊接在一起的接地型热电偶;另一种是为了达到抑制干扰信号的目的所要求的接地,在保证单点接地情况下,共模干扰可被有效抑制。
为抑制干扰而使信号回路接地,即信号公共端接地。
1.3防雷接地为把雷电电流迅速导入大地以防止雷害为目的的接地叫作防雷接地。
仪表防雷是综合防护工程,需要采用多种防护方法和措施,本文不详细赘述。
1.1 直击雷由于带电的云雾和周围的大地以及大地上的建筑物等之间存在一定的距离,因此直击雷在该空间内容易产生快速放电,从而引发剧烈的电磁电热效应。
雷对其周围的建筑物和电子产品甚至是建筑物内人员产生巨大损害,甚至引起物体爆炸、电气绝缘损伤和电线熔断。
为保证石油化工装置的仪表系统的安全运行,应选择抗干扰度高的仪器并设置正确的接地方式。
控制系统通常被安置在石油化工厂的某一独立建筑的控制室内。
该建筑主要根据第三种防雷结构的设计要求来进行设计,屋顶防雷网通过引下线与防雷接地网相连[1]。
同时,如果能够使石油化工设备中的仪表系统与接地网实现等电位连接,不仅能拉大防雷接地与仪表系统之间的绝缘距离,而且能够使石油化工设备实现等电位连接。
1.2 电磁场干扰及静电感应当雷云经过控制室时,雷电在发生时会伴随着巨量的电流经接地引线流入大地。
当周围存在一定的电子设备,例如电源、信号光缆等,则会对其产生电磁感应并使控制系统受到雷电的破坏。
尤其当电子设备控制室距离雷电较近时,电缆或其他电子设备上感应产生的高电位会直接作用到仪表系统。
雷云在途经控制室的时候,其所带电荷能够使控制室周围感应出相反的电荷,因此当雷云消失后,如果不对控制室周围的电荷进行引导,会导致出现控制室周围的局部高电位,从而破坏控制室内的电气系统。
为了避免电磁干扰和静电感应的产生,可采取将控制室内各金属装置与防雷装置连接的方法,以实现防雷的目的。
0 引言石油化工设备的仪表系统是保证石油化工正常生产的重要系统。
但是我国是一个多雷电灾害的国家,雷电灾害对我国石油化工企业设备的仪表系统造成严重威胁。
由于雷电灾害的频繁发生,许多石油化工工厂的仪表系统受到雷电的影响。
部分地区由于雷电的频发,对石油化工工厂仪器仪表系统造成破坏,导致停工停产的事故时有发生。
当仪表系统遭到雷击受损时,直接造成仪表系统经济损失达数万元至数十万元,停产减产造成的经济损失达数百万元,有的闪电灾害甚至会给人的生命安全带来威胁。
常见仪表控制系统接地分类及设计要求仪表控制系统接地是指在电气系统中,通过一定的方法将电气设备和系统的金属壳体与地面相连,以实现电气安全和电磁兼容性。
接地分类以及设计要求是确保仪表控制系统正常运行和保护人身安全的关键。
常见的仪表控制系统接地分类包括电气接地和信号接地。
电气接地主要是指将电气设备的金属壳体与大地连接,以保护人身安全和避免电气设备感受到电磁干扰。
信号接地主要是指在仪表控制系统中对信号线进行接地处理,以减少信号电平的干扰和噪音。
在设计仪表控制系统接地时,需要满足以下几点要求:1.接地电阻要求低。
接地电阻是衡量接地效果的重要指标,通常要求接地电阻小于4欧姆,以确保电气设备的接地效果良好。
2.接地装置要可靠。
接地装置应该经过合理的设计和合适的材料选择,以确保可靠耐用、不易生锈腐蚀和损坏,保证长期稳定地接地效果。
3.接地线路要短小粗大。
接地电源线路和接地导线路应尽量缩短,减少线路长度,减少接地电流的路径,降低电阻。
同时,应选择足够粗大的导线,降低导线电阻,提高接地效果。
4.绝缘良好。
接地系统中的导线路和金属部件在使用过程中可能会受到湿气、腐蚀和辐射等多种因素的影响,因此需要采用合适的绝缘措施,以保证接地系统的可靠性和安全性。
5.接地系统应与建筑物大地相连。
接地系统应与建筑物的总接地系统相连,以确保整个仪表控制系统与大地之间保持良好的连通性和一致性。
6.符合相关标准和规范。
在设计仪表控制系统接地时,应参考相关的国家标准和行业规范,确保接地设计符合要求,满足电气安全和电磁兼容性要求。
总之,仪表控制系统接地的分类和设计要求是确保电气设备正常运行和保护人身安全的关键。
通过合理的接地设计和严格的接地要求,可以有效减少电气设备的故障和干扰,提高仪表控制系统的可靠性和性能,保证生产过程的稳定性和安全性。
仪表控制系统接地方法
仪表控制系统接地方法一、接地分类接地主要可分为保护接地、工作接地、本安系统接地、防静电接地和防雷接地。
1、保护接地1)保护接地(也称为安全接地)是为人身安全和电气设备安全而设置的接地。
凡控制系统的机柜、操作台、仪表柜、配电柜、继电器柜等用电设备的金属外壳及控制设备正常不带电的金属部分,由于各种原因(如绝缘破坏等)而有可能带危险电压者,均应作保护接地。
2)低于36V 供电的现场仪表,可不做保护接地,但有可能与高于36V 电压设备接触的除外。
3)当安装在金属仪表盘、箱、柜、框架上的仪表,与已接地的金属仪表盘、箱、柜、框架电气接触良好时,可不做保护接地。
2、工作接地1)仪表及控制系统工作接地包括:仪表信号回路接地和屏蔽接地。
2)隔离信号可以不接地。
这里的“隔离”是指每一输入信号(或输出信号)的电路与其它输入信号(或输出信号)的电路是绝缘的、对地是绝缘的,其电源是独立的、相互隔离的。
3)非隔离信号通常是以直流电源负极为参考点,并接地。
信号分配均以此为参考点。
4)仪表工作接地的原则为单点接地,信号回路中应避免产生接地回路,如果一条线路上的信号源和接收仪表都不可避免接地,则应采用隔离器将两点接地隔离开。
3、本安系统接地1)采用隔离式安全栅的本质安全系统,不需要专门接地。
2)采用齐纳式安全栅的本质安全系统则应设置接地连接系统。
3)齐纳式安全栅的本安系统接
地与仪表信号回路接地不应分开。
4、防静电接地1)安装DCS、PLC、SIS 等设备的控制室,应考虑防静电接地。
这些室内的导静电地面、活动地板、工作台等都应进行防静电接地。
2)已经做了保护接地和工作接地的仪表和设备,不必再另做防静电接地。
5、防雷接地1)当仪表及控制系统的信号线路从室外进入室内后,需要设置防雷接地连接的场合,应实施防雷接地连接。
2)仪表及控制系统防雷接地应与电气专业防雷接地系统共用,但不得与独立避雷装置共用接地装置。
二、接地形式和接地原则系统接地形式主要分为等电位接地和单独接地。
接地原则为单点接地,即通过唯一的接地基准点ERP 组合到接地系统中去。
1、系统推荐采用等电位单点接地方式进行接地。
这要求工艺装置(或厂区)周围存在等电位接地网。
2、在无法满足等电位接地的情况下,允许系统工作接地进行一点单独接地,同时将系统保护接地接到电气地。
在系统地和保护地无法分离的情况下,可以将系统保护接地和工作接地进行一点单独接地。
三、接地连接方法1、当采用等电位接地时,要求将建筑物(或装置)的金属结构、基础钢筋
、金属设备、管道、进线配电箱的PE(保护接地线)母排、接闪器引下线形成等电位联结,控制系统保护接地和工作接地应分类汇总到该总接地板,实现等电位联结,与电气装置合用接地装置并与大地连接。
但控制系统在接地网上的接入点应和防雷地、大电流或高电压设备的接入点保持不小于5 米的距离。
2、当采用单独接地时,此时应
保证接地电阻小于 4 欧姆,且单独接地体与其他电气专业接地体应相距5m 以上,和独立和防直击雷接地体须相距20 米以上。
具体的一点接地的形式根据可现场条件,在以下几种情况下选择。
(以下所列情况为工作接地的连接,正常情况下保护接地应接到电气地,若无法将工作接地和保护接地分开,可以将保护接地与工作接地连接到同一单独接地体)①在一般的条件下,推荐采用4 根2m 长的50*50 的角钢,呈边长为5m 的正方形打入地下70cm 以上,再用镀锌扁铁焊接(建议用堆焊)起来,用≥16mm2 的导线(一般控制导线长度≤20m)引到控制室接地铜排的方式,基本上都能满足接地电阻小于4 欧姆的要求,特殊的地理情况下,需采用降阻剂来降低接地电阻。
②对于没有条件单独打地桩的情况下,可以采用电气地作为系统的接地,此时工作接到和保护接地都连接到电气地,但要注意选取接入点时应尽可能远离大电机的接入点,同时与避雷地的接入点间的距离也应大于20m。
③系统的操作台、外配柜等低压电气柜应视为保护接地,接地线统一连到一保护接地接地铜条。
若外配柜中安装有安全栅,安全栅接地应视为工作接地,接地线连接到工作接地接地铜条。
然后根据具体情况连接到接地体。
④对于两个控制站之间或控制站与操作台之间的距离较远的情况下(一般以是否在同一幢内或者两者之间距离超过30m 为基准),可以采取分别接地的原则进行接地。
⑤若远程机笼与主控机笼之间采用了电气隔离装置或光电隔离装置,则远程机笼可以就地进行接地。
⑥UPS 的接地一般应选择厂方的电气地。
四、接地系统接线和接地电阻1、接地系统的导线应采用多股绞合铜芯绝缘或电缆。
2、接地系统的各接地汇流排可采用截面为25mm×6mm 的铜条制作。
3、接地系
统的各接地汇总板应采用铜板制作,厚度不小于6mm,长、宽尺寸按需要确定。
4、机柜内的保护接地汇流排应与机柜进行可靠的电气连接。
5、工作接地汇流排、工作接地汇总板应采用绝缘支架固定。
6、接地系统的各种连接应牢固、可靠,并应保证良好的导电性。
接地线、接地干线、接地总干线与接地汇流排、接地汇总板的连接应采用铜接线片和镀锌钢质螺栓,并应用防松件,或采用
焊接。
7、各类接地连线中,严禁接入开关或熔断器。
8、接地线的截面可根据连接仪表的数量和接地线的长度按下列数值选用:a)接地线:1mm2 ~2.5mm2;b)接地干线:4mm2 ~16mm2;c)接地总接线板的接地干线:10mm2 ~25mm2;d)接地总干线:16mm2 ~50mm2;e)雷电浪涌保护器接地线:2.5mm2 ~4mm2;9、电浪涌保护器接地线应尽可能短,并且避免弯曲敷设;10、地系统的标识颜色为绿色或绿、黄两色;11、仪表或设备的接地端子到接地极之间的导线与连接点的电阻总和,称为接地连接电阻。
12、接地极对地电阻与接地连接电阻之和称为接地电阻。
13、仪表及控制系统的接地电阻为工频接地电阻,不应大于4 欧姆。
14、仪表及控制系统的接地连接电阻不应大于1 欧姆。
五、其他注意事项1、当现场雷暴日较多,控制系统的信号、通信和电源等线路在室外敷设或从室外进入室内的,应考虑实施防雷接地措施。
2、计算机在出厂前已将工作接地和保
护接地连在一起,系统操作台插座上的接地端子在系统出厂时已经连接到接地排上,计算机是通过电源线的接地线连接到接地端子上的。
3、接地干线长度若超过10 米或周围有强磁场设备,应采取屏蔽措施,将接地干线穿钢管保护,钢管间连为一体;或采用屏蔽电缆,钢管或屏蔽电缆的屏蔽层应单端接地。
若接地干线在室外走线并距离超过10 米,应采用双层屏蔽,内层单点接地,外层两端接地,以防止电磁脉冲的干扰。
4、仪表电缆槽、电缆保护金属管应做保护接地,可直接焊接或用接地线连接在附近已接地的金属管道上,并应保证接地的连续和可靠,但不得接至输送可燃物质的金属管道。
仪表电缆槽、电缆保护金属管的连接处,应进行可靠的导电连接。
5、信号屏蔽电缆的屏蔽层接地应为单点接地,应根据信号源和接收仪表的不通情况采用不同接法。
当信号源接地时,信号屏蔽电缆的屏蔽层应在信号源端接地,否则,信号屏蔽电缆的屏蔽层应在信号接收仪表一侧接地。
6、接地干线导线截面积应不小于16mm2。