1.1实数的概念
- 格式:ppt
- 大小:564.50 KB
- 文档页数:23
人教版八年级下册数学课本第一章:实数1.1 实数的概念和性质1.2 实数的运算1.3 实数的应用第二章:一元一次方程2.1 一元一次方程的概念2.2 一元一次方程的解法2.3 一元一次方程的应用第三章:不等式3.1 不等式的概念3.2 一元一次不等式的解法3.3 一元一次不等式的应用第四章:二元一次方程组4.1 二元一次方程组的概念4.2 二元一次方程组的解法4.3 二元一次方程组的应用第五章:一次函数5.1 一次函数的概念5.2 一次函数的图像5.3 一次函数的应用第六章:平行线与相交线6.1 平行线的性质6.2 相交线的性质6.3 平行线与相交线的应用第七章:三角形7.1 三角形的性质7.2 三角形的全等7.3 三角形的相似7.4 三角形的应用第八章:四边形8.1 四边形的性质8.2 四边形的全等8.3 四边形的相似8.4 四边形的应用第九章:圆9.1 圆的性质9.2 圆的全等9.3 圆的相似9.4 圆的应用第十章:概率与统计10.1 概率的概念10.2 概率的计算10.3 统计的基本概念10.4 统计的应用第十一章:立体几何11.1 立体几何的基本概念11.2 立体几何的计算11.3 立体几何的应用第十二章:解析几何12.1 解析几何的基本概念12.2 解析几何的计算12.3 解析几何的应用第十三章:数列13.1 数列的概念13.2 等差数列13.3 等比数列13.4 数列的应用第十四章:函数14.1 函数的概念14.2 函数的图像14.3 函数的应用第十五章:不等式组15.1 不等式组的概念15.2 不等式组的解法15.3 不等式组的应用第十六章:反比例函数16.1 反比例函数的概念16.2 反比例函数的图像16.3 反比例函数的应用第十七章:二次函数17.1 二次函数的概念17.2 二次函数的图像17.3 二次函数的应用第十八章:勾股定理18.1 勾股定理的概念18.2 勾股定理的证明18.3 勾股定理的应用第十九章:统计与概率19.1 统计的基本概念19.2 概率的基本概念19.3 统计与概率的应用第二十章:数学建模20.1 数学建模的概念20.2 数学建模的方法20.3 数学建模的应用人教版八年级下册数学课本的内容涵盖了实数、一元一次方程、不等式、二元一次方程组、一次函数、平行线与相交线、三角形、四边形、圆、概率与统计、立体几何、解析几何、数列、函数、不等式组、反比例函数、二次函数、勾股定理、统计与概率以及数学建模等知识点。
1.1.01实数的概念【知识要点】一、实数的概念:1.有理数:可以写成p /q 的形式的重要特征,其中p 、q 是互质的整数。
2.无理数:要抓住“无限不循环”这一实质。
常见有四类:开不尽的方根;特定结构的数;特定意义的数;某些三角函数。
注意:判断实数的类型不能仅凭表面上的感觉,要根据循环性进行判断。
二、实数的三宝:1.数轴:三要素是 、 、 ;实数和数轴上的点是 关系。
2.相反数:(1)a 的相反数是 ;(2)a 、b 互反⇔a +b = ;(3) a 、b 互反⇔a 、b 在数轴上的点 。
倒数:(1)a (a ≠0)的倒数是 ;(2)a 、b 互倒⇔ab = ;(3)0无倒数,a 与a 的倒数符号 。
3.绝对值:(1)代数意义: ()()()⎪⎪⎩⎪⎪⎨⎧=000<=>a a a a ,因此,实数的绝对值是一个 数。
(2)几何意义:从数轴上看,|a |就是表示a 的点到 的距离。
注意:去绝对值符号(化简)时,必须要对符号里面的数进行数性(正、负)分析。
三、实数的比较:1.在数轴上,右边的数总比左边的数大。
2.正数大于0;负数小于0;正数大于一切负数;两个负数绝对值大的反而小。
【典型例题】1.相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 ,绝对值等于相反数的数是 ,绝对值等于倒数的数是 ,1.平方等于本身的数是 ,平方根等于本身的数是 ,算术平方根等于本身的数是 ,立方等于本身的数是 ,立方根等于本身的数是 ,平方根等于算术平方根的数是 ,立方根等于倒数的数是 。
2.实数a 、b 在数轴上的对应位置如图所示,且b a 。
化简:a b b a a --+-3.若333)43(,)43(,)43(--=-=-=c b a ,比较a 、b 、c 的大小。
4.已知a 、b 互为相反数,c 、d 互为倒数,m 的绝对值是1,求2m cd m b a +-+的值。
【课后练习】1.在下列各组中, 表示互为相反意义的量。
教资考试|初中数学学科知识:1.1实数
1.了解实数、有理数、无理数、代数式、整式、分式等概念,并掌握其相应的运算法则。
2.掌握基本的因式分解的方法:提公因式法、平方差公式、完全平方公式、十字相乘法、分组分解法。
3.掌握解方程的基本方法,会解一元一次方程、二元一次方程。
第一节实数
一、实数的概念★★
(一)实数的组成
实数有理数整数
正整数零负整数
分数正分数负分数有限小数或无限循环小数
无理数正无理数负无理数无限不循环小数
(二)数轴
画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
任何一个实数都可以用数轴上的一个点来表示。
数轴上面一点对应的数总大于这个点左边的点对应的数。
(三)相反数
如果两个数只有符号不同,那么我们称其中一个数为另外一个数
的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且到原点的距离相等。
(四)绝对值
|a|=a(a>0)
|a|=0(a=0)
|a|=-a(a 1.在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
2.正数的绝对值是它的本身,负数的绝对值是它的相反数,0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
实数基本概念实数基本概念及应用一、实数的定义与性质1.1 实数的定义实数是由有理数和无理数组成的数。
其中,有理数包括整数和分数,无理数则是无法表示为有限小数或无限循环小数的数。
1.2 实数的性质实数具有连续性、完备性、有序性等性质。
连续性指实数在数轴上是可以无限接近的,没有间隙;完备性指实数可以表示为任意精确程度的有限小数或无限循环小数;有序性指实数可以按照大小进行比较,可以排序。
二、实数的表示方法2.1 有限小数表示法有限小数表示法是指用小数点后几位数字来表示实数的方法。
例如,123.45表示为有限小数123.45。
2.2 无限小数表示法无限小数表示法包括无限循环小数和无限不循环小数。
无限循环小数是指小数点后的数字重复出现,例如1/3=0.3333……。
无限不循环小数是指小数点后的数字不重复出现,例如π=3.141592……。
三、实数的运算3.1 加法运算实数的加法运算按照加法交换律和结合律进行。
即a+b=b+a,(a+b)+c=a+(b+c)。
3.2 减法运算实数的减法运算按照加法交换律和结合律进行。
即a-b=a+(-b),a-b-c=a+(-b)+(-c)。
3.3 乘法运算实数的乘法运算按照乘法交换律和结合律进行。
即a×b=b×a,(a×b)×c=a×(b×c)。
3.4 除法运算实数的除法运算按照乘法交换律和结合律进行。
即a/b=c,则ac=bc,c/a=b,则ca=cb。
3.5 指数运算实数的指数运算可以使用幂运算进行。
即a^b=c,则log(a)c=b。
3.6 对数运算实数的对数运算可以使用指数运算进行。
即log(a)b=x,则a^x=b。
四、实数在生活中的应用4.1 测量中的应用实数在测量中有着广泛的应用。
例如,长度、面积、体积等都可以用实数来表示。
4.2 工程中的应用在工程中,实数被广泛应用于计算各种物理量。
例如,物体的质量、速度、加速度等都可以用实数来表示。
关于实数的知识点总结一、基本概念1.1 实数的定义实数是一切有理数和无理数的总称。
有理数指整数和分数的集合,无理数指不能表示为分数形式的数。
实数包括了整数、有理数和无理数三种类型的数。
1.2 实数的表示实数可以用十进制、分数、无限不循环小数等形式表示。
其中,十进制形式是常见的实数表示形式,可以直观地表示出实数的大小。
1.3 实数的性质实数具有加法、减法、乘法、除法等运算性质,满足交换律、结合律、分配律等基本性质。
此外,实数还满足最大值和最小值的性质,即任何有上界的非空有限实数集合必有上确界,并且同样地有下确界。
二、实数的子集2.1 有理数集有理数包括整数和分数,其中整数是不含小数部分的数,分数是两个整数的比,可以用分数形式表示。
2.2 无理数集无理数是不能表示为有理数的数,其十进制表示形式为无限不循环小数。
无理数包括了无限多的十进制无限不循环小数,如$\sqrt{2}$、$\pi$等。
2.3 实数集实数集是有理数和无理数的总称,它包括了一切可以表示为十进制数的数。
三、实数的运算3.1 加法和减法实数的加法和减法满足交换律和结合律,对任意两个实数a和b,有a+b=b+a,a-b≠b-a。
3.2 乘法和除法实数的乘法和除法满足交换律和结合律,对任意两个实数a和b,有a×b=b×a,a/b≠b/a。
3.3 幂运算实数的幂运算是指a的n次方,其中a是实数,n是自然数。
幂运算的性质包括a的m 次方与a的n次方的乘积等。
3.4 开方实数的开方是指对任意非负实数a,存在唯一的非负实数b,使得b的平方等于a。
开方的性质包括平方根存在性和唯一性等。
四、实数的序关系4.1 实数的大小比较实数之间可以进行大小比较,对于任意两个实数a和b,有a<b、a>b或a=b中的一种关系。
4.2 实数的绝对值实数a的绝对值是指a到原点的距离,用|a|表示。
如果a≥0,则|a|=a;如果a<0,则|a|=-a。
人教版八年级上册数学书答案第一章实数1.1 实数的概念实数包括有理数和无理数,有理数又包括整数和分数。
整数包括正整数、负整数和0。
分数包括正分数和负分数。
无理数是无限不循环小数,例如π和√2。
1.2 实数的运算实数的加减法遵循交换律和结合律。
实数的乘法遵循交换律、结合律和分配律。
实数的除法需要注意除数不能为0。
实数的乘方和开方运算需要掌握相关的法则。
1.3 实数的应用实数可以用于表示长度、面积、体积、重量等物理量。
实数可以用于计算速度、加速度、密度等物理量。
实数可以用于解决生活中的实际问题,例如计算利息、规划预算等。
第一章练习题答案(1) 3(2) 2(3) √2(4) 1/3(5) 0.5第二章代数式2.1 代数式的概念代数式是由数字、字母和运算符号组成的式子。
代数式可以分为单项式和多项式。
单项式是只包含一个项的代数式,例如x^2和3y。
多项式是包含多个项的代数式,例如x^2 + 3x + 2和2y^2 5y + 1。
2.2 代数式的运算代数式的加减法需要将同类项合并。
代数式的乘法需要掌握分配律。
代数式的除法需要注意除数不能为0。
2.3 代数式的应用代数式可以用于表示函数关系。
代数式可以用于解决几何问题。
代数式可以用于解决生活中的实际问题,例如计算面积、体积等。
第二章练习题答案(1) x^2 + 4x + 4(2) 3y^2 2y 1(3) x^3 + 3x^2 2x(4) 2x^2 + 5x 3(5) 3y^3 4y^2 + 2y 1第三章函数3.1 函数的概念函数是描述变量之间关系的数学概念。
函数可以用解析式、表格、图像等方式表示。
函数可以分为一次函数、二次函数、指数函数、对数函数等。
3.2 一次函数一次函数的一般形式为y = ax + b,其中a和b是常数。
一次函数的图像是一条直线。
一次函数的斜率表示函数图像的倾斜程度。
3.3 二次函数二次函数的一般形式为y = ax^2 + bx + c,其中a、b和c是常数。
七年级数学[上册]思维导图第一章:数与代数1.1 实数1.1.1 实数的概念1.1.2 实数的分类1.1.3 实数的性质1.1.4 实数的运算1.2 代数式1.2.1 代数式的概念1.2.2 代数式的分类1.2.3 代数式的运算1.3 方程与不等式1.3.1 方程的概念1.3.2 一元一次方程1.3.3 不等式的概念1.3.4 一元一次不等式第二章:几何初步2.1 点、线、面2.1.1 点的概念2.1.2 线的概念2.1.3 面的概念2.2 平面图形2.2.1 线段2.2.2 角2.2.3 三角形2.2.4 四边形2.2.5 圆2.3 空间图形2.3.1 长方体2.3.2 正方体2.3.3 球第三章:统计与概率3.1 统计3.1.1 数据的收集与整理3.1.2 数据的表示3.1.3 数据的分析3.2 概率3.2.1 概率的概念3.2.2 概率的计算3.2.3 概率的运用第四章:数学思维与方法4.1 逻辑思维4.2 抽象思维4.3 创新思维4.4 数学方法七年级数学[上册]思维导图第五章:函数及其图像5.1 函数的概念5.2 函数的表示方法5.3 函数的性质5.4 函数图像的绘制第六章:数列与数列极限6.1 数列的概念6.2 等差数列与等比数列6.3 数列的求和6.4 数列极限的概念第七章:数学建模与实际问题7.1 数学建模的概念7.2 数学建模的方法7.3 实际问题的解决第八章:数学文化8.1 数学发展的历史8.2 数学家的故事8.3 数学文化的传播第九章:数学竞赛与挑战9.1 数学竞赛的种类9.2 数学竞赛的准备9.3 数学竞赛的挑战第十章:数学与生活10.1 数学在生活中的应用10.2 数学与科技的发展10.3 数学与艺术的结合七年级数学[上册]思维导图第十一章:数学与自然科学11.1 数学与物理的关系11.2 数学与化学的关系11.3 数学与生物的关系第十二章:数学与社会科学12.1 数学与经济学的关系12.2 数学与心理学的关系12.3 数学与历史的关系第十三章:数学与信息技术13.1 数学与计算机科学的关系13.2 数学与网络技术的关系第十四章:数学教育与发展14.1 数学教育的重要性14.2 数学教育的现状14.3 数学教育的发展趋势第十五章:数学与个人成长15.1 数学与思维能力15.2 数学与创新能力15.3 数学与人格培养第十六章:数学与团队合作16.1 数学与沟通能力16.2 数学与协作能力16.3 数学与领导力。