浙江物理学考第19题原题整理及思考
- 格式:ppt
- 大小:2.73 MB
- 文档页数:19
绝密★启用前2019 年 1月浙江省普通高中学业水平考试物 理 试 题姓名:___________________ 准考证号:_________________本试题卷分选择题和非选择题两部分,共 6页,满分 70 分,考试时间 60 分钟。
考生注意:1. 答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2. 答题时,请按照答题纸上 “注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
3. 非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应的区域内,作图时先使用 2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
4. 可能用到的相关参数:重力加速度 g均取 10m/s2,电子电荷量 e=1.6×10−19C。
选择题部分一、选择题(本题共 18 小题,每小题 2分,共 36 分。
每小题列出的四个备选项中只有一个是 符合题目要求的,不选、多选、错选均不得分)1.在国际单位制中,力的单位符号是A.N B.s C.kg D.m2.在下列物理量中属于矢量的是A.动能 B.时间 C.质量 D.加速度3.老师通常会用 “ F=−F '”简洁表示某一物理规律,该物理规律是A.牛顿第一定律 B.牛顿第二定律C.牛顿第三定律 D.机械能守恒定律4.下列电表中,属于多用电表的是第 5 题图第 10题图5.如图所示,苹果在空气中下落时A .只受重力B .只受空气阻力C .受重力和空气阻力D .所受合力一定为零 6.某人从井口静止释放一颗小石子,不计空气阻力,为表示小石子落水前的运动,下列四幅图象可能正确的是7.几个同学在广场上看到了如图所示的“飞马”塑像,提出了下列几个问题,其中从物理学视 角提出的问题是A .塑像表达了哪种寓意B .塑像关联了哪个事件C .塑像受到了哪些力的作用D .塑像是由哪位艺术家创作的8.如图所示,某汽车内的仪表显示了汽车行驶的相关数据,则此时汽车的A .速率约为 50m/sB .瞬时速度约为 50m/sC .速率约为 50km/hD .平均速度约为 50km/h9.如图所示,小明和同学坐在橡胶轮胎上从倾斜平滑雪道上自静止开始沿直线下滑。
本卷计算中,g 均取10m/s 2。
选择题部分一、选择题Ⅰ(全体考生必做。
共22小题,每小题2分,共44分。
每小题中只有一个选项是符合题意的。
不选、多选、错选均不得分)1.在国际单位制中,质量、长度和时间三个物理量的基本单位分别是A .kg 、m 、sB .N 、m 、sC .N 、m 、hD .kg 、s 、m/s 2.如图所示,坐高铁从杭州到南京,原需经上海再到南京,路程为s 1,位移为x 1。
杭宁(南京)高铁通车后,从杭州可直达南京,路程为s 2,位移为x 2。
则A .s 1>s 2 ,x 1>x 2B .s 1>s 2 ,x 1<x 2C .s 1>s 2 ,x 1=x 2D .s 1=s 2 ,x 1=x 23.“歼-15”舰载机在“辽宁”号航母上着落瞬间的某个物理量大小为80m/s ,方向与跑道平行,这个物理量是A .路程B .位移C .瞬时速度D .平均速度 4.如图所示是月球车示意图。
月球车能完成月球探测、考察、采集样品等任务,当它在月球表面行驶时A .仍有惯性B .不受阻力C .不受支持力D .不遵循牛顿运动定律 5.秋日,树叶纷纷落下枝头,其中有一片梧桐叶从高为5m 的枝头自静止落至地面,所用时间可能是A .0.1sB .0.5 sC .1 sD .3 s6.2024年6月20日,航天员王亚平在“天宫一号”舱内授课,演示了小球做匀速圆周运动。
小球运动过程中肯定会发生变更的是A .速度大小B .速度方向C .加速度大小D .角速度大小7.将原长10cm 的轻质弹簧竖直悬挂,当下端挂200g 的钩码时,弹簧的长度为12cm ,则此弹簧的劲度系数为A .1N/mB .10N/mC .100N/mD .1000N/m8.如图所示,活动放射平台载着质量为m 的“神舟十号”和质量为M 的火箭,在车的牵第2题图南京杭州上海第4题图 第11题图第8题图 第9题图 橡皮筋 细绳套第10题图第14题图引下缓慢地驶向放射场。
2021⾼考物理浙江卷19题⼩李在实验室测量⼀电阻R x的阻值。
(1)因电表内阻未知,⽤如图1所⽰的电路来判定电流表该内接还是外接。
正确连线后,合上开关S,将滑动变阻器的滑⽚P移⾄合适位置。
单⼑双掷开关K掷到1,电压表的读数U1=1.65V,电流表的⽰数如图2所⽰,其读数I1=___________A;将K掷到2,电压表和电流表的读数分别为U2=1.75V,I1=0.33A。
由此可知应采⽤电流表___________(填“内”或“外”)接法。
(2)完成上述实验后,⼩李进⼀步尝试⽤其它⽅法进⾏实验:(i)器材间连线如图3所⽰,请在虚线框中画出对应的电路图___________;(ii)先将单⼑双掷开关掷到左边,记录电流表读数,再将单⼑双掷开关挪到右边,调节电阻箱的阻值,使电流表的读数与前⼀次尽量相同,电阻箱的⽰数如图3所⽰。
则待测电阻R X=___________Ω。
此⽅法___________(填“有”或“⽆”)明显的实验误差,其理由是___________。
【答案】 (1) 0.34 , 见解析 (2)(i) 外 (ii) 5 , 有 , 电阻箱的最⼩分度与待测电阻⽐较接近(或其它合理解释)【解析】(1)由电流表的表盘可知电流⼤⼩为0.34A电压表的百分⽐变化为,η1=[(1.75-1.65)/1.75]×100%=5.7%电流表的百分⽐变化为,η2=[(0.34-0.33)/0.33]×100%=3.0%因此可知电压表的⽰数变化更明显,说明电流表的分压更严重,因此不能让电流表分压,采⽤外接法(2)(i)电路图如图(ii)两次实验中电路电流相同,因此可有,I=E/(R A+r+R x)=E/(R A+r+R0)可得,R x=R0读数可得,R x=5Ω电阻箱的最⼩分度和待测阻值阻值接近,这样测得的阻值不够精确,如待测电阻阻值为5.4Ω,则实验只能测得其为R x=5Ω,误差较⼤。
物理(学考)试题一、选择题(本题共18小题,每小题3分,共54分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列属于国际单位制中基本单位符号的是()A .s B .NC .WbD .C 2.万有引力定律表达式为()A .12m m F G r =B .122m m F G r =C .123m m F G r =D .212r F G m m =3.如图所示,在水平桌面铺上白纸,白纸上摆一条弧形弯道。
表面沾有红色印泥的小钢球从弯道A 端滚入,它从出口B 离开后在纸上留下的痕迹是()A .aB .bC .cD .d 4.下列说法正确的是()A .电磁波具有能量B .能级越高的原子越稳定C .赫兹建立了经典电磁场理论D .爱因斯坦提出了能量子的假说5.“神舟十五号”飞船和空间站“天和”核心舱成功对接后,在轨运行如图所示,则()A .选地球为参考系,“天和”是静止的B .选地球为参考系,“神舟十五号”是静止的C .选“天和”为参考系,“神舟十五号”是静止的D .选“神舟十五号”为参考系,“天和”是运动的6.如图所示,足球运动员正在踢球,此时足球对脚的弹力()A.方向向上B.方向沿球飞出方向C.由脚的形变所产生D.由球的形变所产生7.如图所示,在2022年北京冬奥会单板大跳台比赛中,一位运动员从跳台上腾空而起。
运动员和单板在空中时,受到的力有()A.重力、冲力B.重力、空气阻力C.重力、空气阻力、冲力D.空气阻力、冲力8.如图所示,车停在水平地面上,桶放在车上,则下列属于一对作用力与反作用力的是()A.车所受重力与车对地面的压力B.桶对车的压力与车对地面的压力C.桶所受重力与车对桶的支持力D.桶对车的压力与车对桶的支持力9.如图所示,A、B是电风扇叶片上的两点。
电风扇工作时A、B两点的角速度大小分别为ω、Bω,线速度大小分别为A v、B v,则()AA .AB ωω>B .A B ωω<C .A B v v >D .A B v v <10.如图所示,用无人机投送小型急救包。
2019·4月浙江学考试卷(物理)word+详解班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2019·4月浙江)下列物理量属于基本量且单位属于国际单位制中基本单位的是()A.功/焦耳B.质量/千克C.电荷量/库仑D.力/牛顿【答案】B【解析】单位制包括基本单位和导出单位,规定的基本量的单位叫基本单位,国际单位制规定了七个基本物理量。
分别为长度、质量、时间、热力学温度、电流、光强度、物质的量。
他们在国际单位制中的单位分别为米、千克、秒、开尔文、安培、坎德拉、摩尔。
A、功的单位焦耳是导出单位,故A错误;B、质量的单位千克是国际单位制中基本单位,故B正确;C、电荷量的单位库仑是导出单位,故C错误;D、力的单位牛顿是导出单位,故D错误;故选:B。
国际单位制规定了七个基本物理量。
分别为长度、质量、时间、热力学温度、电流、光强度、物质的量。
它们的在国际单位制中的单位称为基本单位,而物理量之间的关系式推到出来的物理量的单位叫做导出单位。
国际单位制规定了七个基本物理量,这七个基本物理量分别是谁,它们在国际单位制分别是谁,这都是需要学生自己记住的。
2.(2019·4月浙江)下列器件中是电容器的是()【答案】B【解析】图中A为滑动变阻器;B为电容器;C为电阻箱,D为电阻;故B正确ACD错误。
故选:B。
本题考查对电学元件的认识,根据电容器及电源等的形状可以解答。
本题中元件均为常见元件,要求学生能够加以区分,知道常见元件的基本形状即可求解。
3.(2019·4月浙江)下列式子属于比值定义物理量的是()A.B.a =C.D.【答案】C【解析】A、公式t=是匀速直线运动时间与位移的公式式,与位移成正比,不符合比值定义法的共性。
故A错误;B、公式a=是牛顿第二定律的表达式,不属于比值定义法,故B错误;C、电容是由电容器本身决定的,与Q、U无关,公式C=是电容的定义式,故C正确;D、I与U成正比,与R成反比,不符合比值定义法的共性。
绝密★启用前2019年6月浙江省普通高中学业水平考试物 理 试 题姓名:准考证号:本试题卷分选择题和非选择题两部分,共6页满分70分,考试时间60分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在题卷上的作答一律无效。
可能用到的相关参数:重力加速度g 均取10m/s 2一、选择题(本题共18小題,每小题2分,共36分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分) 1.在国际单位制中,速度单位的符号是A .m/sB .mC .kgD .s2.电容器的符号是A .B .C .D .3.如图所示,真空玻璃管内的鸡毛、铜钱由静止开始自由下落。
能表示铜钱在自由下落过程中速度随时间变化的图象是第3题图ABCD4.万有引力定律的表达式是A . F=G221r m m B . F=Grm m 21 C . F=221r q q kD . F=rq q k21 5.如图所示,花样跳伞运动员在跳伞降落过程中手拉手做成一个环状造型。
如果把构成环状造型的运动员看作一个整体,则此整体在竖直降落过程中A .只受重力B .只受空气阻力C .受重力和空气阻力D .所受合力一定为零第5题图第6题图第7题图6.如图所示,以甲为头雁的人字形雁阵以相同速度整齐滑翔。
则A.选地面为参考系,甲是静止的B.选地面为参考系,乙是静止的C.选甲为参考系,乙是运动的D.选乙为参考系,甲是静止的7.如图所示,把A、B两个弹簧测力计连接在一起,B的一端固定,用手拉测力计A。
则关于A对B的作用力F AB与B对A的作用力F BA的说法正确的是A.F AB大小大于F BA大小B.F AB大小等于F BA大小C.F AB先于F BA产生D.F AB后于F BA产生8.如图所示为水平桌面上的一条弯曲轨道。
2019年浙江卷高考物理【学考题型】计算题部分强化训练计算题部分19~20题物理计算题强化训练01 力和直线运动1.(2018·温州市九校联盟期末)如图1所示,2017年8月30日,中国航天科工集团公司发布信息,开展“高速飞行列车”的研究论证,拟通过商业化、市场化模式,将超声速飞行技术与轨道交通技术相结合,研制的新一代交通工具,利用超导磁悬浮技术和真空管道致力于实现超音速的“近地飞行”,研制速度分为1 000 km/h、2 000 km/h、4 000 km/h的三大阶段.若温州南站到北京南站的直线距离以2 060 km计算,如果列车以速度4 000 km/h运行,则仅需大约30分钟即可完成两地“穿越”.图1(1)为提高运行速度,可以采用哪些方法?(2)如果你将来乘坐从温州南站到北京南站的高速飞行列车,最高速度为4 000 km/h,列车从温州南站启动的加速度大小为0.4g,加速到丽水后匀速,车行至天津时开始制动,制动的加速度大小为0.5g.你全程花费的时间约为多少分钟?(g=10 m/s2,计算结果四舍五入取整)2.某人沿直线匀加速行走了4 s,达到最大速度6 m/s后,又以1.2 m/s2的加速度沿直线匀减速行走了3 s,然后做匀速直线运动.求:(1)匀加速运动时的加速度大小;(2)匀速运动时的速度大小;(3)前7 s过程中人的总位移大小.3.(2018·西湖高级中学月考)某市规划建设一新机场,请你帮助设计飞机跑道.飞机质量为5×104 kg,假设飞机在加速滑行过程中牵引力恒为F=8×104 N,受到的阻力恒为F f=2×104 N,起飞速度v=80 m/s.(1)从开始滑行到起飞的过程中飞机的位移是多大?(2)如果飞机在达到起飞速度的瞬间因故需要停止起飞,立即采取制动措施后能以4 m/s2的加速度减速,为确保飞机不滑出跑道,则跑道的长度至少多长?4.(2018·杭州地区期末)质量为20 kg的箱子放在水平地面上,箱子与地面间的动摩擦因数为0.5,现用与水平方向成37°角的100 N的力拉箱子,如图2所示,箱子从静止开始运动(已知sin 37°=0.6,cos37°=0.8,g=10 m/s2).图2(1)求2 s末撤去拉力时箱子的速度大小;(2)求2 s末撤去拉力后箱子继续运动多长时间才能停止运动.5.(2018·宁波市期末)某同学用运动传感器“研究物体加速度与力的关系”时采用如图3甲所示装置,开始时将质量为m=1 kg的物体置于水平桌面上.现对物体施加一个水平向右的恒定推力F经过一段时间后撤去此力,通过放在物体右前方的运动传感器得到了物体部分运动过程的v-t图象如图乙所示(g取10 m/s2,向右为速度正方向).求:图3(1)3 s内物体的位移;(2)物体与水平桌面间的动摩擦因数μ;(3)拉力F的大小.6.为了测量某住宅大楼每层的平均高度(层高)及电梯的运行情况,甲、乙两位同学在一楼电梯内用电子体重计及秒表进行了以下实验,一质量为m=50 kg的甲同学站在体重计上,乙同学记录了电梯从一楼到顶层的过程中体重计示数随时间的变化情况,并作出了如图4所示的图象,已知t=0时,电梯静止不动,从电梯轿厢内的楼层按钮上得知该大楼共19层.求:(g取10 m/s2)图4(1)电梯启动和制动时的加速度大小;(2)该大楼的层高.7.(2018·台州市外国语学校期末)一同学家住在23层高楼的顶楼,他想研究一下电梯上升的运动过程.某天他乘电梯上楼时携带了一个质量为5 kg的重物和一个量程足够大的台秤,他将重物放在台秤上.电梯从第1层开始启动,一直运动到第23层停止.在这个过程中,他记录了台秤在不同时段内的读数如下表所示:根据表格中的数据,求:(g取10 m/s2)(1)电梯在最初加速阶段和最后减速阶段的加速度大小;(2)电梯在中间阶段上升的速度大小;(3)该楼房平均每层楼的高度.8.(2018·嘉兴市第一中学期中)在寒冷的冬天,路面很容易结冰,在冰雪路面上汽车一定要低速行驶.在冰雪覆盖的路面上,车辆遇紧急情况刹车时,车轮会抱死而“打滑”.如图5所示,假设某汽车以12 m/s的速度行驶至一个斜坡的顶端A时,突然发现坡底前方有一位行人正以2 m/s的速度做同向匀速运动,司机立即刹车,但因冰雪路面太滑,汽车沿斜坡滑行.已知斜坡高AB=5 m,长AC=13 m,司机刹车时行人距坡底C点的距离CE=33 m,从厂家的技术手册中查得该车轮胎与冰雪路面间的动摩擦因数为0.2.假设汽车经过A、C点时,速度大小保持不变.求:(g取10 m/s2,可将汽车视为质点)图5(1)汽车沿斜坡滑下的加速度大小;(2)汽车刚运动到C点时,行人相对于C点的位移大小;(3)试分析此种情况下,行人是否有危险?(回答“是”或“否”)如果有,请通过计算说明.物理计算题强化训练02 力和曲线运动1.(2018·绍兴市期末)某学生在台阶上玩玻璃弹子.他在平台最高处将一颗小玻璃弹子垂直于棱角边推出,以观察弹子的落点位置.台阶的尺寸如图1所示,高a=0.2 m,宽b=0.3 m,不计空气阻力.(g取10 m/s2)图1(1)要使弹子落在第一级台阶上,推出的速度v1应满足什么条件?(2)若弹子被水平推出的速度v2=4 m/s,它将落在第几级台阶上?2.(2018·宁波市模拟)如图2所示,水平平台AO长x=2.0 m,槽宽d=0.10 m,槽高h=1.25 m,现有一小球从平台上A点水平射出,已知小球与平台间的阻力为其重力的0.1倍,空气阻力不计,g=10 m/s2.求:图2(1)小球在平台上运动的加速度大小;(2)为使小球能沿平台到达O点,求小球在A点的最小出射速度和此情景下小球在平台上的运动时间;(3)若要保证小球不碰槽壁且恰能落到槽底上的P点,求小球离开O点时的速度大小.3.如图3所示,质量m=2.0×104kg的汽车以不变的速率先后驶过凹形桥面和凸形桥面,两桥面的圆弧半径均为60 m.假定桥面承受的压力不超过3.0×105 N,则:(g取10 m/s2)图3(1)汽车允许的最大速度是多少?(2)若以(1)中所求速率行驶,汽车对桥面的最小压力是多少?4.游乐园的小型“摩天轮”上对称站着质量均为m的8位同学.如图4所示,“摩天轮”在竖直平面内逆时针匀速转动,若某时刻转到顶点a上的甲同学让一小重物做自由落体运动,并立即通知下面的同学接住,结果重物掉落时正处在c处(如图)的乙同学恰好在第一次到达最低点b处时接到,已知“摩天轮”半径为R,重力加速度为g(人和吊篮的大小及重物的质量可忽略).求:图4(1)接住前重物下落的时间t;(2)人和吊篮随“摩天轮”运动的线速度v的大小;(3)乙同学在最低点处对地板的压力F N.5.如图5所示,某电视台娱乐节目,要求选手从较高的平台上以水平速度v0跃出后,落在水平传送带上,已知平台与传送带的高度差H=1.8 m,水池宽度s0=1.2 m,传送带A、B 间的距离L0=20.85 m,由于传送带足够粗糙,假设人落到传送带上后瞬间相对传送带静止,经过一个Δt=0.5 s反应时间后,立刻以a=2 m/s2、方向向右的加速度跑至传送带最右端.(g 取10 m/s2)图5(1)若传送带静止,选手以v0=3 m/s的水平速度从平台跃出,求从开始跃出到跑至传送带右端经历的时间.(2)若传送带以v=1 m/s的恒定速度向左运动,选手若要能到达传送带右端,则从高台上跃出的水平速度v1至少多大.6.如图6所示,一小球从平台上水平抛出,恰好落在邻近平台的一倾角为α=53°的光滑斜面顶端,并刚好沿光滑斜面下滑,已知斜面顶端与平台的高度差h=0.8 m,重力加速度取g=10 m/s2,sin 53°=0.8,cos 53°=0.6,不计空气阻力,求:图6(1)小球水平抛出时的初速度大小v0;(2)斜面顶端与平台边缘的水平距离x;(3)若斜面顶端高H=20.8 m,则小球离开平台后经多长时间到达斜面底端?7.如图7所示,用内壁光滑的薄壁细圆管弯成的由半圆形APB(圆半径比细管的内径大得多)和直线BC组成的轨道固定在水平桌面上,已知APB部分的半径R=1 m,BC段长L=1.5 m.弹射装置将一个质量为0.1 kg的小球(可视为质点)以v0=3 m/s的水平初速度从A点射入轨道,小球从C点离开轨道随即水平抛出,桌子的高度h=0.8 m,不计空气阻力,g取10 m/s2.求:图7(1)小球在半圆形轨道中运动时的角速度ω、向心加速度a n的大小;(2)小球从A点运动到B点的时间t;(3)小球在空中做平抛运动的时间及落到地面D点时的速度大小.8.(2018·嘉兴市期末)如图8所示,水平实验台A端固定,B端左右可调,将弹簧左端与实验平台固定,右端有一可视为质点、质量为2 kg的滑块紧靠弹簧(未与弹簧连接),弹簧压缩量不同时,将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因数为0.4的粗糙水平地面相切于D点.AB段最长时,B、C两点水平距离x BC=0.9 m,实验平台距地面高度h=0.53 m,圆弧半径R=0.4 m,θ=37°,已知sin 37°=0.6,cos 37°=0.8.完成下列问题:(g取10 m/s2,不计空气阻力)图8(1)轨道末端AB段不缩短,压缩弹簧后将滑块弹出,滑块经过B点速度v B=3 m/s,求落到C点时的速度与水平方向的夹角;(2)滑块沿着圆弧轨道运动后能在DE上继续滑行2 m,求滑块在圆弧轨道上对D点的压力大小;(3)通过调整弹簧压缩量,并将AB段缩短,滑块弹出后恰好无碰撞地从C点进入圆弧轨道,求滑块从平台飞出的初速度大小以及AB段缩短的距离.物理计算题强化训练03动力学方法和能量观点的综合应用1.如图1所示,半径分别为2R和R的甲、乙两个光滑的圆形轨道安置在同一竖直平面上,轨道之间有一条水平轨道CD,甲圆形轨道左侧有一个与轨道CD完全一样的水平轨道OC.一质量为m的滑块以一定的速度从O点出发,先滑上甲轨道,通过动摩擦因数为μ的CD 段,又滑上乙轨道,最后离开两圆轨道,若滑块在两圆轨道的最高点对轨道的压力都恰好为零,试求:(重力加速度为g)图1(1)CD段的长度;(2)滑块在O点的速度大小.2.如图2所示,一内壁光滑的细管弯成半径为R=0.4 m的半圆形轨道CD,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆形轨道在C点连接完好.置于水平轨道上的弹簧左端与竖直墙壁相连,B处为弹簧的自然状态.将一个质量为m=0.8 kg的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A处,然后将小球由静止释放,小球运动到C 处后对轨道的压力为F1=58 N.水平轨道以B处为界,左侧AB段长为x=0.3 m,与小球的动摩擦因数为μ=0.5,右侧BC段光滑.g=10 m/s2,求:图2(1)弹簧在压缩状态时所储存的弹性势能;(2)小球运动到轨道最高处D点时对轨道的压力大小.3.(2018·西湖高级中学月考)水上滑梯可简化成如图3所示的模型:倾角为θ=37°的倾斜滑道AB和水平滑道BC平滑连接,起点A距水面的高度H=7.0 m,BC的长度d=2.0 m,端点C距水面的高度h=1.0 m.一质量m=50 kg的运动员从滑道起点A无初速度地自由滑下,运动员与AB、BC间的动摩擦因数均为μ=0.1(取重力加速度g=10 m/s2,cos 37°=0.8,sin 37°=0.6,运动员可视为质点)图3(1)求运动员沿AB下滑时的加速度的大小a;(2)求运动员从A滑到C的过程中克服摩擦力所做的功W和到达C点时的速度的大小v C;(3)保持水平滑道左端点在同一竖直线上,调节水平滑道高度h和长度d到图中B′C′位置时,运动员从滑梯平抛到水面的水平位移最大,求此时滑道B′C′距水面的高度h′.4.(2018·诸暨市牌头中学期中)雪橇运动在北方很受人们欢迎,其简化模型如图4所示.倾角θ=37°的直线雪道AB与曲线雪道BCDE在B点平滑连接,其中A、E两点在同一水平面上,雪道最高点C所对应的圆弧半径R=10 m,B、C两点距离水平面AE的高度分别为h1=18 m、h2=18.1 m,雪橇与雪道间的动摩擦因数μ=0.1.游客可坐在电动雪橇上由A点从静止开始向上运动.若电动雪橇以恒定功率P=1.03 kW工作t=10 s时间后自动关闭,则雪橇和游客(总质量M=50 kg)到达C点时的速度v C=1 m/s,到达E点时的速度v E=9 m/s.已知雪橇运动过程中不脱离雪道,sin 37°=0.6,不计空气阻力,重力加速度g取10 m/s2.图4(1)求雪橇在C点时对雪道的压力大小;(2)求雪橇在BC段克服摩擦力做的功;(3)求雪橇从C点运动到E点过程中损失的机械能;(4)若仅将DE段改成与曲线雪道CD段平滑连接的倾斜直线轨道(如图中虚线所示),则雪橇从C点运动到E点过程中损失的机械能将如何变化(增加,减少还是不变)?请简要说明理由.5.(2018·台州市外国语学校期末)如图5所示,在竖直平面内,粗糙的斜面轨道AB的下端与光滑的圆弧轨道BCD相切于B,C是最低点,圆心角∠BOC=37°,D与圆心O等高,圆弧轨道半径R=1.0 m,现有一个质量为m=0.2 kg可视为质点的小物体,从D点的正上方E 点处自由下落,D、E两点间的距离h=1.6 m,物体与斜面AB之间的动摩擦因数μ=0.5,取sin 37°=0.6,cos 37°=0.8,g=10 m/s2,不计空气阻力.求:图5(1)物体第一次通过C点时轨道对物体的支持力F N的大小;(2)要使物体不从斜面顶端飞出,斜面的长度L AB至少要多长;(3)若斜面已经满足(2)要求,物体从E点开始下落,直至最后在光滑圆弧轨道做周期性运动,求在此过程中系统因摩擦所产生的热量Q的大小.6.(2017·嘉兴市一中期末)如图6所示,一质量m=0.4 kg的滑块(可视为质点)静止于动摩擦因数μ=0.1的水平轨道上的A点.现对滑块施加一水平外力,使其向右运动,外力的功率恒为P=10 W.经过一段时间后撤去外力,滑块继续滑行至B点后水平飞出,恰好在C点沿切线方向进入固定在竖直平面内的光滑圆弧形轨道,轨道的最低点D处装有压力传感器,当滑块到达传感器上方时,传感器的示数为25.6 N.已知轨道AB的长度L=2.0 m,半径OC和竖直方向的夹角α=37°,圆弧形轨道的半径R=0.5 m.(空气阻力可忽略不计,重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求:图6(1)滑块运动到C点时速度v C的大小;(2)B、C两点的高度差h及水平距离x;(3)水平外力作用在滑块上的时间t.7.如图7所示为某种弹射小球的游戏装置,水平面上固定一轻质弹簧及长度可调节的竖直细管AB.细管下端接有一小段长度不计的圆滑弯管,上端B与四分之一圆弧弯管BC相接,每次弹射前,推动小球将弹簧压缩到同一位置后锁定.解除锁定,小球即被弹簧弹出,水平射进细管A端,再沿管ABC从C端水平射出.已知弯管BC的半径R=0.30 m,小球的质量为m=50 g,当调节竖直细管AB的长度L至L0=0.90 m时,发现小球恰好能过管口C端.不计小球运动过程中的机械能损失.(g取10 m/s2)图7(1)求每次弹射时弹簧对小球所做的功W.(2)当L取多大时,小球落至水平面的位置离细直管AB最远?(3)调节L时,小球到达管口C时管壁对球的作用力F N也相应变化,考虑到游戏装置的实际情况,L不能小于0.15 m,请在图8坐标纸上作出F N随长度L变化的关系图线.(取管壁对球的作用力F N方向向上为正,并要求在纵轴上标上必要的刻度值)图8答案及解析物理计算题强化训练01 力和直线运动1.【答案】(1)见解析(2)35 min【解析】 (1)高速飞行列车是利用低真空环境和超声速外形减小空气阻力,通过磁悬浮减小摩擦阻力实现超声速运行的运输系统;(2)飞行列车分为三个运动过程,先加速,后匀速,再减速; 最高速度v =4 000 km/h ≈1 111 m/s , 加速阶段的时间:t 1=v a 1=1 1114s ≈278 s ,位移x 1=12v t 1=154 429 m减速阶段的时间t 2=v a 2=1 1115s ≈222 s ,位移x 2=12v t 2=123 321 m匀速运动的位移x 3=x -x 1-x 2=1 782 250 m 匀速运动的时间t 3=x 3v =1 782 2501 111 s ≈1 604 s全程花费的时间约为t =t 1+t 2+t 3=2 104 s ≈35 min. 2.【答案】(1)1.5 m/s 2(2)2.4 m/s (3)24.6 m【解析】 (1)a 1=Δv Δt =64 m/s 2=1.5 m/s 2(2)由v 2=v 1-a 2t 2,得v 2=2.4 m/s (3)由x 1=12v 1t 1=12 mx 2=12(v 1+v 2)t 2=12.6 m得x =x 1+x 2=24.6 m 3.【答案】(1)2 667 m(2)3 467 m【解析】 (1)设飞机从静止开始做匀加速运动到离开地面升空过程中滑行的距离为x 1, 根据牛顿第二定律得:a 1=F -F f m =8×104-2×1045×104m/s 2=1.2 m/s 2 位移x 1=v 2-02a 1=802-02×1.2m ≈2 667 m(2)设飞机做匀减速直线运动的位移为x 2, 则x 2=0-v 22a 2=-802-2×4m =800 m所以跑道的长度至少为x =x 1+x 2=2 667 m +800 m =3 467 m 4.【答案】(1)1 m/s(2)0.2 s【解析】 (1)F sin 37°+F N =mg F cos 37°-μF N =ma 联立得:a =0.5 m/s 2 2 s 末的速度v =at =1 m/s (2)撤去拉力后:加速度大小a ′=μmg m=μg =5 m/s 2继续运动的时间:t ′=va ′=0.2 s.5.【答案】(1)4 m ,方向向右(2)0.2 (3)2.5 N【解析】 (1)由题图可知,3 s 内物体的位移: x =12×(1+2)×2 m +12×2×(3-2) m =4 m ,方向向右; (2)、(3)由题图可知,物体的加速度: a 1=Δv Δt =2-12 m/s 2=0.5 m/s 2,a 2=Δv ′Δt ′=0-23-2 m/s 2=-2 m/s 2,由牛顿第二定律得:F -μmg =ma 1 -μmg =ma 2,解得:F =2.5 N ,μ=0.2. 6.【答案】(1)2 m/s 2 2 m/s 2(2)3 m【解析】 (1)电梯启动时由牛顿第二定律得F 1-mg =ma 1 电梯加速度大小为a 1=F 1m -g =2 m/s 2电梯制动时由牛顿第二定律得mg -F 3=ma 3 电梯加速度大小为a 3=g -F 3m =2 m/s 2.(2)电梯匀速运动的速度为v =a 1t 1=2 m/s 从题图中读得电梯匀速上升的时间为t 2=26 s减速运动的时间为t 3=1 s所以总位移为x =12a 1t 1 2+v t 2+12a 3t 32=54 m 层高为h =x18=3 m.7.【答案】(1)1.6 m/s 2 0.8 m/s 2(2)4.8 m/s (3)3.16 m【解析】 (1)0~3.0 s 为加速阶段,有:F 1-mg =ma 1 得:a 1=1.6 m/s 213.0~19.0 s 为减速阶段,有:mg -F 2=ma 2 得:a 2=0.8 m/s 2(2)中间阶段是匀速运动,v =a 1t 1=1.6×3 m/s =4.8 m/s (3)电梯上升的总高度H =0+v 2t 1+v t 2+v +02t 3=69.6 m则层高为h =H22≈3.16 m.8.【答案】(1)2 m/s 2(2)35 m (3)见解析【解析】 (1)汽车沿斜坡滑下时,由牛顿第二定律有 mg sin θ-μmg cos θ=ma 1,sin θ=513,cos θ=1213解得a 1=2 m/s 2(2)汽车到达坡底C 时的速度满足v C 2-v A 2=2a 1x AC ,解得v C =14 m/s 经历时间t 1=v C -v A a 1=1 s汽车刚运动到C 点时,行人相对于C 点的位移大小 x C =x CE +v 人t 1=35 m(3)汽车在水平冰雪路面上时,由牛顿第二定律得,汽车的加速度大小为μmg =ma 2 汽车在水平路面上减速至v =v 人=2 m/s 时滑动的位移x 1=v C 2-v 22a 2=48 m经历的时间t 2=v C -va 2=6 s人发生的位移x 2=v 人(t 1+t 2)=14 m 因x 1-x 2=34 m>33 m ,故行人有危险.物理计算题强化训练02 力和曲线运动1.【答案】(1)v 1≤1.5 m/s(2)8【解析】 (1)显然v 1不能太大,考虑临界状况(落在尖角处) 据h 1=12gt 1 2=a ,解得t 1=0.2 s则v 1≤bt 1=1.5 m/s(2)构造由题图中尖角所成的斜面,建立坐标系 水平向右为x 轴:x =v 2t 竖直向下为y 轴:y =12gt 2又y x =tan θ=a b联立解得t =815sh =12gt 2≈1.42 m 分析知,玻璃弹子将落在第8级台阶上. 2.【答案】(1)1 m/s 2(2)2 m/s 2 s (3)0.2 m/s【解析】 (1)设小球在平台上运动的加速度大小为a , 则a =kmg m,代入数据得a =1 m/s 2.(2)小球到达O 点的速度恰为零时,小球在A 点的出射速度最小,设小球的最小出射速度为v 1,由0-v 21=-2ax ,得v 1=2 m/s由0=v 1-at ,得t =2 s.(3)设小球落到P 点,在O 点抛出时的速度为v 0, 水平方向有:d =v 0t 1 竖直方向有:h =12gt 21联立解得v 0=0.2 m/s. 3.【答案】(1)10 3 m/s(2)1.0×105 N【解析】 如图甲所示,汽车驶至凹形桥面的底部时,所受合力向上,此时车对桥面的压力最大;如图乙所示,汽车驶至凸形桥面的顶部时,合力向下,此时车对桥面的压力最小.(1)汽车在凹形桥面的底部时,由牛顿第三定律可知, 桥面对汽车的支持力F N1=3.0×105 N , 根据牛顿第二定律 F N1-mg =m v 2r解得v =10 3 m/s.当汽车以10 3 m/s 的速率经过凸形桥顶部时,因10 3 m/s <gr =10 6 m/s ,故在凸形桥最高点上不会脱离桥面,所以最大速度为10 3 m/s. (2)汽车在凸形桥顶部时,由牛顿第二定律得 mg -F N2=m v 2r解得F N2=1.0×105 N.由牛顿第三定律得,在凸形桥顶部汽车对桥面的压力为1.0×105 N ,即为最小压力. 4.【答案】(1)2Rg(2)18πgR (3)(1+π264)mg ,方向竖直向下【解析】 (1)由运动学公式有2R =12gt 2解得t =2R g(2)s =14πR ,由v =s t 得v =18πgR(3)设最低点处地板对乙同学的支持力为F N ′,由牛顿第二定律得F N ′-mg =m v 2R则F N ′=(1+π264)mg由牛顿第三定律得F N =(1+π264)mg ,方向竖直向下.5.【答案】(1)5.6 s(2)3.25 m/s【解析】 (1)选手离开平台做平抛运动,则:H =12gt 12解得t 1=2Hg=0.6 s x 1=v 0t 1=1.8 m选手在传送带上做匀加速直线运动,则: L 0-(x 1-s 0)=12at 2 2解得t 2=4.5 s总时间t =t 1+t 2+Δt =5.6 s(2)选手以水平速度v 1跃出落到传送带上,先向左匀速运动后再向左匀减速运动,刚好不从传送带上掉下时水平速度v 1最小,则: v 1t 1-s 0=v Δt +v 22a解得:v 1=3.25 m/s. 6.【答案】(1)3 m/s(2)1.2 m (3)2.4 s【解析】 (1)由题意可知,小球落到斜面顶端并刚好沿斜面下滑,说明此时小球速度方向与斜面平行,如图所示,v y =v 0tan 53°,v y 2=2gh代入数据得v y =4 m/s ,v 0=3 m/s. (2)由v y =gt 1得t 1=0.4 s x =v 0t 1=3×0.4 m =1.2 m(3)小球沿斜面做匀加速直线运动的加速度 a =mg sin 53°m =8 m/s 2在斜面顶端时的速度v =v 0 2+v y 2=5 m/sH sin 53°=v t 2+12at 22代入数据,解得t 2=2 s 或t 2′=-134 s(舍去)所以t =t 1+t 2=2.4 s. 7.【答案】(1)3 rad/s 9 m/s 2(2)1.05 s(3)0.4 s 5 m/s【解析】 (1)小球在半圆形轨道中做匀速圆周运动,角速度为:ω=v 0R =31rad/s =3 rad/s向心加速度为:a n =v 0 2R =321 m/s 2=9 m/s 2(2)小球从A 到B 的时间为:t =πR v 0=3.14×13 s ≈1.05 s.(3)小球水平抛出后,在竖直方向做自由落体运动, 根据h =12gt 1 2得:t 1=2h g= 2×0.810s =0.4 s 落地时竖直方向的速度为:v y =gt 1=10×0.4 m/s =4 m/s , 落地时的速度大小为:v =v 0 2+v y 2=9+16 m/s =5 m/s.8.【答案】(1)45°(2)100 N(3)4 m/s 0.3 m【解析】 (1)根据题意,C 点到地面高度h C =R -R cos 37°=0.08 m ,从B 点到C 点,滑块做平抛运动,根据平抛运动规律: h -h C =12gt 2,则t =0.3 s飞到C 点时竖直方向的速度v y =gt =3 m/s , 因此tan γ=v yv B=1即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 段做匀减速直线运动,加速度大小a =F fm =μg根据0-v D 2=-2ax , 联立得v D =4 m/s在圆弧轨道最低处F N -mg =m v D 2R,则F N =100 N ,由牛顿第三定律知滑块对轨道的压力大小为100 N(3)滑块飞出恰好无碰撞地从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨道该处的切线方向,即tan α=v y ′v 0′由于高度没变,所以v y ′=v y =3 m/s ,α=37°, 因此v 0′=4 m/s对应的水平位移为x ′=v 0′t =1.2 m ,所以AB 段缩短的距离应该是Δx AB =x ′-x BC =0.3 m物理计算题强化训练03 动力学方法和能量观点的综合应用1.【答案】(1)5R2μ(2)15gR【解析】 (1)在甲轨道的最高点,由牛顿第二定律可知:mg =m v 122R在乙轨道的最高点,由牛顿第二定律可知:mg =m v 2 2R从甲轨道的最高点到乙轨道的最高点,根据动能定理可得 mg (4R -2R )-μmgl =12m v 2 2-12m v 12联立解得:l =5R2μ(2)从O 点到甲圆的最高点,由动能定理可得: -mg (4R )-μmgl =12m v 1 2-12m v 0 2解得:v 0=15gR . 2.【答案】(1)11.2 J (2)10 N【解析】 (1)小球运动到C 处时, 由牛顿第二定律和牛顿第三定律得:F 1′-mg =m v 12R代入数据解得v 1=5 m/s由A →C ,根据动能定理有E p -μmgx =12m v 1 2解得E p =11.2 J(2)小球从C 到D 过程,由机械能守恒定律得 12m v 1 2=2mgR +12m v 2 2 代入数据解得v 2=3 m/s 由于v 2>gR =2 m/s所以小球在D 处对轨道外壁有压力,由牛顿第二定律得F 2+mg =m v 22R,代入数据解得F 2=10 N根据牛顿第三定律得,小球对轨道的压力大小为10 N.3.【答案】(1)5.2 m/s 2(2)500 J 10 m/s(3)3 m【解析】 (1)运动员沿AB 下滑时,受力情况如图所示F f =μF N =μmg cos θ根据牛顿第二定律有:mg sin θ-μmg cos θ=ma得运动员沿AB 下滑时加速度的大小为:a =g sin θ-μg cos θ=5.2 m/s 2(2)运动员从A 滑到C 的过程中,克服摩擦力做功为:W =μmg cos θ(H -h sin θ)+μmgd =μmg (d +H -h tan θ)=500 J 由动能定理得:mg (H -h )-W =12m v C2 得运动员滑到C 点时速度的大小v C =10 m/s(3)在从C ′点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h ′=12gt 2,t =2h ′g下滑过程中克服摩擦力做功仍为W =500 J根据动能定理得:mg (H -h ′)-W =12m v 2, v =2g (H -h ′)-2W m运动员在水平方向的位移:x =v t =2g (H -h ′)-2W m ·2h ′g =2-h ′2+6h ′=2-(h ′-3)2+9当h ′=3 m 时,水平位移最大.4.【答案】(1)495 N(2)25 J(3)7 050 J(4)见解析【解析】 (1)在C 点时,据牛顿第二定律有Mg -F N C =M v C 2R, 解得:F N C =495 N根据牛顿第三定律,雪橇在C 点时对雪道的压力:F N C ′=F N C =495 N(2)设雪橇在BC 段克服摩擦力做的功为W BC ,从A 到C 对雪橇和游客的整体运用动能定理可得:Pt -Mgh 2-μMg cos θ·h 1sin θ-W BC =12M v C2,解得:W BC =25 J (3)对雪橇和游客的整体从C 到E 运用动能定理可得:Mgh 2-W CE =12M v E 2-12M v C 2 解得从C 到E 克服摩擦力做功:W CE =7 050 J 所以雪橇和游客的整体从C 点运动到E 点过程中损失的机械能:ΔE 损=W CE =7 050 J(4)设D 到E 的水平距离为L ,平滑连接的倾斜直线轨道倾角为α,摩擦力做功:W fl =-μmg cos θ ·L cos θ=-μmgL 曲线轨道上任选极短一段如图所示,将这一小段近似看成倾角为γ的倾斜直线轨道,该段轨道在水平方向上的投影长为Δx ,则摩擦力在该段轨道上做功:W f =-μmg cos γ·Δx cos γ=-μmg Δx ,所以整个曲线轨道摩擦力做功等于每一小段摩擦力做功的累加,即:W f2=-μmg ΣΔx =-μmgL故两轨道的摩擦力做功相同:W fl =W f2=ΔE 损所以雪橇和游客的整体从C 点运动到E 点过程中损失的机械能相同.5.【答案】(1)12.4 N(2)2.4 m(3)4.8 J【解析】 (1)物体从E 到C ,由机械能守恒定律得:mg (h +R )=12m v C2① 在C 点,由牛顿第二定律得:F N -mg =m v C 2R② 联立①②代入数据解得:F N =12.4 N(2)从E →D →C →B →A 过程,由动能定理得W G +W f =0③W G =mg [(h +R cos 37°)-L AB sin 37°]④W f =-μmg cos 37°L AB ⑤联立③④⑤解得斜面长度至少为:L AB =2.4 m.(3)因为mg sin 37°>μmg cos 37°(或μ<tan 37°),所以物体不会停在斜面上,物体最后以C 为中心,B 为一侧最高点沿圆弧轨道做周期性运动.从E 点开始直至稳定,系统因摩擦所产生的热量Q =ΔE p ⑥ΔE p =mg (h +R cos 37°)⑦联立⑥⑦解得Q =4.8 J.6.【答案】(1)5 m/s(2)0.45 m 1.2 m (3)0.4 s【解析】 (1)滑块运动到D 点时,由牛顿第二定律和牛顿第三定律得F N -mg =m v D 2R滑块由C 点运动到D 点的过程,由机械能守恒定律得mgR (1-cos α)+12m v C 2=12m v D2 联立解得v C =5 m/s(2)滑块在C 点时,速度的竖直分量为v y =v C sin α=3 m/sB 、C 两点的高度差为h =v y 22g=0.45 m 滑块由B 运动到C 所用的时间为t y =v y g=0.3 s 滑块运动到B 点时的速度为v B =v C cos α=4 m/sB 、C 两点间的水平距离为x =v B t y =1.2 m(3)滑块由A 点运动到B 点的过程,由动能定理得Pt -μmgL =12m v B 2,解得t =0.4 s 7.(1)0.60 J (2)0.30 m (3)见解析图解析 (1)小球恰好过C 点,其速度v C =0①根据功能关系,每次弹射时弹簧对小球所做的功为:W =mg (L 0+R )=0.60 J ②(2)设小球被弹出时的初速度为v 0,到达C 时的速度为v ,根据动能定理有W =12m v 0 2-0③ 根据机械能守恒定律有12m v 0 2=mg (L +R )+12m v 2④ 联立②③④得v =2g (L 0-L )⑤根据平抛运动规律,小球落至水平面时的位置离细直管AB 的距离为x =v t +R ⑥ 其中t = 2(L +R )g⑦ 联立⑤⑥⑦得x =2(L 0-L )(L +R )+R 根据数学知识可判知,当L =L 0-R 2=0.30 m 时,x 最大. 即当L 取0.30 m 时,小球落至水平面的位置离细直管AB 最远.(3)设小球经过C 端时所受管壁作用力方向向上,根据牛顿运动定律有mg -F N =m v 2R 又v =2g (L 0-L ) 则有F N =2mg R L +mg (1-2L 0R ) 代入数据得F N =103L -2.5 (N)(0.15 m ≤L ≤0.90 m)据此作出所求图线如图:。
绝密★启用前2020年7月浙江省普通高中学业水平考试物理试题本试题卷分选择题和非选择题两部分,共6页,满分70分,考试时间60分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填写在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
3.非选择题的答案必须使用黑色字迹的签字笔或钢笔写在答题纸上相应的区域内,作图时先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑。
4.可能用到的相关参数:重力加速度g 均取10m/s 2。
选择题部分一、选择题(本题共18小题,每小题2分,共36分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)1.下列单位中,属于国际单位制基本单位的是( )A.kgB.m/sC.m/s 2D.J2.万有引力定律表达式为()A.12m m F G r=B.122m m F G r =C.123m m F G r =D.212r F G m m =3.如图所示,一攀岩者单手抓住岩石静止悬在空中,此时该攀岩者受到的作用力有( ) A.重力B.重力、空气阻力C.重力、人对岩石的作用力D.重力、岩石对人的作用力4.如图所示,某地在端午节举行赛龙舟活动,所有龙舟均朝同方向奋力前进。
则()A.以岸为参考系,龙舟是静止的B.以岸为参考系,龙舟是向前运动的C.以某一龙舟为参考系,岸是静止的D.以某一龙舟为参考系,岸是向前运动的5.“杭州西站”至“湖州站”间的高铁工程正在进行中。
铁路线(如图)长约80km ,单程需用时约0.4h 。
其中“80km ”、“0.4h ”分别指( ) A.位移、时刻 B.位移、时间 C.路程、时刻D.路程、时间6.如图所示,撑杆跳高运动员正在跳高。
此时杆对运动员的弹力( )A.方向向下B.方向一定沿杆C.由杆的形变所产生D.由手的形变所产生7.如图所示,悬崖跳水爱好者正在进行跳水训练。
章末小结与测评原子核错误!原子核错误!.几个重要的核反应方程.确定衰变次数的方法→++,-)根据质量数、电荷数守恒得=′+-=′+二式联立求解得α衰变次数,β衰变次数。
[典例] (多选)天然放射性元素)(钍)经过一系列α衰变和β衰变之后,变成)(铅)。
下列判断中正确的是( ).铅核比钍核少个中子.铅核比钍核少个质子.衰变过程中共有次α衰变和次β衰变.衰变过程中共有次α衰变和次β衰变[解析]选钍核)比铅核)多-=个质子,质量数之差为-=,故)比)少-=个中子,对,错;设从)→) 经过了次α衰变和次β衰变,则由质量数守恒和核电荷数守恒,可求出、的值。
衰变方程为:)→)++,-)。
(\\(=+-=++×))解得=,=,即经过次α衰变和次β衰变,选项对,错。
[典例] (多选)下列说法正确的是( ) .α射线与γ射线都是电磁波.原子核发生α衰变后,新核的质量数比原核的质量数减少.原子核内某个中子转化为质子和电子,产生的电子从核内发射出来,这就是β衰变 .放射性元素的原子核数量越多,半衰期就越长[解析]选 γ射线是电磁波,α射线不是电磁波,故选项错误;α衰变是:→+,故选项正确;β衰变所释放的电子是原子核内的中子转化成质子和电子所产生的,故选项正确;半衰期由原子核自身决定,与外界环境及物质形态无关,与放射性元素的原子核数量的多少无关,故选项错误。
[典例] (多选)在下列四个核反应中,表示中子的是哪些?。
在以下核反应中哪些属于原子核的人工转变?。
)+→)+ +→+ +→+ )+→+)+[解析] 在核反应中,不管是什么类型的核反应,都遵守电荷数守恒和质量数守恒,据此,可以判断未知粒子属于什么粒子。
在中,未知粒子的质量数为:+=+,=,其电荷数为:+=+,=,即未知粒子是质子();对,未知粒子的质量数:+=+,=,其电荷数为:+=+,=,所以是中子();对,未知粒子的质量数为:+=+,=,电荷数为:+=+,=,也是中子();对,未知粒子质量数为+=++,=,电荷数为:+=++,=,也是中子(),故核反应是中子的核反应为、、。