六年级奥数40第27讲 表面积与体积(一)
- 格式:doc
- 大小:173.00 KB
- 文档页数:10
六年级奥数1,1表面积与体积(tǐjī)六年级奥数1,1专题(zhuāntí)简析;小学阶段(jiēduàn)所学的立体图形主要有四种长方体·正方体·圆柱体和圆锥体。
从平面图形(túxíng)到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数·形”结合(jiéhé)的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点;(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
例1,从一个棱长为10里面的正方体上挖去一个长10厘米·宽2厘米·高2厘米的小长方体,剩下部分的表面积是多少?〔思路导航〕这是一道开放题,方法有多种;1)沿一条棱挖,剩下部分的表面积为592平方厘米。
2)在某个面挖,剩下部分的表面积为632平方厘米。
3)挖通某两个对面,剩下部分的表面积为672平方厘米。
练习1,1,把一个长为12分米·宽为6分米·高为9分米的长方体木块锯成两个相同的小长方体木块,这两个小长方体的表面积之和比原来长方体的表面积增加了多少平方米?2,在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面机会发生怎样的变化?例2,把19个棱长为3厘米的正方体重叠起来,拼成一个立体图形(t úx íng),求这个立体图形的表面积。
〔思路(s īl ù)导航〕要求(y āoqi ú)这个复杂形体的表面积,必须从整体入手,从上·左·前三个方向(f āngxi àng)观察,每个方向上的小正方体各面就组合成了如下图形。
小学六年级奥数体积部分的计算 (4页)小学六年级奥数体积部分的计算简介本文档将介绍小学六年级奥数中关于体积计算的相关内容。
体积是描述一个物体的三维空间占据情况的属性,对于几何学和解决实际问题非常重要。
相关概念在研究体积计算之前,我们需要了解几个关键概念:体积:物体所占据的三维空间大小。
长方体:具有长、宽、高三个直角边的立方体。
正方体:具有相等边长的立方体。
平行四边形棱柱:底部和顶部为平行四边形,侧面为平行四边形的柱状物体。
计算方法长方体的体积计算长方体的体积计算公式为:体积 = 长 ×宽 ×高其中,长方体的长、宽、高分别为边长的数值。
正方体的体积计算正方体的体积计算公式为:体积 = 边长 ×边长 ×边长其中,正方体的边长为一个边的长度的数值。
平行四边形棱柱的体积计算平行四边形棱柱的体积计算公式为:体积 = 底面积 ×高其中,底面积为底部平行四边形的面积,高为平行四边形棱柱的高度。
示例题目题目1:某个长方体的长为5cm、宽为3cm、高为2cm,求其体积。
编写解答根据长方体的体积计算公式:体积 = 5cm × 3cm × 2cm = 30cm³所以,该长方体的体积为30立方厘米。
题目2:某个正方体的边长为7cm,求其体积。
编写解答根据正方体的体积计算公式:体积 = 7cm × 7cm × 7cm = 343cm³所以,该正方体的体积为343立方厘米。
题目3:某个平行四边形棱柱的底面积为15cm²,高为10cm,求其体积。
编写解答根据平行四边形棱柱的体积计算公式:体积 = 15cm² × 10cm = 150cm³所以,该平行四边形棱柱的体积为150立方厘米。
总结本文介绍了小学六年级奥数中关于体积计算的基本知识和计算方法。
掌握这些知识和方法,能够帮助学生正确计算和理解各种形状物体的体积,为解决实际问题奠定基础。
六年级分册表面积与体积(一)周27第专题简析:小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:的面积都相等,每个面都是正方形的特点。
)充分利用正方体六个面1(把两个立体图形粘合到一起,反之,新增加的表面积等于切面面积的两倍。
把一个立体图形切成两部分,)2(减少的表面积等于粘合面积的两倍。
)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个3(表面积最小的长方体,应把它们最大的面拼合起来。
厘米的小长方体,2厘米、高2厘米、宽10厘米的正方体木块上挖去一个长10从一个棱长:1例题这是一道开放题,方法有多种:剩下部分的表面积是多少?平方厘米。
592所示,沿着一条棱挖,剩下部分的表面积为27-1按图①??27--1图 632所示,在某个面挖,剩下部分的表面积为27-2②按图平方厘米。
27--2图平方厘米。
672所示,挖通某两个对面,剩下部分的表面积为27-3③按图27--3图年级分册:1练习厘米的小正方体,2厘米的长方体木块上挖去一个棱长5厘米、高6厘米、宽10一个长从、1 剩下部分的表面积是多少?分米的长方体木块锯成两个想同的小厂房体木块,9高为分米,6宽为分米,12一个长为把、2 这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?表面积会发生怎样变化?厘米的小正方体,1厘米的立方体上挖一个棱长是4在一个棱长是、3 求这个立体所示,拼成一个立体图形,27-4如图厘米的正方体重叠起来,3个棱长为19把:2例题图形的表面积。
要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形(如图。
表面积与体积练习和答案专题简析:小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
例1.从一个棱长为10里面的正方体上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?【思路导航】这是一道开放题,方法有多种:1)沿一条棱挖,剩下部分的表面积为592平方厘米。
2)在某个面挖,剩下部分的表面积为632平方厘米。
3)挖通某两个对面,剩下部分的表面积为672平方厘米。
练习1.1.把一个长为12分米、宽为6分米、高为9分米的长方体木块锯成两个相同的小长方体木块,这两个小长方体的表面积之和比原来长方体的表面积增加了多少平方米?2.在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面机会发生怎样的变化?例2.把19个棱长为3厘米的正方体重叠起来,拼成一个立体图形,求这个立体图形的表面积。
【思路导航】要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形。
练习2:1、用棱长是1厘米的立方体拼成图27-6所示的立体图形。
求这个立体图形的表面积。
2、一堆积木(如图27-7所示),是由16块棱长是2厘米的小正方体堆成的。
(六年级)备课教员:第十二讲表面积与体积一、教学目标:知识目标1.进一步理解表面积和体积的含义,掌握常见几何体的表面积的计算方法;能力目标1.进一步加深对相关体积单位实际大小的认识,发展学生的空间观念。
2.在解决问题的过程中,发展学生灵活地应用相关数学知识和方法的能力。
情感目标1.进一步感受数学知识和方法的应用价值,激发学习数学的兴趣。
2.进一步感受数学与生活的密切联系,体会学习数学的重要性。
二、教学重点:进一步加深对相关体积单位实际大小的认识,发展学生的空间观念。
三、教学难点:掌握常见几何体的表面积的计算方法;四、教学准备:PPT、长方形硬纸片、圆形纸片各一张五、教学过程:第一课时(50分钟)一、导入(5分)【设计意图:通过实验观察,让学生深入地意识到体积基础公式是底面积×高,提高学生的空间想象力】师:老师手中有两张纸片,看纸片上贴的是什么?生:红包。
师:你们想要红包吗?每个红包里面的东西都不一样哦。
生:想要。
师:红包不是你们想要就能要。
想获得红包就得经过老师的考验。
这里2张长方形的纸片,老师想看到一个圆柱体和一个长方体?哪位同学告诉老师怎么办?上来操作给老师看看。
生:……(长方形纸片快速地上下平移,我们可以看到一个长方体,圆形纸片水平的快速地上下平移我们可以看到一个圆柱体。
)师:这两位同学想象力非常棒,这两个红包就给这两位优秀的同学,看看里面是什么?生:……师:唉,老师再问问你们,拿着长方形这张纸上移,到这个点高度停止,它运动的轨迹是不是这一段,就是它形成的长方体的高?圆形纸片呢?(不断地平移,加强学生的空间观念)生:……师:不错,那这个形成的长方体和圆柱体底面积是不是就是纸片的面积?生:是的。
师:好像立体图形和平面图形也是有些联系的哦,那我们进一步了解立体图形的奥妙吧。
【探究新知,引入新课:学生已经学习过了小学所有的立体图形,长方体、正方体、圆柱、圆锥,本堂主要是对该知识点进行整理和巩固,并应用到实际解决问题中】【板书课题:表面积与体积】二、探索发现授课(40分)(一)例题1:(10分)一个棱长为20厘米的正方体木块,从它的上方挖去一个半径为5厘米,高10厘米的圆柱形木块,这个木块剩下部分的表面积是多少?讲解重点:回顾和整理正方体、圆柱体概念和表面积计算公式,及了解圆柱体表面积推导过程。
表面积与体积六年级奥数1.1专题简析:小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
例1.从一个棱长为10里面的正方体上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?【思路导航】这是一道开放题,方法有多种:1)沿一条棱挖,剩下部分的表面积为592平方厘米。
2)在某个面挖,剩下部分的表面积为632平方厘米。
3)挖通某两个对面,剩下部分的表面积为672平方厘米。
练习1.1.把一个长为12分米、宽为6分米、高为9分米的长方体木块锯成两个相同的小长方体木块,这两个小长方体的表面积之和比原来长方体的表面积增加了多少平方米?2.在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面机会发生怎样的变化?例2.把19个棱长为3厘米的正方体重叠起来,拼成一个立体图形,求这个立体图形的表面积。
【思路导航】要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形。
练习2:1、用棱长是1厘米的立方体拼成图27-6所示的立体图形。
求这个立体图形的表面积。
图27—62、一堆积木(如图27-7所示),是由16块棱长是2厘米的小正方体堆成的。
表面积与体积(一)F27-1提示小学阶段所学的立体图形主要有四种:长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
举例1从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽1厘米、高2厘米的小长方体,剩下部分的表面积是多少?【创造力思维】这是一道开放题,方法有多种:①按图1所示,沿一条棱挖,剩下部分的表面积为592平方厘米。
②按图2所示,在某个面挖,剩下部分的表面积为632平方厘米。
③按图3所示,挖通某两个对面,剩下部分的表面积为672平方厘米。
(1)(2)(3)快练11.从一个长10厘米、宽6厘米、高5厘米的长方体木块上挖去一个棱长2厘米的小正方体,剩下部分的表面积是多少?2.把一个长为12分米,宽为6分米,高为9分米的长方体木块锯成两个相同的小长方体木块,这两个小长方体的表面积之和,比原来长方体的表面积增加了多少平方分米?3.在一个棱长是4厘米的立方体上挖一个棱长是1厘米的小正方体后,表面积会发生怎样的变化?举例2把19个棱长为3厘米的正方体重叠起来,如图1所示,拼成一个立体图形,求这个立体图形的表面积。
从上往下看从左往右看从前往后看图1 图2【创造力思维】要求这个复杂形体的表面积,必须从整体入手,从上、左、前三个方向观察,每个方向上的小正方体各面就组合成了如下图形(如图2)而从另外三个方向上看到的面积与以上三个方向的面积是相等的。
表面积与体积(一)1.掌握基本几何图形的特征和有关计算方法;2.能将公式做适当变形,计算表面积和体积时,养成“数与形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
1.掌握立体图形的特征,能通过分析图形的特征解题。
2.灵活运用公式解题。
一、基本立体图形表面积、体积计算公式立体图形表面积体积266aaaS=⨯⨯=正方体3aaaaV=⨯⨯=)(2hbabahS++=长方体abhV=长方体圆柱hr222π2πS rh r=+=+圆柱侧面积个底面积2πV r h=圆柱圆锥hr22ππ360nS l r=+=+圆锥侧面积底面积注:l是母线,即从顶点到底面圆上的线段长21π3V r h=圆锥体二、在解答立体图形的表面积问题时,要注意以下几点:(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
aah b(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
三、解答立体图形的体积问题时,要注意以下几点:(1)物体沉入水中,水面上升部分的体积等于物体的体积。
把物体从水中取出,水面下降部分的体积等于物体的体积。
这是物体全部浸没在水中的情况。
如果物体不全部浸在水中,那么派开水的体积就等于浸在水中的那部分物体的体积。
(2)把一种形状的物体变为另一种形状的物体后,形状变了,但它的体积保持不变。
(3)求一些不规则形体体积时,可以通过变形的方法求体积。
(4)求与体积相关的最大、最小值时,要大胆想象,多思考、多尝试,防止思维定式。
“挖”去一部分,计算表面积“挖”去一部分指的是从一个大的物体(一般为正方体,长方体或者圆柱)上挖出一个或者多个小的物体,从而计算剩余物体的表面积。
“挖”出物体后,剩余物体的表面积计算方法:原本物体的表面积+“挖”出物体的表面积-重复部分的表面积。
六年级数学奥数培训资料- 1 -第1讲 定义新运算 第2讲 简便运算(一) 第3讲 简便运算(二) 第4讲 简便运算(三) 第5讲 简便运算(四) 第6讲 转化单位“1”(一) 第7讲 转化单位“1”(二) 第8讲 转化单位“1”(三) 第9讲 设数法解题 第10讲 假设法解题(一) 第11讲 假设法解题(二) 第12讲 倒推法解题 第13讲 代数法解题 第14讲 比的应用(一) 第15讲 比的应用(二) 第16讲 用“组合法”解工程问题 第17讲 浓度问题 第18讲 面积计算(一) 第19讲 面积计算(二) 第20讲 面积计算目录第21讲 抓“不变量”解题 第22讲 特殊工程问题 第23讲 周期工程问题 第24讲 比较大小 第25讲 最大最小问题 第26讲 加法、乘法原理 第27讲 表面积与体积(一) 第28讲 表面积与体积(二) 第29讲 抽屉原理(一) 第30讲 抽屉原理(二) 第31讲 逻辑推理(一) 第32讲 逻辑推理(二) 第33讲 行程问题(一) 第34讲 行程问题(二) 第35讲 行程问题(三) 第36讲 流水行船问题 第37讲 对策问题 第38讲 应用同余问题 第39讲 “牛吃草”问题 第40讲 不定方程六年级数学奥数培训资料 姓名:__________________- 2 -第1讲 定义新运算一、知识要点定义新运算是指运用某种特殊符号来表示特定的意义,从而解答某些算式的一种运算。
解答定义新运算,关键是要正确地理解新定义的算式含义,然后严格按照新定义的计算程序,将数值代入,转化为常规的四则运算算式进行计算。
定义新运算是一种人为的、临时性的运算形式,它使用的是一些特殊的运算符号,如:*、△、⊙等,这是与四则运算中的“+、-、×、÷”不同的。
新定义的算式中有括号的,要先算括号里面的。
但它在没有转化前,是不适合于各种运算定律的。
二、精讲精练【例题1】假设a*b=(a+b)+(a-b),求13*5和13*(5*4)。
第27讲表面积与体积(一)
一、知识要点
小学阶段所学的立体图形主要有四种长方体、正方体、圆柱体和圆锥体。
从平面图形到立体图形是认识上的一个飞跃,需要有更高水平的空间想象能力。
因此,要牢固掌握这些几何图形的特征和有关的计算方法,能将公式作适当的变形,养成“数、形”结合的好习惯,解题时要认真细致观察,合理大胆想象,正确灵活地计算。
在解答立体图形的表面积问题时,要注意以下几点:
(1)充分利用正方体六个面的面积都相等,每个面都是正方形的特点。
(2)把一个立体图形切成两部分,新增加的表面积等于切面面积的两倍。
反之,把两个立体图形粘合到一起,减少的表面积等于粘合面积的两倍。
(3)若把几个长方体拼成一个表面积最大的长方体,应把它们最小的面拼合起来。
若把几个长方体拼成一个表面积最小的长方体,应把它们最大的面拼合起来。
二、精讲精练
【例题1】从一个棱长10厘米的正方体木块上挖去一个长10厘米、宽2厘米、高2厘米的小长方体,剩下部分的表面积是多少?
这是一道开放题,方法有多种:
①按图27-1所示,沿着一条棱挖,剩下部分的表面积为592平方厘米。
图27--1
②按图27-2所示,在某个面挖,剩下部分的表面积为632平方厘米。
图27--2
1。