函数练习题
- 格式:docx
- 大小:71.11 KB
- 文档页数:3
函数练习题及答案函数练习题及答案函数作为数学中的重要概念,被广泛应用于各个领域。
在数学学习过程中,通过练习题的形式巩固和提高对函数的理解和运用能力是非常有效的方法。
本文将介绍一些常见的函数练习题及其答案,希望能对读者的数学学习有所帮助。
一、函数定义与性质题1. 已知函数f(x) = 2x + 3,求f(4)的值。
解答:将x = 4代入函数表达式中,得到f(4) = 2(4) + 3 = 11。
2. 函数f(x) = x^2 + 2x - 1的定义域是什么?解答:由于函数中存在x的平方项,所以定义域应满足x^2存在的条件,即实数集R。
3. 函数f(x) = 3x^2 - 4x + 1的图像是否对称于y轴?解答:对称于y轴的函数满足f(x) = f(-x)。
将函数中的x替换为-x,得到f(-x) = 3(-x)^2 - 4(-x) + 1 = 3x^2 + 4x + 1。
由于f(x) ≠ f(-x),所以函数的图像不对称于y轴。
二、函数图像与方程题1. 函数f(x) = x^3的图像在坐标系中的形状是什么?解答:函数f(x) = x^3是一个奇函数,其图像关于原点对称。
当x > 0时,f(x) > 0;当x < 0时,f(x) < 0。
因此,函数图像在坐标系中呈现出一种类似"S"形的形状。
2. 已知函数f(x) = x^2 - 4x + 3,求解方程f(x) = 0。
解答:将f(x)置为0,得到x^2 - 4x + 3 = 0。
通过因式分解或者求根公式,可以得到(x - 1)(x - 3) = 0,解得x = 1或x = 3。
三、函数与导数题1. 已知函数f(x) = x^3 - 2x^2 + x,求f'(x)。
解答:对函数f(x)进行求导,得到f'(x) = 3x^2 - 4x + 1。
2. 已知函数f(x) = e^x,求f''(x)。
函数最值练习题一、选择题1. 函数f(x)=x^3-3x^2+2x的最大值出现在哪个点?A. x=1B. x=2C. x=3D. x=42. 已知函数g(x)=-2x^2+6x+1,其最小值是多少?A. -1B. 1C. 3D. 53. 函数h(x)=x^2+4x+7在区间[-5, 0]上的最大值和最小值分别是多少?A. 最大值:16,最小值:7B. 最大值:16,最小值:12C. 最大值:12,最小值:7D. 最大值:12,最小值:164. 函数k(x)=4-x^2的最大值出现在x的哪个取值范围内?A. x<0B. 0≤x≤2C. x>2D. x≤0或x≥25. 函数p(x)=-x^3+3x^2+9x+5在x=1处的导数是多少?A. 6B. 10C. 14D. 18二、填空题6. 函数f(x)=x^4-4x^3+4x^2+6x+1在x=______处取得最小值,最小值为______。
7. 函数g(x)=-3x^2+12x-5在x=______处取得最大值,最大值为______。
8. 函数h(x)=x^3-6x^2+11x-6在区间[1,3]上的最大值是______,最小值是______。
9. 函数k(x)=-x^4+4x^3-3x^2-2x+8在x=______处取得最大值,最大值为______。
10. 函数p(x)=x^5-5x^4+10x^3-10x^2+5x+1在x=______处取得最小值,最小值为______。
三、解答题11. 给定函数f(x)=x^2-2ax+a^2-4,求a的取值范围,使得f(x)在x=a处取得最小值。
12. 已知函数g(x)=x^3-3x^2-9x+5,求g(x)的极值点及对应的极值。
13. 函数h(x)=-x^4+2x^3+2x^2-4x+3在区间[-2,2]上的最大值和最小值分别是多少?请给出详细的求解过程。
14. 函数k(x)=x^3-9x^2+24x+8在x=4处的导数是多少?请证明在x=4处k(x)取得极小值。
函数定义域练习题一、选择题1. 函数f(x) = 1/x的定义域是:A. (-∞, 0) ∪ (0, +∞)B. RC. [0, +∞)D. (-∞, 0) ∪ [1, +∞)2. 若函数f(x) = √(x - 1)的定义域是:A. (-∞, 1]B. [1, +∞)C. (-∞, 1)D. (1, +∞)3. 函数g(x) = log(2x + 3)的定义域是:A. (-∞, -3/2)B. (-3/2, +∞)C. (-∞, -1/2)D. [0, +∞)4. 函数h(x) = 2^(-x)的定义域是:A. (-∞, 0)B. RC. (0, +∞)D. [1, +∞)5. 函数p(x) = sin(πx)的定义域是:A. RB. (-∞, 0) ∪ (0, +∞)C. (-∞, 1) ∪ (1, +∞)D. [0, 1]二、填空题6. 函数f(x) = 1/√(1 - x^2)的定义域是_________。
7. 若函数y = √(4 - x) + 1,则x的取值范围是_________。
8. 函数y = log(1 - 2x)的定义域是_________。
9. 函数y = 1/(3x - 1)的定义域是_________。
10. 函数y = cos(2x)的定义域是_________。
三、解答题11. 已知函数f(x) = √(4 - x) - 1,请求解其定义域,并说明理由。
12. 函数g(x) = log(-x^2 + 5x - 4)的定义域是什么?请给出详细的求解过程。
13. 给定函数h(x) = 1/(1 - x^2),求其定义域,并解释为什么x不能等于1或-1。
14. 函数p(x) = √(-x^2 + 4x)的定义域是什么?请证明你的结论。
15. 函数y = log(2 - x)的定义域如何确定?请列出所有可能的x值。
四、综合题16. 已知函数f(x) = log(3x - 1) / (x^2 - 4),求其定义域,并解释为什么x不能取-2和2。
函数概念练习题训练一、选择题1.函数的定义是()。
A.一一对应的关系B.随机的关系C.多对多的关系D.一对多的关系2.下列哪个不是函数?A. y = 2x + 3B. y² = xC. y = √(x + 2)D. y = |x|3.设函数 f(x) = x² + 3x,则 f(2) 的值为()。
A. -1B. 5C. 4D. 74.已知函数 f(x) = 2x + 1,则 f(-3) 的值为()。
A. -5B. 2C. -4D. -75.设函数 f(x) = 3x - 2,则 f(0) 的值为()。
A. -2B. 3C. -5D. 0二、计算题1. 设函数 f(x) = 2x - 1,计算 f(3) 的值。
解:将 x 代入函数 f(x) 的表达式中得 f(3) = 2(3) - 1 = 6 - 1 = 5。
2. 设函数 f(x) = x² + 2x,计算 f(-1) 的值。
解:将 x 代入函数 f(x) 的表达式中得 f(-1) = (-1)² + 2(-1) = 1 - 2 = -1。
3. 已知函数 f(x) = x³ - 2x,计算 f(2) 的值。
解:将 x 代入函数 f(x) 的表达式中得 f(2) = 2³ - 2(2) = 8 - 4 = 4。
4. 设函数f(x) = √x - 1,计算 f(4) 的值。
解:将 x 代入函数 f(x) 的表达式中得f(4) = √4 - 1 = 2 - 1 = 1。
5. 设函数 f(x) = |x - 3|,计算 f(-2) 的值。
解:将 x 代入函数 f(x) 的表达式中得 f(-2) = |-2 - 3| = |-5| = 5。
三、应用题1. 一辆汽车在行驶时,已知速度和时间的关系可以用函数表示。
若该汽车以每小时80公里的速度行驶,求3小时后汽车行驶的距离。
解:设函数 f(t) 表示汽车行驶的距离,其中 t 表示时间(小时)。
函数基础练习(题型大全)含答案一、选择题(本大题共17小题,共85.0分) 1. 函数f(x)=1lg(x+1)+√2−x 的定义域为( )A. (−1,0)∪(0,2]B. [−2,0)∪(0,2]C. [−2,2]D. (−1,2]2. 若函数f(x)={−x 13,x ≤−1x +2x −7,x >−1,则f[f(−8)]=( ) A. −2 B. 2 C. −4 D. 4 3. 函数f(x)=ln(x 2−2x −8)的单调递增区间是( )A. (−∞,−2)B. (−∞,−1)C. (1,+∞)D. (4,+∞)4. 设,,c =30.7,则a ,b ,c 的大小关系是( )A. a <b <cB. c <b <aC. b <c <aD. b <a <c 5. 在下列区间中,函数f(x)=e x +4x −3的零点所在的区间为( )A. (−2,−1)B. (−1,0)C. (0,12)D. (12,1)6. 已知函数f(x)=cosx e x,则函数f(x)的图象在点(0,f(0))处的切线方程为( )A. x +y +1=0B. x +y −1=0C. x −y +1=0D. x −y −1=07. 已知函数y ={x 2+1(x ⩽0)2x(x >0),若f(a)=10,则a 的值是( )A. 3或−3B. −3或5C. −3D. 3或−3或58. 若函数,且满足对任意的实数x 1≠x 2都有成立,则实数a 的取值范围是( ) A. (1,+∞) B. (1,8) C. (4,8) D. [4,8)9. 定义在R 上的奇函数f(x)满足f(x +2)=−1f(x),且在(0,1)上f(x)=3x ,则f(log 354)=( )A. 32B. 23C. −32D. −2310. 函数y =2x 2−e |x|在[−2,2]的图象大致为( )A.B.C.D.11. 设函数f(x)=ln(1+|x|)−11+x 2,则使得f(x)>f(2x −1)成立的x 的取值范围是( )A.B. (13,1) C. (−13,13)D.12. 若函数f(x)=lnx +ax +1x 在[1,+∞)上是单调函数,则a 的取值范围是( )A. (−∞,0]∪[14,+∞)B. (−∞,−14]∪[0,+∞)C. [−14,0]D. (−∞,1]13. 已知函数f(x)=ln(√1+x 2−x)+2,则f(lg5)+f(lg 15)=( )A. 4B. 0C. 1D. 214. 已知函数f(x)={14x +1,x ≤1lnx,x >1,则方程f(x)=ax 恰有两个不同的实数根时,实数a 的取值范围是( )A. (0,1e )B. [14,1e )C. (0,14]D. (14,e)15. 已知函数f(x)(x ∈R)满足f(−x)=2−f(x),若函数y =x+1x与y =f(x)图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则 ∑(x i +y i )=( )m i=1 A. 0B. mC. 2mD. 4m 16. 设函数f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e2的最大值为M ,最小值为N ,则(M +N -1)2019的值为( ) A.1 B.2 C.22019 D.3201917. 已知函数f (x )的导函数为f ′(x ),若2f (x )+f ′(x )>2,f (0)=5,则不等式f (x )-4e-2x>1的解集为( )A.(1,+∞)B.(-∞,0)C.(-∞,0)∪(1,+∞) D .(0,+∞)二、填空题(本大题共5小题,共25.0分)18. 函数y =log a (2x −3)+8的图象恒过定点P ,P 在幂函数f(x)的图象上,则f(4)= ______. 19. 求曲线f (x )=x 3−3x 2+2x 过原点的切线方程__________. 20. ∫(√1−x 2+x)dx =10________.21. 设函数f(x)={x +1,x ≤02x ,x >0,则满足f(x)+f(x −12)>1的x 的取值范围是______.22. 函数f(x)=lgx 2+1|x|(x ≠0,x ∈R),有下列命题:①f(x)的图象关于y 轴对称;②f(x)的最小值是2;③f(x)在(−∞,0)上是减函数,在(0,+∞)上是增函数; ④f(x)没有最大值.其中正确命题的序号是______ .(请填上所有正确命题的序号) 三、解答题(本大题共5小题,共60.0分)23. 已知函数f(x)=13x 3+ax 2+6x −1.当x =2时,函数f(x)取得极值. (I)求实数a 的值;(II)若1≤x ≤3时,方程f(x)+m =0有两个根,求实数m 的取值范围. 24. 设函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,(Ⅰ)讨论函数f(x)极值点的个数,并说明理由; (Ⅱ)若∀x >0,f(x)≥0成立,求a 的取值范围.25.已知函数f(x)=x2−x,g(x)=e x−ax−1(e为自然对数的底数).(1)讨论函数g(x)的单调性;(2)当x>0时,f(x)≤g(x)恒成立,求实数a的取值范围.26.已知函数.(1)讨论函数f(x)的单调性;(2)若a=1,若f(x)有两个零点,求证:.27.已知函数f(x)=(x+1)lnx−ax+2.(1)当a=1时,求在x=1处的切线方程;(2)当a=2时求证:,n∈N∗.答案和解析1.【答案】A【解析】【分析】本题考查了函数的定义域,考查学生的计算能力,属于基础题. 由题意列出不等式组:{x +1>0x +1≠12−x ≥0,解出即可求解.【解答】解:由题意得:{x +1>0x +1≠12−x ≥0,解得−1<x ≤2且x ≠0, ∴函数的定义域为(−1,0)∪(0,2].故选A . 2.【答案】C【解析】【分析】本题主要考查了分段函数,考查了函数的定义域与值域.属于基础题, 利用分段函数函数值的计算得结论. 【解答】解:∵函数f(x)={−x 13,x ≤−1x +2x−7,x >−1, 又∵−8<−1,∴f(−8)=−(−8)13=2, ∵2>−1,∴f[f(−8)]=f(2)=2+22−7=−4.故选C . 3.【答案】D【解析】【分析】本题主要考查复合函数的单调性及对数函数的图象和性质,属于基础题.由x 2−2x −8>0得:x <−2或x >4,令t =x 2−2x −8,结合复合函数单调性“同增异减”的原则,可得答案. 【解答】解:由x 2−2x −8>0得:x <−2或x >4, 即f(x)的定义域为{x|x <−2或x >4}, 令t =x 2−2x −8,y =lnt 在t ∈(0,+∞)内单调递增,而x ∈(−∞,−2)时,t =x 2−2x −8为减函数,x ∈(4,+∞)时,t =x 2−2x −8为增函数, 故函数f(x)=ln(x 2−2x −8)的单调递增区间是(4,+∞). 故选D . 4.【答案】D【解析】【分析】本题考查指数函数、对数函数的单调性的应用,属于基础题.利用指数函数及对数函数的性质,借助中间量0或1即可求解. 【解答】解:0=log 71<a =log 73<log 77=1, b =log 137<log 131=0,c =30.7>30=1, ∴b <a <c . 故选D . 5.【答案】C【解析】【分析】本题考查函数零点存在性定理,属于基础题.若函数f(x)在[a,b]上是连续的,如果函数f(x)满足f(a)·f(b)<0,则f(x)在(a,b)上至少存在一个零点. 【解答】解:∵函数f(x)=e x +4x −3在上连续, 且f(0)=e 0−3=−2<0,f(12)=√e +2−3=√e −1=e 12−e 0>0,∴f(0)·f(12)<0,∴函数f(x)=e x +4x −3的零点所在的区间为(0,12).故选C . 6.【答案】B【解析】【分析】本题考查了基本函数导数公式,导数的四则运算,导数的几何意义,求已知切点的切线方程的方法,属基础题. 先求函数的导函数f′(x),再求所求切线的斜率即f′(0),由于切点为(0,1),故由点斜式即可得所求切线的方程. 【解答】 解:∵f(x)=cosx e x, ∴f′(x)=−sinx−cosxe ,∴f′(0)=−1,f(0)=1,即函数f(x)图象在点(0,1)处的切线斜率为−1, ∴图象在点(0,f(0))处的切线方程为y =−x +1, 即x +y −1=0. 故选B . 7.【答案】B【解析】【分析】本题考查了由分段函数的函数值求参数,解题的关键是确定f(a)的表达式,考查了运算求解能力和分类讨论思想,属于基础题.结合题意,需要对a 进行分类讨论,若a ≤0,则f(a)=1+a 2;若a >0,则f(a)=2a ,从而可求a . 【解答】解:由题意,函数y ={x 2+1(x ⩽0)2x(x >0), f(a)=10,若a ≤0,则f(a)=a 2+1=10,解得a =−3或a =3(舍去); 若a >0,则f(a)=2a =10, ∴a =5,综上可得,a =5或a =−3. 故选B .8.【答案】D【解析】【分析】本题考查的知识点是分段函数的应用,正确理解分段函数的单调性,是解答的关键,属于中档题. 根据函数单调性的定义,由f(x 1)−f(x 2)x 1−x 2>0恒成立,得到f(x)单调递增,则分段f(x)在各段上都是递增,且衔接处非减,得到不等式求解即可. 【解答】解:∵对任意的实数x 1≠x 2都有f(x 1)−f(x 2)x 1−x 2>0成立,∴函数f(x)={a x ,x ≥1(4−a 2)x +2,x <1在R 上单调递增, ∴{a >14−a 2>0a 1≥(4−a 2)×1+2 , 解得a ∈[4,8), 故选D . 9.【答案】C【解析】【分析】本题考查函数值的求法,指数函数、对数函数的运算与性质,函数的周期性及奇函数性质的综合应用,利用条件求出函数的周期以及利用函数的性质逐步转化自变量是解题的关键.由已知条件和函数周期性的定义求出函数的周期,利用函数的周期性、奇函数的性质和函数的解析式,逐步转化由运算性质求出f(log 354)的值. 【解答】解:由f(x +2)=−1f(x)得,f(x +4)=−1f(x+2)=f(x), 所以函数f(x)的周期是4,因为f(x)是定义在R 上的奇函数,且3<log 354<4, 则0<4−log 354<1, 且在(0,1)上,f(x)=3x ,所以f(log 354)=f(log 354−4)=−f(4−log 354).故选C .10.【答案】D【解析】【分析】本题考查的知识点是函数的图象,属于中档题.根据已知函数的解析式,分析函数的奇偶性,特殊点处的函数值以及单调性,利用排除法,可得答案. 【解答】解:∵f (x )=y =2x 2−e |x |,∴f(−x)=2(−x)2−e|−x|=2x2−e|x|,故函数为偶函数,当x=±2时,y=8−e2∈(0,1),故排除A,B;当x∈[0,2]时,f(x)=y=2x2−e x,f′(x)=4x−e x,设g(x)=4x−e x,g′(x)=4−e x,当x∈(0,ln4)时,g′(x)<0,g(x)单调递减,即f′(x)=4x−e x单调递减,当x∈(ln4,2)时,g′(x)>0,g(x)单调递增,即f′(x)=4x−e x单调递增,因为f′(0)=−1<0且f′(ln4)=4ln4−4>0,则f′(x)=4x−e x=0在[0,ln4]有解,设为x0,当x∈(0,x0)时,f′(x)<0,f(x)单调递减,当x∈(x0,ln4)时,f′(x)>0,f(x)单调递增,故函数y=2x2−e|x|在[0,ln4]不是单调的,又ln4<2,故函数y=2x2−e|x|在[0,2]不是单调的,排除C,故选D.11.【答案】B【解析】【分析】本题主要考查函数奇偶性和单调性的应用,考查函数性质的综合应用,运用偶函数的性质是解题的关键,属于中档题.根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.【解答】解:f(x)的定义域为R,,∴函数f(x)=ln(1+|x|)−11+x2为偶函数,且在x≥0时,f(x)=ln(1+x)−11+x2,而为[0,+∞)上的单调递增函数,且y=−11+x2为[0,+∞)上的单调递增函数,∴函数f(x)在[0,+∞)单调递增,∴f(x)>f(2x−1)等价为f(|x|)>f(|2x−1|),即|x|>|2x−1|,平方得3x2−4x+1<0,解得:13<x<1,所求x的取值范围是(13,1).故选B.12.【答案】B【解析】【分析】本题主要考查求导公式和法则,导数与函数单调性的关系,以及恒成立问题的转化,考查分离常数法,整体思想、分类讨论思想,属于较难题.由求导公式和法则求出f′(x),由条件和导数与函数单调性的关系分类讨论,分别列出不等式进行分离常数,再构造函数,利用整体思想和二次函数的性质求出函数的最值,可得a的取值范围.【解答】解:由题意得,f′(x)=1x +a−1x2,因为f(x)=lnx+ax+1x在[1,+∞)上是单调函数,所以f′(x)≥0或f′(x)≤0在[1,+∞)上恒成立,①当f′(x)≥0时,则1x +a−1x2≥0在[1,+∞)上恒成立,即a≥1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x=1时,g(x)取到最大值是:0,所以a≥0,②当f′(x)≤0时,则1x +a−1x2≤0在[1,+∞)上恒成立,即a≤1x2−1x,设g(x)=1x2−1x=(1x−12)2−14,因为x∈[1,+∞),所以1x∈(0,1],当1x =12时,g(x)取到最小值是:−14,所以a≤−14,综上可得,a≤−14或a≥0,所以数a的取值范围是(−∞,−14]∪[0,+∞),故选B.13.【答案】A【解析】【分析】本题考查了对数的运算以及函数的性质,属于基础题.先得出f(x)+f(−x)=4,即可得出结果.【解答】解:∵f(x)=ln(√1+x2−x)+2,∴f(x)+f(−x)=ln(√1+x2−x)+2+ln(√1+x2+x)+2=ln1+4=4,则f(lg5)+f(lg15)=f(lg5)+f(−lg5)=4.故选A.14.【答案】B【解析】【分析】本题考查了函数的图象与性质、导数的应用问题,考查函数与方程的关系,属于中档题.题意转化为y=f(x)与y=ax有2个交点,画出函数的图象,观察满足题意的直线y=ax的条件,利用导数求出切线的斜率,结合图形得出a的取值范围.【解答】解:∵方程f(x)=ax恰有两个不同实数根,∴y=f(x)与y=ax有2个交点,画出y =f(x)的图象和y =ax 的图象,如图所示:其中l 1是直线y =ax 与对数部分图象相切时的情况,l 2是与x ≤1时函数的直线部分平行的直线, 由图可以看出,直线y =ax 的斜率a 应当在l 1与l 2的斜率之间,可以与l 2重合. 当x >1时,f(x)=lnx ,∴y ′=f ′(x)=1x , 设切点为P(x 0,y 0),则k =1x 0,∴切线方程为y −y 0=1x 0(x −x 0),而切线过原点,O(0,0)代入,得y 0=1,∴x 0=e ,k =1e , ∴直线l 1的斜率为1e ,又∵直线l 2与y =14x +1平行,∴直线l 2的斜率为14, ∴实数a 的取值范围是[14,1e ), 故选B . 15.【答案】B【解析】【分析】由条件可得f(x)+f(−x)=2,即有f(x)关于点(0,1)对称,又函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点,计算即可得到所求和.本题考查抽象函数的运用:求和,考查函数的对称性的运用,以及化简整理的运算能力,属于中档题. 【解答】解:函数f(x)(x ∈R)满足f(−x)=2−f(x), 即为f(x)+f(−x)=2, 可得f(x)关于点(0,1)对称, 函数y =x+1x,即y =1+1x 的图象关于点(0,1)对称,即有(x 1,y 1)为交点,即有(−x 1,2−y 1)也为交点, (x 2,y 2)为交点,即有(−x 2,2−y 2)也为交点,…则有∑i =1m(x i +y i )=(x 1+y 1)+(x 2+y 2)+⋯+(x m +y m )=12[(x 1+y 1)+(−x 1+2−y 1)+(x 2+y 2)+(−x 2+2−y 2)+⋯+(x m +y m )+(−x m +2−y m )] =m .故选B .16.答案 A解析 由已知x ∈R ,f (x )=cos ⎝⎛⎭⎫π2-πx +(x +e )2x 2+e 2=sinπx +x 2+e 2+2e x x 2+e 2=sinπx +2e x x 2+e 2+1,令g (x )=sinπx +2e xx 2+e2,易知g (x )为奇函数,由于奇函数在对称区间上的最大值与最小值的和为0,M +N =f (x )max +f (x )min =g (x )max +1+g (x )min +1=2,(M +N -1)2019=1. 17.答案 D解析 设F (x )=e 2x f (x )-e 2x -4, 则F ′(x )=2e 2x f (x )+e 2x f ′(x )-2e 2x =e 2x [2f (x )+f ′(x )-2]>0,所以函数F (x )=e 2x f (x )-e 2x -4在R 上为增函数. 又f (0)=5,所以F (0)=f (0)-1-4=0. 又不等式f (x )-4e-2x>1等价于e 2x f (x )-e 2x -4>0,即F (x )>0,解得x >0, 所以不等式的解集为(0,+∞).18.【答案】64【解析】【分析】本题考查对数函数的性质和幂函数,属于基础题.先找到定点P 的坐标,通过P 点坐标求解幂函数f (x )=x b 的解析式,从而求得f(4). 【解答】解:由题意,令2x −3=1,则x =2, 故点P(2,8),设幂函数f(x)=x b , 则2b =8,解得b =3, 所以f(x)=x 3, 故f(4)=64, 故答案为64.19.【答案】y =2x 和y =−14x【解析】【分析】本题考查导数的几何意义:切点处的导数值是切线的斜率;注意“在点处的切线”与“过点的切线”的区别,属于基础题.求出函数的导数,利用导数的几何意义:切点处的导数值是切线的斜率,分原点是切点和原点不是切点两类求. 【解答】解:f ′(x)=3x 2−6x +2.设切线的斜率为k .(1)当切点是原点时,k =f ′(0)=2,所以所求曲线的切线方程为y =2x .(2)当切点不是原点时,设切点是(x 0,y 0),则有y 0=x 03−3x 02+2x 0,k =f ′(x 0)=3x 02−6x 0+2,①又k =y 0x 0=x 02−3x 0+2,②由①②得x 0=32,k =y 0x 0=−14. ∴所求曲线的切线方程为y =−14x.故答案为:y =2x 和y =−14x. 20.【答案】π+24【解析】【分析】本题考查了定积分的计算,巧用几何意义,由面积求积分,为中档题.【解答】解:∫01(√1−x 2+x)dx =∫01√1−x 2dx +∫01x dx=π4+12x 2|01=π4+12=π+24. 故答案为π+24.21.【答案】(−14,+∞)【解析】【分析】本题考查不等式的求解,结合分段函数的不等式,利用分类讨论的数学思想进行求解是解决本题的关键,属于中档题.根据分段函数的表达式,分别讨论x 的取值范围,进行求解即可.【解答】解:若x ≤0,则x −12≤−12,则f(x)+f(x −12)>1等价为x +1+x −12+1>1,即2x >−12,则x >−14,此时−14<x ≤0,当x >0时,f(x)=2x >1,x −12>−12,当x −12>0即x >12时,满足f(x)+f(x −12)>1恒成立,当0≥x −12>−12,即12≥x >0时,f(x −12)=x −12+1=x +12>12,此时f(x)+f(x−12)>1恒成立,综上x>−14,故答案为:(−14,+∞).22.【答案】①④【解析】【分析】本题考查复合函数的性质,属于中档题.从偶函数的角度可知是否关于y轴对称,先求x 2+1|x|的范围再求f(x)的范围,由复合函数的“同增异减”判断单调性.【解答】解:①f(−x)=lg x 2+1|x|=f(x),∴函数f(x)是偶函数,f(x)的图象关于y轴对称,故①正确;②x2+1|x|=|x|+1|x|≥2,∴f(x)=lg x2+1|x|≥lg2,∴f(x)的最小值是lg2,故②不正确;③函数g(x)=x2+1|x|=|x|+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故函数f(x)=lg x 2+1|x|在(−∞,−1),(0,1)上是减函数,在(−1,0),(1,+∞)上是增函数,故③不正确;④由③知,f(x)没有最大值,故④正确;故答案为①④.23.【答案】解:(I)由f(x)=13x3+ax2+6x−1,则f′(x)=x2+2ax+6,因在x=2时,f(x)取到极值,所以f′(2)=0⇒4+4a+6=0,解得,a=−52;(II)由(I)得f(x)=13x3−52x2+6x−1,且1≤x≤3,则f′(x)=x2−5x+6=(x−2)(x−3),由f′(x)=0,解得x=2或x=3,f′(x)>0,解得x>3或x<2;f′(x)<0,解得2<x<3;∴f(x)的递增区间为:(−∞,2)和(3,+∞);f(x)递减区间为:(2,3),又f(1)=176,f(2)=113,f(3)=72,要f(x)+m=0有两个根,则f(x)=−m有两解,分别画出函数y=f(x)与y=−m的图象,如图所示.由图知,实数m 的取值范围:−113<m ≤−72. 24.【答案】解:(Ⅰ)函数f(x)=ln(x +1)+a(x 2−x),其中a ∈R ,x ∈(−1,+∞). f ′(x)=1x+1+2ax −a =2ax 2+ax−a+1x+1.令g(x)=2ax 2+ax −a +1,x ∈(−1,+∞).(1)当a =0时,g(x)=1,此时f′(x)>0,函数f(x)在(−1,+∞)上单调递增,无极值点.(2)当a >0时,Δ=a 2−8a(1−a)=a(9a −8).①当0<a ≤89时,Δ≤0,g(x)≥0,f′(x)≥0,函数f(x)在(−1,+∞)上单调递增,无极值点.②当a >89时,Δ>0,设方程2ax 2+ax −a +1=0的两个实数根分别为x 1,x 2,x 1<x 2. ∵x 1+x 2=−12, ∴x 1<−14,x 2>−14. 由g(−1)=1>0,可得−1<x 1<−14.∴当x ∈(−1,x 1)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 1,x 2)时,g(x)<0,f′(x)<0,函数f(x)单调递减; 当x ∈(x 2,+∞)时,g(x)>0,f′(x)>0,函数f(x)单调递增. 因此当a >89时,函数f(x)有两个极值点.(3)当a <0时,Δ>0.由g(−1)=1>0,可得x 1<−1<x 2. ∴当x ∈(−1,x 2)时,g(x)>0,f′(x)>0,函数f(x)单调递增; 当x ∈(x 2,+∞)时,g(x)<0,f′(x)<0,函数f(x)单调递减. 因此当a <0时,函数f(x)有一个极值点.综上所述:当a <0时,函数f(x)有一个极值点;当0≤a ≤89时,函数f(x)无极值点;当a >89时,函数f(x)有两个极值点.(Ⅱ)由(Ⅰ)可知:(1)当0≤a ≤89时,函数f(x)在(0,+∞)上单调递增.∵f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(2)当89<a ≤1时,由g(0)=1−a ≥0,可得x 1,x 2≤0,函数f(x)在(0,+∞)上单调递增. 又f(0)=0,∴x ∈(0,+∞)时,f(x)>0,符合题意.(3)当1<a 时,由g(0)=1−a <0,可得x 2>0,∴x ∈(0,x 2)时,函数f(x)单调递减.又f(0)=0,∴x ∈(0,x 2)时,f(x)<0,不符合题意,舍去;(4)当a <0时,设ℎ(x)=x −ln(x +1),x ∈(0,+∞),ℎ′(x)=x x+1>0. ∴ℎ(x)在(0,+∞)上单调递增.因此x ∈(0,+∞)时,ℎ(x)>ℎ(0)=0,即ln(x +1)<x , 可得:f(x)<x +a(x 2−x)=ax 2+(1−a)x ,当x >1−1a 时,ax 2+(1−a)x <0,此时f(x)<0,不合题意,舍去. 综上所述,a 的取值范围为[0,1]. 25.【答案】解:(1)∵g(x)=e x −ax −1,∴g ′(x )=e x −a ,①若a ≤0,g ′(x )>0,g(x)在(−∞,+∞)上单调递增; ②若a >0,当x ∈(−∞,lna]时,g′(x )≤0,g(x)单调递减; 当x ∈(lna,+∞)时,g′(x )>0,g(x)单调递增,综合上述,若a ≤0,则g(x)在上单调递增;若a >0,则g(x)在(lna,+∞)上单调递增,在(−∞,lna]上单调减.(2)当x >0时,x 2−x ≤e x −ax −1,即a ≤e x x −x −1x +1, 令ℎ(x)=e x x −x −1x +1(x >0),则ℎ′(x)=e x (x−1)−x 2+1x 2,令φ(x)=e x (x −1)−x 2+1(x >0),则φ′(x)=x(e x −2),当x ∈(0,ln2)时,φ′(x)<0,φ(x)单调递减;当x ∈(ln2,+∞)时,φ′(x)>0,φ(x)单调递增,又φ(0)=0,φ(1)=0,∴当x ∈(0,1)时,φ(x)<0,即ℎ′(x)<0,∴ℎ(x)单调递减,当x ∈(1,+∞)时,φ(x)>φ(1)=0,即ℎ′(x)>0,∴ℎ(x)单调递增,∴ℎ(x)min =ℎ(1)=e −1,∴实数a 的取值范围是(−∞,e −1]. 26.【答案】解:(1)函数的定义域为(0,+∞), f′(x )=b x 2−1x =b−xx 2,当b ≤0,f′(x )<0在(0,+∞)上恒成立,当b >0时,f′(x )<0得x ∈(b,+∞);f′(x )>0得x ∈(0,b), 所以,当b ≤0时,f (x )在(0,+∞)上单调递减,当b >0时,f (x )在(0,b)上单调递增,在(b,+∞)单调递减;(2)证明:由题意知,f(x 1)=f(x 2)=0,即1x 1+lnx 1=1x 2+lnx 2, 于是x 2−x 1x 1x 2=ln x2x 1, 记x 2x 1=t ,t >1,则lnt =t−1tx 1,解得x 1=t−1tlnt ,于是,x 1+x 2=x 1+tx 1=(1+t)x 1=t 2−1tlnt , ∴x 1+x 2−2=t 2−1tlnt −2=2(t 2−12t −lnt)lnt , 记函数g(t)=t 2−12t −lnt ,∴g′(x )=(t−1)22t 2,当t >1时g′(t )>0,故g(t)在(1,+∞)上单调增.于是,t >1时,g(t)>g(1)=0.又lnt >0,所以即x 1+x 2>2成立.27.【答案】解:(1)当a =1时,f(x)=(x +1)lnx −x +2(x >0), f ′(x)=lnx +1x ,因为f ′(1)=1,f(1)=1,所以曲线f(x)在x =1处的切线方程为y =x .(3)当a =2时,f(x)在(1,+∞)上单调递增,所以当x ∈(1,+∞)时,f(x)>f(1)=0,即(x +1)lnx −2x +2>0,所以lnx >2(x−1)x+1在(1,+∞)上恒成立, 令x =n+1n ,得ln n+1n >2(n+1n −1)n+1n +1,化简得ln(n +1)−lnn >22n+1,所以ln2−ln1>22+1,ln3−ln2>24+1,…,ln(n +1)−lnn >22n+1,累加得ln(n +1)−ln1>23+25+⋯+22n+1,即13+15+17+⋯+12n+1<12ln(n +1),n ∈N ∗.。
函数的图像练习题一、选择题1. 函数f(x) = 2x + 3的图像是一条直线,其斜率k等于:A. 2B. 3C. 1D. 02. 函数g(x) = x^2的图像是一个:A. 直线B. 抛物线C. 双曲线D. 圆3. 函数h(x) = 1/x的图像在第一象限和第三象限是:A. 单调递增B. 单调递减C. 先增后减D. 先减后增4. 若函数f(x) = |x|的图像是V形,其顶点坐标为:A. (0, 1)B. (0, 0)C. (1, 0)D. (-1, 0)5. 函数y = sin(x)的图像在x=π/2处的值是:A. 1B. -1C. 0D. π/2二、填空题6. 函数f(x) = x^3 - 3x^2 + 2x + 1的图像是一个______,其拐点坐标为______。
7. 函数y = cos(x)的图像在x=0处的值为______,并且其图像是______对称的。
8. 若函数y = ln(x)的图像在x=1处的值是0,那么其图像在x=e处的值为______。
9. 函数y = tan(x)的图像在x=π/4处的值是______,并且其图像在每一个周期内都有______。
10. 函数y = e^x的图像是一条______的曲线,并且随着x的增大,y 值______。
三、简答题11. 描述函数y = x^2 + 1的图像特征,并说明其顶点坐标。
12. 解释函数y = 1/(1+e^(-x))的图像为什么被称为S型曲线,并简述其性质。
13. 说明函数y = log_a(x)(a>0,a≠1)图像的渐近线,并讨论a的取值对图像的影响。
14. 函数y = sqrt(x)的图像在x轴的正半轴上是单调递增的,请解释原因。
15. 函数y = sin(x) + cos(x)的图像有哪些特征?请列出至少三个。
四、计算题16. 给定函数f(x) = 3x - 2,求其在x=1时的值,并绘制其图像的大致形状。
函数图像练习题1. 定义域判断题:给定函数 \( f(x) = \frac{1}{x - 2} \),判断其定义域并解释原因。
2. 值域求解题:若函数 \( g(x) = x^2 - 4x + 4 \),求其值域。
3. 图像特征分析题:考虑函数 \( h(x) = |x - 3| \),描述其图像的基本特征,包括对称轴、顶点坐标等。
4. 渐近线确定题:对于函数 \( k(x) = \frac{2}{x} + 3x \),确定其水平渐近线和垂直渐近线。
5. 单调性判断题:判断函数 \( l(x) = -x^3 + 2x \) 在 \( (-\infty, +\infty) \) 上的单调性,并给出证明。
6. 极值点求解题:对于函数 \( m(x) = x^3 - 6x^2 + 9x \),求其一阶导数,并找出其极值点。
7. 图像变换题:已知函数 \( n(x) = x^2 \),求经过平移和伸缩变换后得到的函数 \( n(2x - 1) \) 的图像。
8. 函数零点求解题:给定函数 \( o(x) = \sin(x) + \cos(x) \),求其在 \( [0, 2\pi] \) 区间内的零点。
9. 函数图像对称性题:分析函数 \( p(x) = x^3 - 3x \) 的图像,并确定其是否存在对称性,如果有,请指出对称轴或对称中心。
10. 复合函数图像题:考虑函数 \( q(x) = \sqrt{x + 1} \) 和\( r(x) = 2^x \),绘制 \( q(r(x)) \) 的图像,并描述其主要特征。
11. 函数图像交点题:若 \( s(x) = x^2 - 4 \) 和 \( t(x) = 2x \),求这两个函数图像的交点坐标。
12. 函数图像凹凸性题:对于函数 \( u(x) = x^4 - 4x^2 \),判断其凹凸性,并求出拐点坐标。
13. 函数图像周期性题:分析函数 \( v(x) = \tan(x) \) 的周期性,并说明其周期。
函数图像练习题及答案一、选择题1. 函数f(x)=2x^2-3x+1的图像是开口向上的抛物线,其顶点坐标为:A. (1,0)B. (-1,2)C. (3/4,-1/8)D. (0,1)2. 若函数f(x)=x^3-3x^2+2x+1的导数为f'(x)=3x^2-6x+2,求f'(1)的值:A. 2B. 3B. 4D. 53. 函数y=|x|的图像是:A. 一条直线B. V形曲线C. 一条抛物线D. 一条双曲线4. 若函数f(x)=x^2+2x+1的图像与x轴相交于点(-1,0),则该点也是:A. 极大值点B. 极小值点C. 拐点D. 无特殊点5. 函数y=sin(x)的图像是:A. 一条直线B. 一条周期曲线C. 一条抛物线D. 一条双曲线二、填空题1. 函数y=x^2的导数是________。
2. 函数y=cos(x)的周期是________。
3. 若函数f(x)=x^3-6x^2+11x-6的极小值点为x=2,则其极小值是________。
4. 函数y=1/x的图像在第一象限和第三象限是________。
5. 函数y=ln(x)的定义域是________。
三、解答题1. 已知函数f(x)=x^3-6x^2+11x-6,求其导数,并找出其极值点及对应的极值。
2. 函数y=x^2-4x+4的图像与y=0相交于哪两点?并说明这两点的性质。
3. 函数f(x)=x^2+4x+4的图像与直线y=k相交于两点,求k的取值范围。
4. 函数y=x^2-2x+1的图像关于直线x=1对称,求证。
5. 若函数f(x)=x^3-3x^2+4x-12的图像在点(2,-4)处的切线方程,求出该切线方程。
答案:一、选择题1. C2. A3. B4. A5. B二、填空题1. 2x2. 2π3. -34. 向下5. (0,+∞)三、解答题1. 导数f'(x)=3x^2-12x+11,令f'(x)=0得x=(12±√(144-132))/6=2或x=(12-√(144-132))/6,检验得x=2为极小值点,极小值为f(2)=-3。
函数的练习题及解答在计算机科学中,函数是一种可重用的代码块,用于执行特定的任务。
通过函数,我们可以将复杂的问题分解为更小的子问题,从而提高代码的可读性和可维护性。
本文将为您提供一些函数的练习题及相应的解答。
练习题一:计算两个数的和编写一个函数,输入两个整数,返回它们的和。
```pythondef add_numbers(a, b):return a + b```解答:调用该函数并打印结果```pythonresult = add_numbers(5, 3)print(result) # 输出结果为8```练习题二:计算平均值编写一个函数,输入一个整数列表,返回列表中所有元素的平均值。
```pythondef calculate_average(numbers):total = sum(numbers)average = total / len(numbers)return average```解答:调用该函数并打印结果```pythonnumbers = [1, 2, 3, 4, 5]result = calculate_average(numbers)print(result) # 输出结果为3.0```练习题三:查找最大值编写一个函数,输入一个整数列表,返回列表中的最大值。
```pythondef find_maximum(numbers):maximum = numbers[0]for num in numbers:if num > maximum:maximum = numreturn maximum```解答:调用该函数并打印结果```pythonnumbers = [1, 5, 3, 9, 2]result = find_maximum(numbers)print(result) # 输出结果为9```练习题四:判断质数编写一个函数,输入一个整数,判断它是否为质数。
质数是指大于1且只能被1和自身整除的数。
函数练习题一、 求函数的定义域1、求下列函数的定义域:x22x 15⑵ yx 1)2 ⑶ y1x 2⑴ y3 31 ((2x1)4xx 111x 12、设函数 f (x) 的定义域为 [0,1] ,则函数 f ( x2) 的定义域为 _ _ _;函数 f ( x2) 的定义域为 ________;3 、若函数 f ( x1) 的定义域为 [ 2, 3] ,则函数f (2 x1)的定义域是;函数1 f (2) 的定义域为。
x4、 知函数 f ( x) 的定义域为 [ 1, 1] ,且函数 F ( x)f ( x m) f (x m) 的定义域存在,求实数 m 的取值范围。
二、求函数的值域5、求下列函数的值域:⑴ y x22x 3 ( x R)⑵ y x22x 3x [1,2]⑶ y3x 1 ⑷ y3x 1 (x 5)x 1x 1⑸ 2 x6⑹ y5x 2+9x4⑺ y x 3 x 1⑻ y x 2 xy2x21x⑼ yx24x 5⑽ y 4 x24x 5⑾ y x1 2x6、已知函数 f (x)2x2ax b的值域为 [1 , 3] ,求 a,b 的值。
x 21三、求函数的解析式1、 已知函数 f ( x 1)x24x ,求函数 f ( x) , f (2 x 1) 的解析式。
2、 已知 f (x) 是二次函数,且 f (x1)f ( x1) 2x24x ,求 f (x) 的解析式。
3、已知函数f (x) 满足 2 f ( x) f ( x) 3x 4 ,则 f (x) =。
4、设 f (x) 是 R 上的奇函数,且当x [0,) 时, f (x)x(13x ) ,则当 x( ,0) 时 f ( x) =_____f ( x) 在 R 上的解析式为5、设 f (x) 与 g (x) 的定义域是 { x | xR, 且 x 1} ,f (x)是偶函数, g( x) 是奇函数,且 f ( x) g( x)1 ,求 f (x)与 g (x)x 1的解析表达式四、求函数的单调区间6、求下列函数的单调区间:⑴ y x22x 3⑵ yx22x 3⑶ y x26 x 17、函数 f (x) 在 [0, ) 上是单调递减函数,则f (1 x 2) 的单调递增区间是8、函数 y2 x的递减区间是 ;函数 y2 x 的递减区间是3x 63x 6五、综合题9、判断下列各组中的两个函数是同一函数的为( )( x 3)( x5)y 2x 5 ; ⑵ y 1x 1 x 1 , y 2( x 1)( x 1) ;⑴y 1, x 3⑶ f ( x) x , g ( x) x 2; ⑷ f (x)x , g( x)3x 3; ⑸ f 1 ( x) ( 2 x 5 ) 2 , f 2 ( x) 2x 5。
A 、⑴、⑵B 、 ⑵、⑶C 、 ⑷D 、 ⑶、⑸10、若函数 f ( x) =x 4 的定义域为 R , 则实数 m 的取值范围是()mx24mx3A 、(-∞,+∞)B 、(0,3]C 、 (3,+∞)D、 [0, 3 )44411、若函数 f ( x)mx2mx 1 的定义域为R ,则实数 m 的取值范围是()(A) 0 m 4 (B)0 m 4 (C) m 4(D) 0 m 412、对于 1 a1,不等式 x 2(a 2) x 1 a 0 恒成立的 x 的取值范围是()(A) 0 x 2 (B)x 0 或 x 2 (C)x 1 或 x3(D)1 x 113、函数 f ( x)4 x 2x 24 的定义域是()A 、 [ 2,2]B 、( 2,2) C、 ( , 2) (2, )D、 { 2,2}14、函数 f ( x)x1( x 0) 是()xA 、奇函数,且在 (0 , 1) 上是增函数B 、奇函数,且在 (0 , 1) 上是减函数C 、偶函数,且在 (0 , 1) 上是增函数D 、偶函数,且在 (0 , 1) 上是减函数x 2( x15、函数 f ( x)x 2(1 x2 x( x 2)1)2) ,若 f ( x) 3,则 x =16、已知函数f ( x) 的定义域是 (0,1] ,则 g( x) f ( x a) f (x a)(1。
a 0) 的定义域为mxn的最大值为 4,最小值为217、已知函数 y— 1 ,则 m =, n =x 2118、把函数 y 1的图象沿 x 轴向左平移一个单位后,得到图象 C ,则 C 关于原点对称的图象的解析式为x 119、求函数 f ( x) x 22ax 1在区间[0,2] 上的最值20、若函数 f ( x) x22x 2,当 x [ t, t1] 时的最小值为 g(t) ,求函数 g (t ) 当 t[-3,-2] 时的最值。
21、已知 aR ,讨论关于 x 的方程 x26 x 8 a 0 的根的情况。
22、已知 1a 1 ,若 f x() ax2在区间 [1 ,3] 上的最大值为 M ( a) ,最小值为 N ( a) ,令 ga() Ma() Na()。
3 x2 1( 1)求函数 g(a) 的表达式;(2)判断函数 g(a) 的单调性,并求 g( a) 的最小值。
23、定义在 R 上的函数 yf (x), 且 f (0) 0 ,当 x 0 时, f ( x) 1,且对任意 a, b R , f (a b)f ( a) f (b) 。
⑴求 f (0) ; ⑵求证: 对任意 x R, 有 f (x)0 ;⑶求证: f ( x) 在 R 上是增函数; ⑷若 f ( x) f (2 x x 2) 1 ,求 x的取值范围。
函数练习题答案一、函数定义域:1、( 1) { x | x 5或 x 3或 x6} ( 2) { x | x 0}( 3) { x | 2x 2且 x 0, x1, x 1}22、 [ 1,1] ; [4,9]3、 [0,5];(, 1] [ 1,)4、 1m123 2二、函数值域:5、( 1) { y | y4}( 2) y[0,5]( 3) { y | y3}( 4) y[7,3)1}3 ( 5) y[ 3,2)( 6) { y | y 5且 y( 7) { y | y 4}(8) yR21} ( 9) y [0,3]( 10) y[1,4]( 11) { y | y6、 a2, b22三、函数解析式:1、 f ( x) x22x 3; f (2 x 1) 4x242、 f ( x) x22x 1 3 、 f (x) 3x434、 f ( x)x(1 3x ); f (x)x(13 x )( x 0)5、 f ( x)1 g (x) xx(1 3x )( x 0)x 2 1x 21四、单调区间:6、( 1)增区间: [ 1, ) 减区间: ( , 1] ( 2)增区间: [ 1,1] 减区间: [1,3]( 3)增区间: [ 3,0],[3,)减区间: [0,3],( , 3]7、 [0,1] 8、 (, 2),( 2,)( 2,2]五、综合题:CDBBDB14、315 、 ( a, a 1]16 、 m4 n 317、 y1x 2x a ( 1) a 0时 , f (x)min18、解:对称轴为f (0)1 , f ( x) max f (2)3 4a(2) 0 a 1时 , f ( x)min f ( a) a 2 1 , f ( x) max f (2) 3 4a (3) 1 a 2时 , f ( x)min f ( a) a21 , f ( x) max f (0)1( 4) a2时 , f ( x) minf (2)3 4a , f ( x) maxf (0)1t21(t 0)19、解: g(t)1(0t 1)t ( ,0] 时, g (t )t21为减函数t22t 2(t1)在[ 3,2] 上, g(t ) t21 也为减函数g(t) min g( 2)5 , g (t )max g( 3) 1020、 21、 22、(略)。