场效应管的特性
- 格式:doc
- 大小:121.50 KB
- 文档页数:4
场效应管特点
场效应管是一种常见的电子元器件,具有广泛的应用。
以下是场效应管的几个主要特点:
1. 输入阻抗高
场效应管的输入阻抗很高,这意味着它对信号的衰减很小。
在电路中,高输入阻抗可以提高电路的灵敏度和动态范围,有利于信号的传输和处理。
2. 噪声低
场效应管的噪声比较低,尤其是在低频和直流情况下。
低噪声有利于提高电路的信噪比,使得信号能够更清晰地传输。
3. 功耗低
场效应管的功耗较低,因此在许多应用中可以降低电源的功耗和热损耗。
低功耗也有利于提高设备的可靠性和寿命。
4. 频率特性好
场效应管的频率特性较好,适合用于高频电路和高速数字电路中。
在高频情况下,场效应管的响应速度很快,可以有效地放大或开关信号。
5. 兼容性高
场效应管与其他类型的电子元器件具有良好的兼容性。
例如,它可以与晶体管、集成电路等其他元器件配合使用,实现复杂的电路功能。
总之,场效应管具有高输入阻抗、低噪声、低功耗、好频率特性
和高兼容性等特点,因此在许多领域都有广泛的应用。
3.3各种场效应管的特性比较.pdf场效应管(Field-EffectTransistor,FET)是一种常用的电子器件,它通过电场效应控制半导体材料的电流。
根据结构和工作原理的不同,场效应管可以分为多种类型,如金属氧化物半导体场效应管(MOSFET)、绝缘栅场效应管(IGFET)、JFET(结型场效应管)等。
这些不同类型的场效应管在特性上存在一些差异,下面将对它们的特性进行比较。
1.工作原理场效应管主要分为两大类:单极型和双极型。
单极型场效应管只有一种电流通道,即多数载流子;而双极型场效应管则有两种电流通道,即电子和空穴。
在单极型场效应管中,电场效应使得半导体材料中的多数载流子在源极和漏极之间迁移,形成电流。
在双极型场效应管中,电流是由电子和空穴的流动产生的。
2.开关特性场效应管的开关特性是指其导通和关断状态下的性能。
在导通状态下,场效应管具有很低的导通电阻,通常小于几十毫欧姆。
这使得它可以在较大的电压范围内提供较大的电流。
相比之下,双极型场效应管的开关速度较慢,因为其开关状态取决于载流子的运动速度。
然而,单极型场效应管的开关速度较快,因为其开关状态取决于电场的建立速度。
3.线性特性场效应管的线性特性是指在输入信号为小信号时,输出信号与输入信号成线性关系。
在低频工作时,单极型和双极型场效应管都具有较好的线性特性。
然而,在高频工作时,由于载流子的运动速度有限,双极型场效应管的线性特性会变差。
4.功耗由于场效应管的导通电阻很小,因此其功耗较低。
在相同的工作条件下,场效应管的功耗通常比晶体管低很多。
此外,场效应管的温度系数较小,使得其在高温环境下也能保持稳定的性能。
5.噪声场效应管的噪声性能通常优于晶体管。
在低频工作时,单极型和双极型场效应管的噪声性能都较好。
然而,在高频工作时,由于载流子的运动速度受到限制,双极型场效应管的噪声性能会变差。
6.温度特性场效应管的温度特性通常比晶体管差。
在高温环境下,由于半导体材料的性质会发生变化,场效应管的性能会受到影响。
一、复习引入三极管是电流控制型器件,使用时信号源必须提供一定的电流,因此输入电阻较低,一般在几百~几千欧左右。
场效应管是一种由输入电压控制其输出电流大小的半导体器件,所以是电压控制型器件;使用时不需要信号源提供电流,因此输入电阻很高(最高可达1015Ω),这是场效应最突出的优点;此外,还具有噪声低、热稳定性好、抗辐射能力强、功耗低优点,因此得到了广泛的应用。
按结构的不同,场效应管可分为绝缘栅型场效管(IGFET)和结型场效应管(JFET)两大类,它们都只有一种载流子(多数载流子)参与导电,故又称为单极型三极管。
二、新授(一)N沟道增强型绝缘栅场效应管MOSFET1.结构和符号图1(a)是N沟道增强型绝缘栅场效应管的结构示意图,它以一块掺杂浓度较低的P型硅片作为衬底,利用扩散工艺在P型衬底上面的左右两侧制成两个高掺杂的N 区,并用金属铝在两个N区分别引出电极,分别作为源极s和漏极d ;然后在P型硅片表面覆盖一层很薄的二氧化硅(SiO2)绝缘层,在漏源极之间的绝缘层上再喷一层金属铝作为栅极g,另外在衬底引出衬底引线B(它通常在管内与源极s相连接)。
可见这种管子的栅极与源极、漏极是绝缘的,故称绝缘栅场效应管。
这种管子由金属、氧化物和半导体制成,故称为MOSFET,简称MOS管。
不难理解,P沟道增强型MOS管是在抵掺杂的N型硅片的衬底上扩散两个高掺杂的P区而制成。
(a)N沟道结构示意图(b) N沟道符号(c)P沟道符号图1 N沟道增强型MOS管的结构与符号图1 (b)、(c)分别为N沟道、P沟道增强型MOS管的电路符号。
2.工作原理与特性曲线以N沟道增强型MOS管为例讨论其工作原理。
(1)工作原理工作时,N沟道增强型MOS管的栅源电压u GS和漏源电压u DS均为正向电压。
当u GS=0时,漏极与源极之间无导电沟道,是两个背靠的PN结,故即使加上u DS,也无漏极电流,i D=0,如图2(a)当u GS>0且u DS较小时,在u GS作用下,在栅极下面的二氧化硅层中产生了指向P型衬底,且垂直于衬底的电场,这个电场排斥靠近二氧化硅层的P型衬底中的空穴(多子),同时吸引P型衬底中的电子(少子)向二氧化硅层方向运动。
MOS 场效应管的工作原理及特点场效应管是只有一种载流子参与导电,用输入电压控制输出电流的半导体器件。
有N沟道器件和P 沟道器件。
有结型场效应三极管JFET(Junction Field Effect Transister)和绝缘栅型场效应三极管IGFET( Insulated Gate Field Effect Transister) 之分。
IGFET也称金属-氧化物-半导体三极管MOSFET(Metal Oxide SemIConductor FET)。
MOS场效应管有增强型(Enhancement MOS 或EMOS)和耗尽型(Depletion)MOS或DMOS)两大类,每一类有N沟道和P沟道两种导电类型。
场效应管有三个电极:D(Drain) 称为漏极,相当双极型三极管的集电极;G(Gate) 称为栅极,相当于双极型三极管的基极;S(Source) 称为源极,相当于双极型三极管的发射极。
增强型MOS(EMOS)场效应管道增强型MOSFET基本上是一种左右对称的拓扑结构,它是在P型半导体上生成一层SiO2 薄膜绝缘层,然后用光刻工艺扩散两个高掺杂的N型区,从N型区引出电极,一个是漏极D,一个是源极S。
在源极和漏极之间的绝缘层上镀一层金属铝作为栅极G。
P型半导体称为衬底(substrat),用符号B表示。
一、工作原理1.沟道形成原理当Vgs=0 V时,漏源之间相当两个背靠背的二极管,在D、S之间加上电压,不会在D、S间形成电流。
当栅极加有电压时,若0<Vgs<Vgs(th)时(VGS(th) 称为开启电压),通过栅极和衬底间的电容作用,将靠近栅极下方的P型半导体中的空穴向下方排斥,出现了一薄层负离子的耗尽层。
耗尽层中的少子将向表层运动,但数量有限,不足以形成沟道,所以仍然不足以形成漏极电流ID。
进一步增加Vgs,当Vgs>Vgs(th)时,由于此时的栅极电压已经比较强,在靠近栅极下方的P型半导体表层中聚集较多的电子,可以形成沟道,将漏极和源极沟通。
场效应管H20R1203是一种MOSFET(金属氧化物半导体场效应管)器件,具有较低的导通电阻和较高的开关速度。
它在电子、通信、汽车电子和工业控制等领域具有广泛的应用。
1. 普通场效应管介绍场效应管是一种半导体器件,可用作放大、开关和稳压器件。
它由栅极、漏极和源极组成,通过控制栅极电压来调节漏极和源极之间的电流。
场效应管分为增强型和耗尽型两种,其中增强型场效应管是最常用的一种,具有导通电阻低和开关速度快的特点。
2. H20R1203特性介绍H20R1203是一款N沟道增强型场效应管,具有较小的漏极-源极导通电阻和较大的漏极-源极电流。
其主要特性包括:- 高耐压:在额定工作温度下,H20R1203具有较高的漏极-源极耐压,适用于各种工业和汽车电子设备。
- 低导通电阻:H20R1203漏极-源极之间的导通电阻很小,能够在较小的栅极电压下实现较大的漏极-源极电流。
- 快开关速度:H20R1203具有快速的开关特性,响应速度快,适用于高频开关电路。
3. H20R1203在电子领域的应用H20R1203在电子设备中被广泛应用,主要包括:- 电源管理:H20R1203可用作低压开关、DC-DC转换器和充电电路中的开关元件,能够实现高效稳定的电源管理。
- 驱动器:H20R1203可用作电机驱动器、灯驱动器和变频器等设备中的开关管,用于控制电机和灯的开关和速度。
- 信号放大:H20R1203可以作为信号放大电路中的开关管,用于放大和控制信号的传输和放大。
4. H20R1203在通信领域的应用H20R1203在通信设备中也有重要应用,例如:- 通信基站:H20R1203可用作通信基站的功率放大器,用于放大无线信号以扩大通信覆盖范围。
- 通信终端:H20R1203可用作无线路由器、光纤通信设备和通信终端中的开关管,用于控制通信信号的传输和处理。
5. H20R1203在汽车领域的应用在汽车电子系统中,H20R1203可应用于以下方面:- 车载电源管理:H20R1203可用作汽车电子系统中的开关管,用于驱动汽车电动机、转向系统、灯光系统和电子设备。
功率场效应晶体管(MOSFET)的工作原理、特性及主要参数功率场效应晶体管(Power Metal Oxide Semiconductor Field Effect Transistor,MOSFET)。
其特点是:属于电压型全控器件、栅极静态内阻极高(109Ω)、驱动功率很小、工作频率高、热稳定性好、无二次击穿、安全工作区宽等;但MOSFET的电流容量小、耐压低、功率不易做得过大,常用于中、小功率开关电路中。
MOSFET的结构和工作原理1.MOSFET的结构MOSFET和小功率MOS管导电机理相同,但在结构上有较大的区别。
小功率MOS管是一次扩散形成的器件,其栅极G、源极S和漏极D在芯片的同一侧。
而MOSFET主要采用立式结构,其3个外引电极与小功率MOS管相同,为栅极G、源极S和漏极D,但不在芯片的同一侧。
MOSFET的导电沟道分为N沟道和P沟道,栅偏压为零时漏源极之间就存在导电沟道的称为耗尽型,栅偏压大于零(N沟道)才存在导电沟道的称为增强型。
MOSFET的电气符号如图1所示,图1(a)表示N沟道MOSFET,电子流出源极;图1(b)表示P沟道MOSFET,空穴流出源极。
从结构上看,MOSFET还含有一个由S极下的P区和D极下的N区形成的寄生二极管,该寄生二极管的阳极和阴极就是MOSFET的S极和D极,它是与MOSFET不可分割的整体,使MOSFET无反向阻断能力。
图1中所示的虚线部分为寄生二极管。
图1 MOSFET的电气符号2.MOSFET的工作原理(1)当栅源电压uGS=0时,栅极下的P型区表面呈现空穴堆积状态,不可能出现反型层,无法沟通漏源极。
此时,即使在漏源极之间施加电压,MOS管也不会导通。
MOSFET结构示意图如图2(a)所示。
图2 MOSFET结构示意图(2)当栅源电压uGS>0且不够充分时,栅极下面的P型区表面呈现耗尽状态,还是无法沟通漏源极,此时MOS管仍保持关断状态,如图2(b)所示。
MT2301场效应管参数概述本文档将介绍MT2301场效应管的参数特性及其应用。
场效应管是一种常见的半导体器件,具有许多优点,如高输入阻抗、低输出阻抗、低功耗等。
了解M T2301场效应管的参数特性对于正确使用和应用该器件非常重要。
基本原理场效应管是一种三端器件,主要由栅极、漏极和源极构成。
其工作原理是通过栅极施加的电压控制漏极与源极之间的电导。
MT2301场效应管采用了金属-氧化物-半导体(M OS)结构,其中栅极与漏极之间通过一个氧化层隔离。
该结构使得MT2301具有更高的控制效率和更低的漏电流。
参数特性1.栅极源极截止电压(V G S(o f f))栅极-源极截止电压是指当栅极电压低于某个阈值时,场效应管完全关闭,没有漏极电流流过。
MT2301的V GS(o f f)为-2V,即当栅极电压低于-2V时,管子完全截止。
2.饱和漏电流(I DS S)饱和漏电流是指当栅极-源极电压为0V时,漏极与源极之间的电流。
M T2301的I DS S为10mA,即在栅极-源极电压为0V时,漏极与源极之间的电流为10mA。
3.压控增益(g m)压控增益是指在小信号条件下,根据栅极与源极之间的电压变化引起的漏极电流变化。
MT2301的压控增益为0.5mS/V,即单位电压变化引起的漏极电流变化为0.5mA/V。
4.输出电阻(r o n)输出电阻是指当场效应管工作在饱和区时,栅极与源极之间的等效电阻。
MT2301的输出电阻为200Ω,也就是说在饱和区工作时,栅极与源极之间的等效电阻为200Ω。
应用M T2301场效应管广泛应用于各种电子设备中,主要作为信号放大、开关和调节器件。
其高输入阻抗使得它能够接收来自低功率信号源的信号,并且能够将信号放大到足够的水平以驱动负载。
同时,MT2301的低输出阻抗使得它适用于驱动各种负载。
常见的应用包括音频放大器、电源开关、P W M调光器等。
由于M T2301的特性可靠,性能稳定,因此得到广泛的应用。
场效应管及其参数符号意义场效应管(英缩写FET)是电压控制器件,它由输入电压来控制输出电流的变化。
它具有输入阻抗高噪声低,动态范围大,温度系数低等优点,因而广泛应用于各种电子线路中。
供应信息需求信息一、场效应管的结构原理及特性场效应管有结型和绝缘栅两种结构,每种结构又有N沟道和P沟道两种导电沟道。
1、结型场效应管(JFET)(1)结构原理它的结构及符号见图1。
在N型硅棒两端引出漏极D和源极S两个电极,又在硅棒的两侧各做一个P区,形成两个PN结。
在P区引出电极并连接起来,称为栅极Go这样就构成了N型沟道的场效应管图1、N沟道结构型场效应管的结构及符号由于PN结中的载流子已经耗尽,故PN基本上是不导电的,形成了所谓耗尽区,从图1中可见,当漏极电源电压ED一定时,如果栅极电压越负,PN结交界面所形成的耗尽区就越厚,则漏、源极之间导电的沟道越窄,漏极电流ID就愈小;反之,如果栅极电压没有那么负,则沟道变宽,ID变大,所以用栅极电压EG可以控制漏极电流ID的变化,就是说,场效应管是电压控制元件。
(2)特性曲线1)转移特性图2(a)给出了N沟道结型场效应管的栅压---漏流特性曲线,称为转移特性曲线,它和电子管的动态特性曲线非常相似,当栅极电压VGS=0时的漏源电流。
用IDSS表示。
VGS变负时,ID逐渐减小。
ID接近于零的栅极电压称为夹断电压,用VP表示,在0≥VGS≥VP的区段内,ID与VGS的关系可近似表示为:ID=IDSS(1-|VGS/VP|)△△)|VDS=常微(微欧)|其跨导gm为:gm=(ID/VGS式中:ID△-----漏极电流增量(微安)△-----栅源电压增量(伏)VGS图2、结型场效应管特性曲线2)漏极特性(输出特性)图2(b)给出了场效应管的漏极特性曲线,它和晶体三极管的输出特性曲线很相似。
①可变电阻区(图中I区)在I区里VDS比较小,沟通电阻随栅压VGS而改变,故称为可变电阻区。
当栅压一定时,沟通电阻为定值,ID随VDS近似线性增大,当VGS<VP时,漏源极间电阻很大(关断)。
场效应管的特性根据三极管的原理开发出的新一代放大元件,有3个极性,栅极,漏极,源极,它的特点是栅极的内阻极高,采用二氧化硅材料的可以达到几百兆欧,属于电压控制型器件。
[编辑本段]1.概念: 场效应管场效应晶体管(Field Effect Transistor缩写(FET))简称场效应管.由多数载流子参与导电,也称为单极型晶体管.它属于电压控制型半导体器件.特点:具有输入电阻高(100MΩ~1 000MΩ)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,现已成为双极型晶体管和功率晶体管的强大竞争者.作用:场效应管可应用于放大.由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器.场效应管可以用作电子开关.场效应管很高的输入阻抗非常适合作阻抗变换.常用于多级放大器的输入级作阻抗变换.场效应管可以用作可变电阻.场效应管可以方便地用作恒流源. [编辑本段]2.场效应管的分类: </B>场效应管分结型、绝缘栅型(MOS)两大类按沟道材料:结型和绝缘栅型各分N沟道和P沟道两种.按导电方式:耗尽型与增强型,结型场效应管均为耗尽型,绝缘栅型场效应管既有耗尽型的,也有增强型的。
场效应晶体管可分为结场效应晶体管和MOS场效应晶体管,而MOS场效应晶体管又分为N沟耗尽型和增强型;P沟耗尽型和增强型四大类. [编辑本段]3.场效应管的主要参数: </B>Idss —饱和漏源电流.是指结型或耗尽型绝缘栅场效应管中,栅极电压UGS=0时的漏源电流.Up —夹断电压.是指结型或耗尽型绝缘栅场效应管中,使漏源间刚截止时的栅极电压.Ut —开启电压.是指增强型绝缘栅场效管中,使漏源间刚导通时的栅极电压.gM —跨导.是表示栅源电压UGS —对漏极电流ID的控制能力,即漏极电流ID变化量与栅源电压UGS变化量的比值.gM 是衡量场效应管放大能力的重要参数.BVDS —漏源击穿电压.是指栅源电压UGS一定时,场效应管正常工作所能承受的最大漏源电压.这是一项极限参数,加在场效应管上的工作电压必须小于BVDS.PDSM —最大耗散功率,也是一项极限参数,是指场效应管性能不变坏时所允许的最大漏源耗散功率.使用时,场效应管实际功耗应小于PDSM并留有一定余量.IDSM —最大漏源电流.是一项极限参数,是指场效应管正常工作时,漏源间所允许通过的最大电流.场效应管的工作电流不应超过IDSMCds---漏-源电容Cdu---漏-衬底电容Cgd---栅-漏电容Cgs---漏-源电容Ciss---栅短路共源输入电容Coss---栅短路共源输出电容Crss---栅短路共源反向传输电容D---占空比(占空系数,外电路参数)di/dt---电流上升率(外电路参数)dv/dt---电压上升率(外电路参数)ID---漏极电流(直流)IDM---漏极脉冲电流ID(on)---通态漏极电流IDQ---静态漏极电流(射频功率管)IDS---漏源电流IDSM---最大漏源电流IDSS---栅-源短路时,漏极电流IDS(sat)---沟道饱和电流(漏源饱和电流)IG---栅极电流(直流)IGF---正向栅电流IGR---反向栅电流IGDO---源极开路时,截止栅电流IGSO---漏极开路时,截止栅电流IGM---栅极脉冲电流IGP---栅极峰值电流IF---二极管正向电流IGSS---漏极短路时截止栅电流IDSS1---对管第一管漏源饱和电流IDSS2---对管第二管漏源饱和电流Iu---衬底电流Ipr---电流脉冲峰值(外电路参数)gfs---正向跨导Gps---共源极中和高频功率增益GpG---共栅极中和高频功率增益GPD---共漏极中和高频功率增益ggd---栅漏电导gds---漏源电导K---失调电压温度系数Ku---传输系数L---负载电感(外电路参数)LD---漏极电感Ls---源极电感rDS---漏源电阻rDS(on)---漏源通态电阻rDS(of)---漏源断态电阻rGD---栅漏电阻rGS---栅源电阻Rg---栅极外接电阻(外电路参数)RL---负载电阻(外电路参数)R(th)jc---结壳热阻R(th)ja---结环热阻PD---漏极耗散功率PDM---漏极最大允许耗散功率POUT---输出功率PPK---脉冲功率峰值(外电路参数)to(on)---开通延迟时间td(off)---关断延迟时间ti---上升时间ton---开通时间toff---关断时间tf---下降时间trr---反向恢复时间Tj---结温Tjm---最大允许结温Ta---环境温度Tc---管壳温度Tstg---贮成温度VDS---漏源电压(直流)VGS---栅源电压(直流)VGSF--正向栅源电压(直流)VGSR---反向栅源电压(直流)VDD---漏极(直流)电源电压(外电路参数)VGG---栅极(直流)电源电压(外电路参数)Vss---源极(直流)电源电压(外电路参数)VGS(th)---开启电压或阀电压V(BR)DSS---漏源击穿电压V(BR)GSS---漏源短路时栅源击穿电压VDS(on)---漏源通态电压VDS(sat)---漏源饱和电压VGD---栅漏电压(直流)Vsu---源衬底电压(直流)VDu---漏衬底电压(直流)VGu---栅衬底电压(直流)Zo---驱动源内阻η---漏极效率(射频功率管)Vn---噪声电压aID---漏极电流温度系数ards---漏源电阻温度系数[编辑本段]4.结型场效应管的管脚识别: </B>判定栅极G:将万用表拨至R×1k档,用万用表的负极任意接一电极,另一只表笔依次去接触其余的两个极,测其电阻.若两次测得的电阻值近似相等,则负表笔所接触的为栅极,另外两电极为漏极和源极.漏极和源极互换,若两次测出的电阻都很大,则为N沟道;若两次测得的阻值都很小,则为P沟道.判定源极S、漏极D:在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极.用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极. [编辑本段]5.场效应管与晶体三极管的比较场效应管是电压控制元件,而晶体管是电流控制元件.在只允许从信号源取较少电流的情况下,应选用场效应管;而在信号电压较低,又允许从信号源取较多电流的条件下,应选用晶体管.晶体三极管与场效应管工作原理完全不同,但是各极可以近似对应以便于理解和设计:晶体管:基极发射极集电极场效应管:栅极源极漏极要注意的是,晶体管(NPN型)设计发射极电位比基极电位低(约0.6V),场效应管源极电位比栅极电位高(约0.4V)。
WST4041场效应管参数介绍场效应管(Field-Effect Transistor,简称FET)是一种常用的电子器件,用于放大和调节电信号。
WST4041是一款场效应管的型号,本文将对WST4041场效应管的参数进行全面、详细、完整和深入的探讨。
什么是场效应管场效应管是一种三极管,其基本结构包括栅极、漏极和源极。
通过控制栅极电压,可以调节漏极和源极之间的电流,从而实现电信号的放大和调节。
场效应管具有高输入阻抗、低输出阻抗、高增益和低噪声等特点,被广泛应用于放大器、开关和电压调节器等电子电路中。
WST4041场效应管参数WST4041是一款常见的N沟道场效应管,其参数包括:1. 栅极-源极电压(Vgs)栅极-源极电压是指在正常工作条件下,栅极与源极之间的电压。
WST4041的典型值为-20V。
2. 漏极-源极电压(Vds)漏极-源极电压是指在正常工作条件下,漏极与源极之间的电压。
WST4041的典型值为-40V。
3. 漏极电流(Id)漏极电流是指通过漏极的电流。
WST4041的典型值为-4A。
4. 最大功耗(Pd)最大功耗是指在正常工作条件下,场效应管可以承受的最大功率。
WST4041的典型值为20W。
5. 开关时间(Ton/Toff)开关时间是指场效应管从导通到截止或从截止到导通的时间。
WST4041的典型值为25ns。
6. 输入电容(Ciss)输入电容是指栅极和源极之间的等效电容。
WST4041的典型值为2000pF。
7. 输出电容(Coss)输出电容是指漏极和源极之间的等效电容。
WST4041的典型值为600pF。
8. 反馈电容(Crss)反馈电容是指栅极和漏极之间的等效电容。
WST4041的典型值为150pF。
WST4041场效应管应用WST4041场效应管具有较高的漏极电流和较大的最大功耗,适用于一些要求较高功率放大的电子电路。
常见的应用包括:1. 音频放大器WST4041可以作为音频放大器的输出级,通过控制栅极电压和漏极电流,实现对音频信号的放大。
场效应管的主要参数场效应管(Field-Effect Transistor,FET)是一种三极电子器件,广泛应用于放大和开关电路中。
场效应管主要有三个主要参数:转移特性、输入特性和输出特性。
下面将详细讨论这三个参数。
1. 转移特性:转移特性描述了场效应管的输入-输出关系,即输出电流与输入电压之间的关系。
转移特性通常由三种不同的参数表示:互导(Transconductance,gm)、输出电导(Output Conductance,go)和截止电流(Cut-Off Current,IDSS)。
- 互导(Transconductance,gm):互导是场效应管的输入电压变化引起的输出电流变化的比率。
它是转移特性曲线的斜率。
互导数值越高,代表场效应管有更好的放大能力。
- 输出电导(Output Conductance,go):输出电导表示场效应管的漏极电流与漏极电压之间的关系。
输出电导数值越小,代表场效应管具有更好的开关特性。
- 截止电流(Cut-Off Current,IDSS):截止电流是场效应管的栅极-源极电压为零时的漏极电流。
截止电流的数值越小,代表场效应管具有更好的截止特性。
2.输入特性:输入特性描述了场效应管的栅极-源极电流与栅极-源极电压之间的关系。
输入特性包括漏极特性和截止特性。
-漏极特性:漏极特性是指场效应管的漏极电流与漏极电压之间的关系。
在正常工作区域内,漏极特性曲线呈现出线性区和饱和区两种不同的特性。
-截止特性:截止特性是指场效应管的栅极-源极电流与栅极-源极电压之间的关系。
在截止区,栅极电流非常小,基本上可以忽略不计。
3.输出特性:输出特性描述了场效应管的漏极电流与漏极电压之间的关系。
输出特性通常以漏极特性曲线表示。
-漏极特性:漏极特性是指场效应管的漏极电流与漏极电压之间的关系。
漏极特性曲线可以显示出场效应管的饱和区和线性区。
此外,还有一些次要参数:4. 最大漏极电流(Maximum Drain Current,IDmax):场效应管能够承受的最大漏极电流。
第五章MOS 场效应管的特性5.1MOS 场效应管5.3体效应第五章MOS 场效应管的特性5.1 MOS 场效应管5.2 MOS 管的阈值电压5.3 体效应115.5MOSFET 的噪声5.6MOSFET 尺寸按比例缩小5.7MOS 器件的二阶效应5.4 MOSFET 的温度特性5.5 MOSFET 的噪声5.6 MOSFET 尺寸按比例缩小5.7 MOS 器件的二阶效应1)N 型漏极与P 型衬底;2)N 型源极与P 型衬底。
5.1 MOS 场效应管5.1.1 MOS 管伏安特性的推导两个PN 结:图2)1)2同双极型晶体管中的PN 结一样,在结周围由于载流子的扩散、漂移达到动态平衡,而产生了耗尽层。
3)一个电容器结构:23)栅极与栅极下面的区域形成一个电容器,是MOS 管的核心,决定了MOS 管的伏安特性。
p+/ n+n(p) MOSFET的三个基本几何参数toxpoly-Si diffusionDWG L3p+/ n+⏹栅长:⏹栅宽:⏹氧化层厚度:LWt oxSMOSFET的三个基本几何参数⏹L min、W min和t ox由工艺确定⏹L min:MOS工艺的特征尺寸(feature size)决定MOSFET的速度和功耗等众多特性⏹L和W由设计者选定⏹通常选取L= L min,设计者只需选取W,W是主要的设计变量。
⏹W影响MOSFET的速度,决定电路驱动能力和功耗4MOSFET 的伏安特性:电容结构⏹当栅极不加电压或加负电压时,栅极下面的区域保持P 型导电类型,漏和源之间等效于一对背靠背的二极管,当漏源电极之间加上电压时,除了PN 结的漏电流之外,不会有更多电流形成。
⏹当栅极上的正电压不断升高时,P 型区内的空穴被不断地排斥到衬底方向。
当栅极上的电压超过阈值电压V T ,在5栅极下的P 型区域内就形成电子分布,建立起反型层,即N 型层,把同为N 型的源、漏扩散区连成一体,形成从漏极到源极的导电沟道。
场效应管的特性
场效应管的特性
图1.1 结场效管漏极输出曲线
下面以N沟道.结型场效应管为例说明场效应管的特性. 图1.1为场效应管的漏极特性曲线。
输出特性曲线分为三个区:可变电阻区、恒流区和击穿区。
(1)可变电阻区:图中VDS很小,曲线靠近左边。
它表示管子预夹断前电压.电流关系是:当VDS较小时,由于VDS的变化对沟道大小影响不大,沟道电阻基本为一常数,ID基本随VGS作线性变化。
当VGS恒定时,沟道导通电阻近似为一常数,从此意义上说,该区域为恒定电阻区,当VGS变化时,沟道导通电阻的值将随VGS变化而变化,因此该区域又可称为可变电阻区。
利用这一特点,可用场效应管作为可变电阻器。
(2)恒流区:图中VDS较大,曲线近似水平的部分是恒流区,它表示管子预夹断后电压.电流的关系,即图1.1两条虚线之间即为恒流区(或称为饱和区)该区的特点是ID的大小受VGS可控, 当VDS改变时ID几乎不变,场效应管作为放大器使用时,一般工作在此区域内。
(3)击穿区:当VDS增加到某一临界值时,ID开始迅速增大, 曲线上翘, 场效应管不能正常工作,甚至烧毁,场效应管工作时要避免进入此区间.
(4)场效应管特性曲线的测试
场效应管的特性曲线可以用晶体管图示仪测试,也可以用逐点测量法测试。
图1.2是用逐点测量法测试场效应管特性曲线的原理图。
场效应管的转移特性曲线是当漏源间电压VDS保持不变,栅源间电压VGS与漏极电流ID的关系曲线,如图1.3所示:
在上图中,先调节VDD使VDS固定在某个数值上,当栅源电压VGS 取不同的电压值时(调节RW),ID也将随之改变,利用测得的数据,便可在VGS~ID直角坐标系上画出如图3.2.3的转移特性曲线。
当VDS取不同的数值,便可得到另一条特性曲线。
ID=0时的VGS值为场效应管的夹断电压VP,VGS=0时的ID值为场效应管的饱和漏极电流IDSS。
漏极特性曲线是当栅源间电压VGS保持不变时,漏极电流ID与漏源间电压VDS的关系曲线,当VDS取不同的数值时便可测出与之对应的ID值,对于不同的VGS可以测得多条漏极特性曲线。
晶体管是电流控制器件,作放大器件用时,发射结必须正偏。
场效应管是电压控制器件,N沟道结型场效应管工作时G、S间必须加反向偏置电压。