烃类晶格氧选择氧化
- 格式:pdf
- 大小:1.28 MB
- 文档页数:9
金属氧化物催化剂及其催化作用金属氧化物催化剂通常为复合氧化物(complex oxides),即多组分的氧化物。
如V O -MoO , TiO -V 2O 5-P 2O 5,V 2O 5-MoO 3-Al 2O 3。
组分中至少有一个组分是过渡金属氧化物。
组分与组分之间可能相互作用,作用的情况因条件而异。
复合氧化物系通常是多相共存,如MoO 3-Al 2O 3,就有α-、β-、复杂,有固溶体、有杂多酸、有混晶等。
就催化作用与功能来说,有的组分是主催化剂,有的组分为助催化剂或者是载体。
金属氧化物催化作用机制-1z半导体的能带结构z催化中重要的是非化学计量的半导体,有n型和p型两大类。
非计量的化合物ZnO是典型的n型半导体(存在自由电子而产生导电行为)。
NiO是典型的p型半导体,由于缺正离子造成非计量性,形成氧离子空穴,温度升高时,此空穴变成自由空穴,可在固体表面迁移,成为NiO导电的来源。
z Fermi能级E f是表征半导体性质的一个重要物理量,可以衡量固体中电子逸出的难易,它与电子的逸出功∅直接相关。
∅是将一个电子从固体内部拉到外部变成自由电子所需的能量,此能量用以克服电子的平均位能,Fermi能级E就是这种平均位能。
fz对于给定的晶格结构,Fermi能级E f的位置对于其催化活性具有重O分解催化反应。
要意义。
如Nxz XPS研究固体催化剂中元素能级变化金属氧化物催化作用机制-2z氧化物表面的M=O键性质与催化活性的关联z晶格氧(O=)的催化作用:对于金属氧化物催化剂表面发生氧化反应时,作为氧化剂的氧存在吸附氧与晶格氧两种形态。
晶格氧由于氧化物结构产生。
选择性氧化(Selective Oxidation)是固体氧化物催化剂应用主要方向之一。
在选择性氧化中,存在典型的还原-氧化催化循环(Redox mechanism))。
这里晶格氧直接参与了选择性氧化反应。
z根据众多的复合氧化物催化氧化可以概括出:1 选择性氧化涉及有效的晶格氧;2 无选择性完全氧化反应,吸附氧和晶格氧都参加了反应;3 对于有两种不同阳离子参与的复合氧化物催化剂,一种阳离子M+承担对烃分子的活化与氧化功能,它们再氧化靠晶格氧O=;另一种金属氧化物阳离子处于还原态,承担接受气相氧。
金属氧化物催化剂及其催化作用金属氧化物催化剂通常为复合氧化物(complex oxides),即多组分的氧化物。
如V O -MoO , TiO -V 2O 5-P 2O 5,V 2O 5-MoO 3-Al 2O 3。
组分中至少有一个组分是过渡金属氧化物。
组分与组分之间可能相互作用,作用的情况因条件而异。
复合氧化物系通常是多相共存,如MoO 3-Al 2O 3,就有α-、β-、复杂,有固溶体、有杂多酸、有混晶等。
就催化作用与功能来说,有的组分是主催化剂,有的组分为助催化剂或者是载体。
金属氧化物催化作用机制-1z半导体的能带结构z催化中重要的是非化学计量的半导体,有n型和p型两大类。
非计量的化合物ZnO是典型的n型半导体(存在自由电子而产生导电行为)。
NiO是典型的p型半导体,由于缺正离子造成非计量性,形成氧离子空穴,温度升高时,此空穴变成自由空穴,可在固体表面迁移,成为NiO导电的来源。
z Fermi能级E f是表征半导体性质的一个重要物理量,可以衡量固体中电子逸出的难易,它与电子的逸出功∅直接相关。
∅是将一个电子从固体内部拉到外部变成自由电子所需的能量,此能量用以克服电子的平均位能,Fermi能级E就是这种平均位能。
fz对于给定的晶格结构,Fermi能级E f的位置对于其催化活性具有重O分解催化反应。
要意义。
如Nxz XPS研究固体催化剂中元素能级变化金属氧化物催化作用机制-2z氧化物表面的M=O键性质与催化活性的关联z晶格氧(O=)的催化作用:对于金属氧化物催化剂表面发生氧化反应时,作为氧化剂的氧存在吸附氧与晶格氧两种形态。
晶格氧由于氧化物结构产生。
选择性氧化(Selective Oxidation)是固体氧化物催化剂应用主要方向之一。
在选择性氧化中,存在典型的还原-氧化催化循环(Redox mechanism))。
这里晶格氧直接参与了选择性氧化反应。
z根据众多的复合氧化物催化氧化可以概括出:1 选择性氧化涉及有效的晶格氧;2 无选择性完全氧化反应,吸附氧和晶格氧都参加了反应;3 对于有两种不同阳离子参与的复合氧化物催化剂,一种阳离子M+承担对烃分子的活化与氧化功能,它们再氧化靠晶格氧O=;另一种金属氧化物阳离子处于还原态,承担接受气相氧。
1、催化剂定义催化剂是一种能够改变化学反应速度而不能改变反应的热力学平衡位置,且自身不被明显消耗的物质。
2、催化剂活性、表示方法(1)活性定义:一般,指定条件下(压力、温度)一定量催化剂上的反应速率(来衡量)。
(2)表示方法:对于反应, ,速率3、催化剂选择性、表示方法(1)定义:当反应可以按照热力学上几个可能的方向进行时,催化剂可以选择性地加速其中的某一反应。
4、载体具有哪些功能和作用?8①分散作用,增大表面积,分散活性组分;②稳定化作用,防止活性组分熔化或者再结晶;③支撑作用,使催化剂具备一定机械强度,不易破损;④传热和稀释作用,能及时移走热量,提高热稳定性;⑤助催化作用,某些载体能对活性组分发生诱导作用,协助活性组分发生催化作用。
5、催化剂选择考虑因素:选择性>寿命>活性>价格工业催化剂:6、催化剂一般组成1)活性组份或称主催化剂2)载体或基质3)助催化剂7.催化剂分类按物相均一性:均相催化、多相催化、酶催化按作用机理:氧化还原催化,酸碱催化(离子型机理,生成正碳离子或负碳离子)配位催化:催化剂与反应物分子发生配位作用而使反应物活化。
按反应类型分类:加氢、脱氢、部分氧化、完全氧化、水煤气、合成气、酸催化、氯氧化、羰基化、聚合8、多相催化反应的过程步骤可分为哪几步?实质上可分为几步?(1)外扩散—内扩散—化学吸附—表面反应—脱附—内扩散—外扩散(2)物理过程—化学过程—物理过程9、吸附是如何定义的?物理吸附与化学吸附的本质不同是什么?吸附:气体与固体表面接触时,固体表面上气体的浓度高于气相主体浓度的现象。
固体表面吸附:物理吸附:作用力:van der Waals力静电力:具有永久偶极矩的分子间的静电吸引力诱导力:容易极化的分子被极性分子诱导产生的诱导偶极子和永久偶极子之间的作用力色散力:原子内电子密度的瞬时诱导邻近原子产生偶极而致的两个瞬时偶极子之间的相互作用力化学吸附:作用力:价键力,形成化学键本质:二者不同在于其作用力不同,前者为范德华力,后者为化学键力,因此吸附形成的吸附物种也不同,而且吸附过程也不同等诸多不同。
烃类晶格氧选择性氧化催化剂研究进展郭丛聪;李剑;董家丽;杨丽娜【摘要】Lattice oxygen replacing gas phase oxygen is a new technology of selective oxidation and partial oxidation of hydrocarbons. Through using the technology, high selectivity can be obtained because deep oxidation can be restrained. This new technology can increase productive power as well as decrease cost because it is limited by the explosion limit. In this paper, the reaction mechanism of oxidation with lattice oxygen was introduced. Present situation of lattice oxygen catalysts for selective oxidation of hydrocarbons was reviewed, and then the development tendency of the lattice oxygen catalysts was discussed.%用晶格氧代替气相氧,是烃类选择性氧化一种新工艺,该工艺可以避免烃类的深度氧化,提高选择性,不受爆炸极限的限制,可以提高生产能力,降低成本。
本文介绍了晶格氧氧化的反应机理,综述了不同烃类选择性氧化中的晶格氧催化剂的制备及应用现状,提出未来烃类选择性氧化的晶格氧催化剂的主要发展方向。
【期刊名称】《当代化工》【年(卷),期】2014(000)004【总页数】3页(P573-575)【关键词】烃类;晶格氧;选择性氧化;催化剂【作者】郭丛聪;李剑;董家丽;杨丽娜【作者单位】辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺 113001;辽宁石油化工大学,辽宁抚顺113001【正文语种】中文【中图分类】TQ426烃类选择性氧化难度很大,其选择性是各类催化剂中最低的,且反应历程复杂,难以找出普遍性规律,提高目的产物的选择性是烃类选择性氧化中最重要的问题。
1.开发“原子经济”反应目前, 在基本有机原料的生产中, 有的已采用原子经济反应, 如丙烯氢甲酰化制丁醛、甲醇羰化制醋酸、乙烯或丙烯的聚合、丁二烯和氢氰酸合成己二腈等。
另外, 有的基本有机原料的生产所采用的反应, 已由二步反应, 改成采用一步的原子经济反应, 如环氧乙烷的生产,原来是通过氯醇法二步制备的, 发现银催化剂后, 改为乙烯直接氧化成环氧乙烷的原子经济反应。
近年来, 开发新的原子经济反应已成为绿色化学研究的热点之一。
国内外均在开发钛硅分子筛上催化氧化丙烯制环氧丙烷的原子经济新方法。
此外, 针对钛硅分子筛催化反应体系, 开发降低钛硅分子筛合成成本的技术, 开发与反应匹配的工艺和反应器仍是今后努力的方向。
在已有的原子经济反应如烯烃氢甲酰化反应中, 虽然反应已经是理想的, 但是原用的油溶性均相铑络合催化剂与产品分离比较复杂, 或者原用的钴催化剂运转过程中仍有废催化剂产生, 因此对这类原子经济反应的催化剂仍有改进的余地。
所以近年来开发水溶性均相络合物催化剂已成为一个重要的研究领域。
由于水溶性均相络合物催化剂与油相产品分离比较容易, 再加以水为溶剂,避免了使用挥发性有机溶剂, 所以开发水溶性均相络合催化剂也已成为国际上的研究热点。
除水溶性铑-膦络合物已成功用于丙烯氢甲酰化生产外, 近年来水溶性铑-膦、钌-膦、钯-膦络合物在加氢二聚、选择性加氢、C—C键偶联等方面也已获得重大进展。
C6以上烯烃氢甲酰化制备高碳醛、醇的两相催化体系的新技术国外正在积极研究。
2.提高烃类氧化反应的选择性控制氧化反应深度, 提高目的产物的选择性始终是烃类选择氧化研究中最具挑战性的难题。
反应是在没有气相氧分子的条件下进行的, 可避免气相和减少表面的深度氧化反应, 从而提高反应的选择性, 而且因不受爆炸极限的限制可提高原料浓度, 使反应产物容易分离回收, 是控制氧化深度、节约资源和保护环境的绿色化学工艺。
根据上述还原/氧化模式, 国外一家公司已开发成功丁烷晶格氧氧化制顺酐的提升管再生工艺, 建成第一套工业装置。
“绿色催化”浅述杨双春 王 东 张洪林(辽宁石油化工大学石化学院 抚顺 113001)摘 要 催化是化学工业的基石。
许多国家尤其是发达国家,非常重视催化技术的发展和催化剂的创制,均将催化技术作为新世纪优先发展的领域。
催化过程,包括各种形式的化学催化和生物催化,是实现高原子经济反应的重要途径。
为克服传统化学反应带来的环境危害,目前,学术界和化工界正致力于发展环境友好的催化过程。
关键词:绿色化学 原子经济 可持续性发展 酶催化 纳米催化Abstract:The catalysis is the foundation of chemical industry.Many countries,particularly the advanced countries,attach importance to the development of the catalysizing technology and fomulating catalyst.The catalysing technology is preferentially considered as a research field in this century.Catalysis process,including all the chemistry catalysis and the biology catalysis,is the important way to realize the high atom reaction. To avoicing the harms of the traditional chemical reaction,at present,the academe and the chemical industry group are being devoted to develop the environmental and friendly catalysis process.keyw ord:green chemistry atom economy the sustained development enzyme catalysis nanometer catalysis1 前言绿色化学是20世纪末崛起的一门新兴学科,相对于传统化学它是未来化学化工发展的主要方向之一。
吸附质演化机制和晶格氧机制解释说明以及概述1. 引言概述:本文旨在探讨吸附质演化机制和晶格氧机制,并对其进行解释说明和概述。
吸附质的演化机制是指吸附质发生变化的原因和过程,而晶格氧机制主要关注晶格氧在化学反应中的作用和角色。
文章结构:本篇文章将分为四个部分展开讨论。
首先,在引言部分,我们将对文章的目标进行概述,并介绍文章的结构,以便读者能够更好地理解整个文本。
其次,我们将详细讨论吸附质演化机制部分,在这一章节中我们会定义与背景知识、吸附质变化的原因以及演化过程与机制进行介绍。
接下来,我们转向晶格氧机制解释说明部分,首先给出晶格氧的定义和作用,然后进一步探讨其在化学反应中扮演的角色,并对晶格氧机制进行解释和概述。
最后,在结论部分,我们将总结前文内容,并对未来研究方向提出展望。
目的:本文旨在阐明吸附质演化机制和晶格氧机制这两个重要概念,并通过解释说明和概述其基本原理和作用,帮助读者更好地理解这些机制在化学反应中的重要性。
同时,我们也希望为未来进一步研究提供一定的参考和展望。
2. 吸附质演化机制:2.1 定义和背景:吸附质是指在吸附表面上物理或化学吸附的物质。
在催化反应中,吸附质扮演着重要的角色,其变化可以直接影响反应过程和催化剂性能。
因此,了解吸附质的演化机制是研究催化反应及相关催化过程中重要的一部分。
2.2 吸附质变化的原因:吸附质的变化可以由多种因素导致,包括反应条件(如温度、压力等)和反应物特性等。
例如,在高温下,吸附物质可能发生脱积或扩散,导致其结构和组成发生改变;而在不同气体环境中,可能会引起表面氧原子或其他活性室向微团簇(如Pt微团)的聚集或离散。
2.3 吸附质演化的过程及机制:吸附质演化通常可分为两个阶段:单体阶段和聚集体阶段。
在单体阶段中,单个吸附物的结构和组成可能发生变化。
这可以通过多种方式实现,例如原位氧化和还原。
这种单体吸附物的演化可能会导致一些催化反应的活性位点的形成或破坏,从而影响整个反应过程。