飞思卡尔智能车电路设计讲解
- 格式:ppt
- 大小:804.00 KB
- 文档页数:32
基于飞思卡尔芯片的电磁引导智能车设计飞思卡尔智能车竞赛是由教育部高等自动化专业教学指导分委员会主办的全国大学生智能汽车竞赛。
所使用的车模是一款带有差速器的后轮驱动模型车,由组委会统一提供。
比赛跑道为表面白色,中心有0.1 mm~0.3mm直径的连续漆泡线作为引导线,其中漆泡线通有100ma交流电流。
比赛规则限定了跑道宽度50cm和拐角最小半径50cm。
飞思卡尔智能车竞赛一、硬件设计1.电磁传感器对于电磁组来说,传感器的选择是尤为重要的,最原始的办法用线圈产生磁场的办法去切割跑到上的磁场来检测道路信息,开始因为线圈的缠绕是有要求的,电感的大小也是有要求的,漆泡线的粗细也是有要求的,基于上面的问题,我们实验没有成功。
后来,围绕传感器做了很多的实验,做了两个传感器:一个是用三极管做放大的,另一个是用运放做放大的,但结果用运放成本高,运放要双电源而且一般的放大器频带窄满足不了要求,所以选择用三极管做放大。
在距离导线50mm的上方放置垂直于导线的10mh 电感,为了能够更加准确测量感应电容式的电压,还需要将上述感应电压进一步放大,一般情况下将电压峰峰值放大到1v~5v左右,就可以进行幅度检测,所以需要放大电路具有100倍左右的电压增益(40db)。
最简单的设计,可以只是用一阶共射三极管放大电路就可以满足要求。
2.速度传感器车模的驱动力来源于一个直流电动机,为了能很好地控制车模的速度,我们引入了闭环控制系统,这就需要车体能实时地或者尽可能快地了解到速度变化,从而对驱动的电压电流进行调整,尽可能快地达到设定速度并且稳定在设定速度上。
从往届的参赛队伍经验得知,使用一个增量编码器能很好地解决以上问题,终选择了欧姆龙的180线增量型光电编码器。
这款编码器为2相输出。
在实际的测试中,让单片机每10ms返回一次传感器的值,当车模在1米/秒左右速度时能返回60~70多个脉冲,当大于2.5米能返回170多个脉冲,反复测试反馈准确,稳定。
基于飞思卡尔单片机的智能汽车设计摘要本智能车系统设计以 MC9S12DG128B微控制器为核心,通过一个CMOS 摄像头检测模型车的运动位置和运动方向,使用LM1881视频分离芯片对图像进行处理,用光电传感器检测模型车的速度并使用PID 控制算法调节驱动电机的转速和舵机的方向,完成对模型车运动速度和运动方向的闭环控制。
为了提高智能车的行驶速度和可靠性,采用了自制的电路板,在性能和重量上有了更大的优势,对比了各种方案的优缺点。
实验结果表明,系统设计方案可行关键词:MC9S12DG128,CMOS 摄像头,PIDThe Research of Small and Medium-sized Electric Machinesin FuanCityAuthor:Yao fangTutor:Ma shuhuaAbstractFujianFuanCity industry of electric motor and electrical equipment is the one of the most representative phenomenon of industry cluster in FujianProvince mechanical industry. Its output value of small and medium-sized electric machines accounts for 20% of the whole province’s electrical equipment industry. The output amount of small and medium-sized electric machines from this region takes up 1/3 of that of the whole nation. Fuan electric motor and electrical equipment industry plays a significant role in the development of local national economy, being considered to be the main growth point of local economy and called "the Chinese electric motor and electrical equipment city ".This paper launched a research on small and medium- sized electric machines in Fuan city from two angles. The first one inferred the situation of Fuan electric machine industrial cluster as well as the analysis of the temporary existed problems, and then propose a few of suggestions on the part of local government. The second part focus on the improvement of the competitiveness of Fuan electric machine enterprises, through the application of Michael Porter's Five Forces Model into the local industry of electric machine, consequently carried out some strategies local enterprises should take.Key Words:small and medium-sized electric machines, Five Forces Model, industrial cluster目录1 绪论11.1智能车竞赛背景介绍11.2智能车系统设计思路及方案分析21.3系统整体设计结构图32 机械结构的调整与设计32.1机械安装结构调整42.2舵机安装方式的调整42.3摄像头的安装52.4测速码盘的安装52.5前轮倾角的调整62.6地盘高度的调整72.7齿轮传动机构及后轮差速的调整73 硬件电路的设计与实现83.1硬件电路设计方案83.2硬件电路的实现83.2.1 以S12为核心的单片机最小系统83.2.2 主板133.2.3 电机驱动电路183.2.4 摄像头233.2.5 速度传感器243.2.6 加速度传感器243.2.7 去抖动电路254 软件系统设计与实现274.1软件系统结构方案选择274.2软件主流程274.3端口分配284.4底层驱动程序设计294.4.1 时钟模块294.4.2 PWM模块304.4.3 外部中断模块304.4.4 ECT模块314.4.5 AD模块314.4.6 串口模块324.4.7 普通IO模块324.4.8 实时中断334.5图像信息处理及道路识别程序设计334.5.1 赛道提取算法344.5.2 有一定抗干扰和抗反光能力的黑线提取算法364.5.3 道路识别算法384.6起跑线识别程序设计394.7车体控制程序设计404.7.1 舵机控制算法404.7.2 速度控制算法42结论42致谢43参考资料43附录44附录A441 绪论1.1智能车竞赛背景介绍全国大学生飞思卡尔杯智能车竞赛是教育部主办的面向全国大学生的五大赛事之一<另外四个:数学建模、电子设计、机械设计、结构设计)。
目录一.系统整体框图 (3)二.各模块电路 (3)三.材料清单 (11)四.赛道分析 (12)五.PID算法 (14)六.软件介绍 (17)七.程序分析 (20)八.结束语 (24)一.系统整体框图二.各模块电路1电源模块大赛提供的是7.2V的镍镉可充电电池,而单片机,方向传感器,速度传感器,使用的是5V电源,舵机使用的是6v电源,这就需要把7.2V分别经稳压电路转换为5V 、6V我们分别使用如下电路。
2)6V稳压电路作为智能车的动力来源,电池性能的好坏直接影响到整个车的运动效果,因此正确使用电池就非常重要,因此我们对电池的正确管理和合理使用采取了如下方案:2电机模块对于电机的驱动我们采用了两片MC33886级联的形式以增加它的驱动能力,通过两路PWM信号来控制,可以实现电机的正反转。
在编程的时候通过改变PWM的占空比来控制电机加速减速,对于MC33886使用时会发热的现象,我们对MC33886才用安装散热片的方法,经我们查阅资料可得这种方法效果很好。
MC33886驱动电路:3显示模块在调试过程中,为了方便观察小车的状态(例如小车的行驶速度等),我们安装了4个8断数码管显示电路,此模块可以更具实际情况选择是否连接。
4舵机模块舵机的工作频率为50Hz,但由于小车的速度太快,工作在这种频率下舵机的响应速度太慢不能满足要求,经我们查阅资料可得,舵机在100Hz的情况下仍可以很好的工作,并且可以满足小车快速行驶时对舵机响应较快的要求,因此在编写程序时我们把控制舵机的PWM 信号的频率设置为100Hz,这样就满足了要求。
此外为了提高舵机的响应速度,我们还采用了如下方案:1)正极串联一个二极管。
2)把舵机的臂加长。
等等。
下面我们列出了一种舵机的基本参数,和如何通过编程的方法来控制舵机调整方向。
舵机控制5测速模块测速的方法有很多,例如光电编码器,霍尔传感器……我们使用的是霍尔传感器来测量速度,如图当小车转动一周,霍尔开关将输入2个脉冲到单片机。
自动循迹智能小车制作目录摘要................................................................. 错误!未定义书签。
1 设计要求 (3)2 方案的选择与比较 (3)2.1 主控芯片选择 (3)2.2 电源的选择 (3)2.3 寻迹方案 (4)2.3 电机驱动方案 (4)3 最终方案 (5)4各功能模块的实现 (6)4.1 微控制器模块的设计 (6)4.2电源模块原理图 (6)4.3 TCRT5000红外检测模块 (6)4.4 系统PCB图 (7)4.5 系统程序流程图 (8)5 性能测试 (9)6 性能评价及总结 (10)7 附录 (11)附录1:元件清单 (11)附录2 系统原理图 (12)附录3系统程序 (13)8参考文献 (19)1 设计要求设计一自动寻迹小车,其实现功能如下:1.使其能够检测到轨迹的路线,并按照预订轨迹运行;2.要求在小车冲出预定路线后能够自动回到预定轨迹上;3.小车能够按多种不同的轨迹运行。
2 方案的选择与比较2.1 主控芯片选择方案1:采用51系列单片机,该系列单片机结构简单,但是能实现很多功能。
与其它单片机相比较价格便宜。
端口电流较大,可以达到20mA,驱动能力强。
方案2:采用msp430系列单片机,该系列单片机片上资源丰富,功能强大,但是端口灌电流和拉电流较小,驱动能力不强。
它主要运用在需要低功耗的地方。
本系统主要是进行寻迹运行的检测以及电机的控制,经过对比分析,我们选用AT89S52单片机作为主控芯片来驱动电机,进而控制电机转速。
2.2 电源的选择方案1:采用9V蓄电池为直流电机供电,将9V电压降压、稳压后给单片机系统和其他芯片供电。
蓄电池具有较强的电流驱动能力以及稳定的电压输出性能。
虽然蓄电池的体积过于庞大,在小型电动车上使用极为不方便。
方案2:采用9V南孚干电池直接个电机驱动芯片L298N供电,并将9V经过7805稳压及电容滤波后给单片机供电。
车辆工程技术214机械电子飞思卡尔摄像头智能车设计分析翟朋辉(重庆交通大学 机电学院,重庆 400074)摘 要:基于MT9V032数字摄像头和飞思卡尔K60单片机实现了自主寻迹的智能小车设计。
分别介绍了智能车车体构造及系统整体设计方案、智能车硬件设计、智能车图像处理算法及电机PID控制算法。
测试过程发现该设计方案具有良好的可行性,小车运行稳定。
关键词:摄像头;K60单片机;智能车 现如今无人驾驶技术正蓬勃发展,许多技术日益趋于成熟。
各种传感器技术的持续进步也必将推动无人驾驶技术研究更上一个台阶,愈加可靠的智能车走进我们的生活指日可待。
本次设计中的摄像头智能车本着同样的设计原则,追求快速性、稳定性、精确性。
智能车以飞思卡尔单片机为控制核心、摄像头进行路径识别,PID算法控制小车行进速度。
1 车体构造及系统整体设计1.1 车体构造 为了使小车在行驶时尽可能地保持快速、平稳,硬件安装时应注意降低小车重心,如将电池、主板、电机尽量放置在同一平面;搭建硬件时采用高强度质量轻的材料;摄像头的放置应尽可能地使视野开阔,尽量减少盲区。
此外,机械安装上的一些细小差别,如螺丝的松紧程度等都可能对小车行驶造成巨大影响,因此安装时要不断进行调试检验。
1.2 系统整体设计 智能车以飞思卡尔K60微控制器为核心控制单元,摄像头用来获取赛道信息,并将采集到的信息传送给核心控制单元处理,处理后的结果作为小车接下来行驶路径规划的依据;采用编码器对小车速度进行实时检测;PID算法用于对电机转速的反馈控制,从而实现对小车运行速度的闭环控制。
智能车共有五大模块:核心控制器模块、摄像头检测模块、速度检测模块、电机驱动模块、电源供电模块。
2 摄像头智能车硬件设计2.1 核心控制器模块 智能小车使用K60单片机,作为整个系统的控制核心。
其具有处理速度快、性能稳定及体积小的特点,主要用于对传感器检测到的信息进行分析处理从而控制小车行进,以及利用PID算法对小车的速度进行闭环控制。
飞思卡尔智能车设计方案一:项目名称:第五届飞思卡尔智能汽车。
二:设计要求:参考飞思卡尔智能车竞赛基本要求。
三:设计制作思路为了用单片机系统实现小车智能控制,本设计以MC9S12DG128为核心,附以外围电路,将摄像头传感器得到的图像信息进行综合判别和处理,并通过速度传感器获得当前车辆速度,然后发出指令给电机驱动器(包括舵机和驱动电机),控制小车,从而使小车能够快速、准确地识别特定路线行驶。
快速准确的图像分析处理、准确的实时速度控制、CPU的综合数据处理为小汽车实现自动加速、减速、限速、左转、右转提供了充分的保证。
通过组装车模、传感器的选择与布置、系统电路板的设计与安装、仿真软件的制作、安装与调试以及控制算法的调试等等,首先使智能车运行起来,由低速逐渐向高速过渡。
在实验的基础上不断发现问题,不断调试,不断解决问题,使智能车能够最大限度的沿着轨道快速、准确的行驶。
四:方案1.路径识别系统软硬件设计方案:§道路寻找软件设计由于每行搜索的是最黑点,因此可以将黑点的阈值稍稍扩大一点,即使远方的黑白不清,由于找的是最黑点因此还是可以提取出真确的黑线的.它的主要问题是,不一定每行都有符合要求的点,会造成一行丢失而失去后面的黑点.解决的方法是当发现一行丢失以后,不立即退出搜索,而是置一个丢失计数器,只有当丢失计数器的值连续累加到一定的阈值后才退出.当每次搜索到一行的黑线后看看丢失计数器是否为非零.若不是,则说明前面没有丢失行.若是,则说明前面有几行丢失了.我们可以根据这一行与上以有效行对中间的丢失行对中间的丢失行做一个线性化处理.然后清零丢失计数器.有了丢失计数器,我们可以对赛道的提取条件加以严格的限制,而不必担心黑线的漏检.比如我们可以严格限制黑线的宽度,这样我们可以很容易滤除看到大块的黑斑带来的干扰;对于上述的斜看十字交叉线的问题我们只要根据上一行的黑线严格限制下一行黑线出现范围便可轻松滤除.当然在发现丢失行以后对于下一行的搜索必需加大黑线搜索的范围,允许的连续丢失行越多则再次找回的黑线的可信度也就越低,在实际的提取过程中必须把握好这一阈值,使得即可以顺利找到前方的道路,又不至于误提取黑线.实际证明这种方法实现简单,可靠性也最高,黑线提取十分稳定。
飞思卡尔智能车控制系统硬件设计硬件部分:电机舵机传感器车模电机:主要作用是产生驱动转矩,作为小车的动力源。
舵机:能够转舵并保持舵位的装置,也就是让小车拐弯的装置。
传感器:能感受规定的被测量并按照一定的规律转换成可用输出信号的器件或装置,在智能车中,最重要的传感器就是摄像头。
车模:智能车车架,包括底板、齿轮、车轮、电池等等。
主要内容:•MCU最小系统设计•电机及舵机驱动电路设计•光电检测电路原理与设计•图像检测原理与设计1.控制系统的构成一般控制系统由传感器、控制器和执行器组成。
智能车中主要体现:光电器件或器件构成的寻线传感器。
用于操纵小车行走和转向的执行器。
根据传感器信息控制执行器动作的控制器。
三者之间的关系可用如下的关系图描述:飞思卡尔杯规定了比赛用车模、控制器所使用的MCU、执行器、传感器的数量等,比赛中硬件设计所涉及的主要工作是:•设计可靠的MCU控制电路;•执行器驱动电路;•传感器电路;(进行硬件设计的工具很多,建议使用Protel99SE,该软件易上手、效率高,可满足一般电路设计要求。
)MC9S12DG128 的封装2 .MCU最小系统设计MCU最小系统设计分为供电系统设计、复位系统设计、时钟电路设计、BDM调试接口设计、串口通讯设计。
2.1 MCU供电系统设计MCU正常工作需要合理供电,为获取良好的抗干扰能力,电源设计很重要。
针对此次比赛使用的电池和MCU,在供电系统设计中要充分考虑以下因素的影响:1.系统供电电源为7.2V镍氢电池组,不能直接为MCU及其它TTL电路供电。
2.为保证较高的行驶速度,驱动电机需使用电池组直接驱动,故电源电压波动较大。
3.转向用舵机工作电压为5V,其启动电流较大,如与MCU共用5V电源,会引入较大的干扰。
4.采用三端稳压器7805存在效率低、抗干扰能力差的缺点。
采用三端稳压器的电源设计:升降压开关稳压电路•MCU供电飞思卡尔S12系列单片机采用了若干组电源,必须很好的对这些供电电源进行良好的滤波,才能设计出抗干扰能力强的控制器。
智能车制作全过程(飞思卡尔)如果我写得好,请顶我一下,我将再接再厉!(本人在很久以前做的一辆用来比赛的智能车--获得华北一等奖,全国二等奖,有许多可改进地方.)下面我们来立即开始我们的智能车之旅:首先,一个系统中,传感器至关重要."不管你的CPU的速度如何的快,通信机制如何的优越,系统的精度永远无法超越传感器的精度" .是的,在这个系统中,传感器的精度,其准确性就显得至关重要.如果你问我传感器的电路,呵呵,我早就和大家分享了,在我发表的日志中,有一篇<<基于反射式距离传感器>>的文章就详细的说明了传感器的硬件电路以及可以采取的信号采样方式.传感器安装成一排,如上面排列.(就是个一字排列,没有什么特别)接下来,看看我们如何处理传感器得到的信息:大家看到了.结构很简单,我们已经搞定了传感器通路.下面我们来看看多机的控制方面的问题:其实,不管是便宜还是比较贵的舵机,都是一样的用法.舵机的特点就是不同的占空比方波就对应着舵机的不同转角.当然不同的舵机有不同的频率要求.比如我用的这个舵机:方波频率50HZ.怎么改变占空比?这个不就是PWM模块的功能嘛.PWM模块可以输出任意占空比的方波.只要你控制其中的占空比寄存器,就可以直接控制舵机的转角.你只要将传感器的状态和这个占空比对应上,不就OK了?就这么简单,做到这里,你就可以让你的车在跑道上跑了!接下来,我们的工作是让智能车更加完善:速度要稳定.在当前的系统结构中,要使一个系统更稳定更可靠,闭环系统是一个选择.(如果你不知道什么是闭环系统,可以参照我的文章里面的一篇"基于单片机的PID电机调速"),既然是一个闭环系统,速度传感器是必不可少的,用什么样的传感器做为速度反馈呢:仔细看,和后轮之间有一条皮带的这个貌似电机的东西,就是我的速度传感器,它的学名叫"旋转编码器".这个器件的特点就是:每转一圈,就会从输出端输出一定的脉冲,比如我这个旋转编码器是500线的,就是转一圈输出500个脉冲.因此,我只要在单位时间内计数输出端输出的脉冲数,我就可以计算出车辆的速度.显然,这个速度可以用来作为PID速度调节的反馈.现在有了反馈,我们需要的是调节智能车驱动电机的速度了,如何来调速,就成了必须解决的问题了.我用的是驱动芯片MC33886. 其实,这个芯片就是一个功率放大的模块.我们知道,单片机输出的PWM信号还是TTL信号,是不能直接用来驱动电机的.非要通过功率模块的放大不可.这个道理其实很简单,就像上次我给大家画的哪个电子琴电路的放大电路一样:看上面的那个三极管,就是将TTL电路的电流放大,才能够来驱动蜂鸣器.其实这里的这个MC33886就是这样的一个作用.而且我们自己也完全可以用三极管自己搭建一个这样的功率放大电路,当然,驱动能力肯定不如这里的这个MC33886(如我们用三极管就搭建了超过MC33886的电路,摩托罗拉就不会卖几十块钱一个了.呵呵.)知道了这个MC33886的工作原理,就好说了,一句话,通过PWM来调节电机的速度.当方波中高电平占的比例大,电机的平均电压肯定高,转速肯定快.也就是说,PWM的占空比越大,电机转速越高.看,就这么简单,这个智能车就做好了.接下来,我们就把我们知道的PID知识放到舵机和直流驱动电机的控制中去.就可以达到一个比较好的控制效果.如果要达到更高的水平,肯定机械方面的改造也少不了.当然,这不属于本文的讨论范围.呵呵.智能车制作全过程(飞思卡尔---舵机篇发表于 2008/11/28 10:00:55感谢大家的支持!如果我写得好,请顶我一下!智能车的制作中,看经验来说,舵机的控制是个关键.相比驱动电机的调速,舵机的控制对于智能车的整体速度来说要重要的多.PID算法是个经典的算法,一定要将舵机的PID调好,这样来说即使不进行驱动电机的调速(匀速),也能跑出一个很好的成绩.机械方面:从我们的测试上来看,舵机的力矩比较大,完全足以驱动前轮的转向.因此舵机的相应速度就成了关键.怎么增加舵机的响应速度呢?更改舵机的电路?不行,组委会不允许.一个非常有效的办法是更改舵机连接件的长度.我们来看看示意图:从上图我们能看到,当舵机转动时,左右轮子就发生偏转.很明显,连接件长度增加,就会使舵机转动更小的转角而达到同样的效果.舵机的特点是转动一定的角度需要一定的时间.不如说(只是比喻,没有数据),舵机转动10度需要2ms,那么要使轮子转动同样的角度,增长连接件后就只需要转动5度,那么时间是1ms,就能反应更快了.据经验,这个舵机的连接件还有必要修改.大约增长0.5倍~2倍.在今年中,有人使用了两个舵机分别控制两个轮子.想法很好.但今年不允许使用了.接下来就是软件上面的问题了.这里的软件问题不单单是软件上的问题,因为我们要牵涉到传感器的布局问题.其实,没有人说自己的传感器布局是最好的,但是肯定有最适合你的算法的.比如说,常规的传感器布局是如下图:这里好像说到了传感器,我们只是略微的一提.上图只是个示意图,意思就是在中心的地方传感器比较的密集,在两边的地方传感器比较的稀疏.这样做是有好处的,大家看车辆在行驶到转弯处的情况:相信看到这里,大家应该是一目了然了,在转弯的时候,车是偏离跑道的,所以两边比较稀疏还是比较科学的,关于这个,我们将在传感器中在仔细讨论。