.分式的加减乘除混合运算
- 格式:ppt
- 大小:300.01 KB
- 文档页数:31
分式混合运算的顺序一、分式混合运算的基本概念说到分式混合运算,估计很多人都会一头雾水吧。
别急,慢慢来,咱们今天就来聊聊这个让不少人“头大”的东西。
简单来说,分式混合运算就是带有分数的加减乘除的运算,它看似复杂,但其实也没那么吓人。
比如你看到一个式子:(frac{1{2+frac{3{4timesfrac{5{6divfrac{7{8),是不是眼睛一翻,头都晕了?别担心,其实就跟咱们平常做加减法乘除法一样,只不过多了些“分母”和“分子”,不过顺序可不能乱了哦!这可是“天条”啊,稍微搞错顺序,结果就可能大错特错。
你看,咱们平时做算式的时候,都知道有一个顺序对吧?比如,括号先做,乘除先于加减,那分式混合运算也是如此。
大家要记住:括号里的先做,然后就是乘除先于加减,再来就是从左到右的顺序,千万不能头重脚轻。
这样一来,步骤有条不紊,结果也能靠谱得很。
二、如何理解运算顺序咱们再具体聊聊如何应用这个顺序。
比方说,遇到一个式子,(frac{3{4timesfrac{2{5+frac{7{8),一看没什么特别的,是不是?不过你得记住,首先是乘法,先做乘法,(frac{3{4timesfrac{2{5=frac{6{20)。
这个算出来了之后,咱们再加上(frac{7{8),那么接下来的步骤就是把分母统一,才能顺利得出结果。
这里有个小窍门,很多人不太喜欢记分数的通分法,那就直接用计算器“叮咚”一下,轻松搞定。
咱们这些“土方法”也能解决掉不少麻烦!不过话说回来,很多人一开始就犯了个常见的错误——看到分式就想“掉头走”了,觉得很麻烦,头一大就放弃了。
你们别急,掌握了顺序之后,分式根本没啥可怕的。
就像做饭一样,先把锅烧热,再放油,放菜,最后撒点盐,按部就班,结果总是好吃的。
三、分式的加减法我们要聊聊加减法了。
说到加减法,很多人总觉得没什么可说的——加法就加,减法就减,简单啊!不过等到分式里来,事情就复杂了。
想想看,如果你遇到这种式子:(frac{1{3+frac{1{4),咋办?分母不同,没办法直接加呀!那怎么办?咱们要先找最小公倍数,然后通分。
《分式加减乘除混合运算》知识清单一、分式的基本概念分式是指形如$\frac{A}{B}$的式子,其中$A$、$B$ 是整式,且$B$ 中含有字母。
在分式中,分母$B$ 不能为零,否则分式无意义。
二、分式的基本性质分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
即:$\frac{A}{B}=\frac{A×M}{B×M}$,$\frac{A}{B}=\frac{A÷M}{B÷M}$($M$ 为不为零的整式)三、分式的约分把一个分式的分子与分母的公因式约去,叫做分式的约分。
约分的关键是确定分子和分母的公因式。
四、分式的通分把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
通分的关键是确定几个分式的最简公分母。
五、分式的加减运算1、同分母分式相加减,分母不变,分子相加减。
即:$\frac{A}{C}±\frac{B}{C}=\frac{A±B}{C}$2、异分母分式相加减,先通分,变为同分母的分式,再加减。
即:$\frac{A}{B}±\frac{C}{D}=\frac{AD}{BD}±\frac{BC}{BD}=\frac{AD±BC}{BD}$六、分式的乘除运算1、分式的乘法法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母。
即:$\frac{A}{B}×\frac{C}{D}=\frac{AC}{BD}$2、分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
即:$\frac{A}{B}÷\frac{C}{D}=\frac{A}{B}×\frac{D}{C}=\frac{AD}{BC}$七、分式的乘方运算分式的乘方要把分子、分母分别乘方。
即:$(\frac{A}{B})^n=\frac{A^n}{B^n}$八、分式加减乘除混合运算的顺序1、先乘方,再乘除,最后加减。
分式的加减法与乘除法分式(Fraction)是数学中的一个重要概念,用来表示有理数的形式。
分式由分子和分母组成,分子表示被分割的单位数量,而分母表示整体被分成的份数。
在数学中,我们经常会遇到需要对分式进行加减法和乘除法的运算。
本文将详细介绍分式的加减法和乘除法的运算规则,并提供一些例子来帮助读者更好地理解。
一、分式的加减法1. 加法两个分式的加法规则:分子相乘加分母相乘。
例如:$\frac{a}{b} + \frac{c}{d} = \frac{ad+bc}{bd}$这个规则同样适用于多个分式相加。
例如:$\frac{a}{b} + \frac{c}{d} + \frac{e}{f} = \frac{adf + bcf + bde}{bdf}$2. 减法两个分式的减法规则:分子相乘减分母相乘。
例如:$\frac{a}{b} - \frac{c}{d} = \frac{ad-bc}{bd}$同样地,这个规则也适用于多个分式相减。
例如:$\frac{a}{b} - \frac{c}{d} - \frac{e}{f} = \frac{adf - bcf -bde}{bdf}$二、分式的乘除法1. 乘法两个分式的乘法规则:分子相乘,分母相乘。
例如:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$这个规则同样适用于多个分式相乘。
例如:$\frac{a}{b} \times \frac{c}{d} \times \frac{e}{f} =\frac{ace}{bdf}$2. 除法两个分式的除法规则:将第一个分式的分子乘以第二个分式的倒数。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \times\frac{d}{c} = \frac{ad}{bc}$同样地,这个规则也适用于多个分式相除。
例如:$\frac{\frac{a}{b}}{\frac{c}{d}} \div\frac{\frac{e}{f}}{\frac{g}{h}} = \frac{a}{b} \times \frac{d}{c} \div\frac{f}{e} \times \frac{h}{g} = \frac{adh}{bcfge}$三、实例演算让我们通过几个实际运算的例子来更好地理解分式的加减法和乘除法。
分式的加减乘除乘方混合运算在数学中,分式是由分子和分母组成的表达式,表示两个数的商。
分式可以进行加、减、乘、除以及乘方等混合运算。
本文将介绍和讲解如何进行分式的加减乘除乘方混合运算。
一、分式的加法运算分式的加法运算是指将两个分式相加的操作。
要进行分式的加法运算,需要保证两个分式的分母相同,然后分别将分子相加,再将分子写在分式的分子位置上,分母不变。
例如:1/3 + 2/3 = (1+2)/3 = 3/3 = 1二、分式的减法运算分式的减法运算是指将两个分式相减的操作。
同样地,要进行分式的减法运算,也需要保证两个分式的分母相同,然后分别将分子相减,再将分子写在分式的分子位置上,分母不变。
例如:5/6 - 1/6 = (5-1)/6 = 4/6 = 2/3三、分式的乘法运算分式的乘法运算是指将两个分式相乘的操作。
要进行分式的乘法运算,只需要将两个分式的分子相乘,将两个分式的分母相乘,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:2/5 * 3/4 = (2*3)/(5*4) = 6/20 = 3/10四、分式的除法运算分式的除法运算是指将一个分式除以另一个分式的操作。
要进行分式的除法运算,需要将第一个分式的分子乘以第二个分式的倒数,也就是将第一个分式的分子乘以第二个分式分数倒数的分子,将第一个分式的分母乘以第二个分式分数倒数的分母。
例如:1/2 ÷ 2/3 = (1/2)*(3/2) = 3/4五、分式的乘方运算分式的乘方运算是指将一个分式进行指数运算的操作。
要进行分式的乘方运算,需要将分式的分子和分母分别进行指数运算,然后将得到的新分子写在新分式的分子位置上,得到的新分母写在新分式的分母位置上。
例如:(1/2)^2 = 1^2 / 2^2 = 1/4六、分式的混合运算分式的混合运算是指将分式的加减乘除以及乘方运算混合在一起进行的操作。
在进行混合运算时,需要根据运算法则依次进行各个运算的步骤,最终得到结果。
人教版八年级数学上册15.2.2.2《分式的混合运算》教案一. 教材分析人教版八年级数学上册15.2.2.2《分式的混合运算》一节,主要让学生掌握分式的加减乘除运算规则,以及混合运算的运算顺序。
这一节内容在分式知识体系中占据重要地位,为后续分式方程和不等式的学习打下基础。
教材通过例题和练习,使学生熟练掌握分式混合运算的方法和技巧。
二. 学情分析八年级的学生已经学习了分式的基本概念和运算规则,对分式有了一定的认识。
但学生在混合运算方面,可能会存在运算顺序混乱、对运算规则理解不深等问题。
因此,在教学过程中,需要引导学生理清运算顺序,加深对运算规则的理解。
三. 教学目标1.让学生掌握分式的加减乘除运算规则。
2.培养学生解决分式混合运算问题的能力。
3.提高学生对数学运算的兴趣和自信心。
四. 教学重难点1.重点:分式的加减乘除运算规则,混合运算的运算顺序。
2.难点:理解并运用运算规则解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究分式混合运算的规则。
2.用实例讲解,让学生在实际问题中体会运算规则的应用。
3.运用小组合作学习,培养学生团队合作精神。
4.及时反馈,激发学生学习兴趣。
六. 教学准备1.准备相关例题和练习题,涵盖分式混合运算的各种情况。
2.制作课件,辅助讲解和展示。
3.准备黑板,用于板书关键步骤和结论。
七. 教学过程1. 导入(5分钟)以一个实际问题引入:某商店举行打折活动,原价100元的商品,打8折后售价是多少?让学生尝试用分式混合运算解决这个问题。
2. 呈现(10分钟)讲解分式混合运算的规则,通过PPT展示各种类型的题目,让学生观察和分析,引导学生发现运算规律。
3. 操练(10分钟)让学生独立完成PPT上的练习题,教师巡回指导,及时解答学生的疑问。
4. 巩固(10分钟)学生分组讨论,互相检查答案,教师随机抽取学生回答,检验掌握情况。
5. 拓展(10分钟)让学生举例说明分式混合运算在实际生活中的应用,分享给其他同学。