半挂车车架主纵梁的有限元分析[1]
- 格式:pdf
- 大小:284.05 KB
- 文档页数:4
重型半挂车车架有限元分析作者:北京理工大学林程陈思忠吴志成摘要:本文采用了参数化建模方法建立了60t 重型半挂车车架有限元模型,采用了曲棱四面体等参单元,比传统方法提高了建模效率和可修改性以及计算精度。
文中介绍了车架有限元模型的简化方法和不同工况下的力学模型抽象方法,根据计算结果,改进了结构并进行了验算,最后对有限元计算误差产生的可能原因进行了论述。
关键词:车架半挂车有限元方法参数化建模1 前言泰安专用汽车制造厂开发研制的重型半挂车将承担60t 坦克的运输任务,为了全面了解该半挂车车架在不同工况下的强度和刚度状况,确定应力危险点、进行优化分析等,对其进行了有限元分析。
分析计算利用Pro/Engineer 软件对车架进行了三维实体参数化建模,并将模型导入Ansys 软件中进行边界条件设定、加载、网格划分、计算及后处理。
该方法的优势在于充分发挥了这两种的优势,Pro/Engineer 软件是功能强大的参数化建模软件,可轻易实现三维实体模型的建立和修改;而Ansys 软件是著名的工程分析软件,但在建立象半挂车车架这样复杂的实体模型方面,明显能力不足。
现通过接口程序实现模型传递,将两种软件有机结合起来,取得了很好的效果,具体流程参见图1。
图1 有限元计算流程2 车架参数化建模2.1 车架结构特点分析半挂车车架包括两根纵梁和若干根横梁,皆为厚板和型材组焊而成。
车架前部可通过牵引销连接牵引车,中前部可停放坦克,左右侧分别装有工具箱和备胎等附件,尾部可连接渡板。
表面铺有压花铝板和若干防滑条,下部通过相互串通的空气弹簧连接五个车桥。
车架为对称结构,但受力不对称。
表1 计算中采用的主要半挂车参数2.2 结构简化根据车架的结构与工作特点,在有限元分析计算前将对车架划分实体单元,因此需进行实体建模。
但在实体建模时应充分考虑未来划分单元的密度和质量,必须尽量在不影响精度的前提下对模型进行简化。
简化工作主要包括:(1) 忽略了刚性较差的4mm 压花铝板(平板)(2) 忽略了细长的防滑条进行(3) 对结构中细小的结构(如细小的倒角等)进行简化和忽略在Pro/Engineer 软件中对挂车车架进行参数化建模,装配模型如图2 所示。
重型半挂车架有限元静态分析2007-12-18 [ 字体:大中小 ]1 概述重型半挂车的车架为边梁式结构,中间有两根主承载梁纵梁,纵梁为优质成型工字钢或焊接工字钢,其结构做成阶梯形,以降低重心。
两纵梁间采用焊接横梁,横梁采用优质钢板冲压成型或成型槽钢,两纵梁外侧采用翼梁焊接,翼梁为变截面优质钢板,横梁、翼梁与纵梁连接采用交叉结构,增加了车架抗弯强度和抗扭刚度。
整个车架是全金属结构焊接而成,车架前部可通过牵引销连接牵引车,中前部可停放重型履带式车辆,左右侧分别装有工具箱、防护网和备胎等附件,表面铺有压花钢板和若干防滑条,下部可通过钢板弹簧连接三个车桥,车架为对称结构,如图1所示。
有限元法是一种求解数理方程的数值计算方法,是解决实际工程问题的强有力的分析手段,它的基本思想是将结构进行有限元离散化,用有限个容易分析的单元来表示复杂的工程结构,各单元之间通过有限元节点相互连接,根据有限元理论建立有限元总体方程,然后求解。
其计算结果的可靠性在科学方面已经得到广泛的认可。
ANSYS软件是融结构、热、流体、电磁、声学和耦合场于一体的大型CAE有限元处理工具。
有限元静态分析为复杂重型车架结构受力分析提供了有效的手段。
在载荷作用点恒定、加载速度缓慢或者为零、加载量值缓慢变化或保持恒定情况下,计算结构的应力、应变、位移的过程,能够在车架设计初期全面了解该半挂车车架在不同工况下的强度和刚度状况,确定应力、应变危险点,同时也能对车架结构优化设计进行分析指导。
在重型半挂车开发设计阶段,由于缺乏必要的动态试验设备和完善的实验方法,对车架在各种载荷工况和路面条件下的可靠性不能进行准确的有效分析和计算。
采用有限元分析,通过建立适当的有限元模型,可在车架的开发设计阶段,对其进行强度分析,以提高车架的开发速度和质量。
2 有限元分析车架静态有限元分析是计算在固定不变的载荷作用下的结构响应,它不考虑惯性和阻尼的影响,如结构随时间变化载荷的情况,静态分析主要是结合有限元理论,从静力学、几何学、物理学三方面对结构进行分析。
半挂车有限元车架挠度和模态分析作者:张坤,杨波,杨涛来源:《专用汽车》 2009年第10期1引言随着世界经济的高速发展,半挂牵引车在公路运输中占有越来越大的比重,欧美等发达国家和地区长途货运几乎都由此类车辆完成。
在我国,半挂牵引车也已成为重型专用汽车的第二大品种…。
半挂车车架主纵梁是半挂车的关键部位,它的结构特点是纵梁长、轴距大、货箱面积大,但是由于它承受着半挂车内外的各种载荷,受力非常复杂,所以,在保证车架主纵梁具有足够的强度和刚度的同时,需要防止车架有过大的变形。
当汽车在崎岖不平的道路上行驶时,车架要承受因路面不平整而产生的随机动载荷,并在该振动源的激励下产生振动,如果振源的激励频率接近于车架的固有频率,便会引起共振现象,产生剧烈的振动和噪声,甚至造成结构破坏。
为提高汽车行驶的安全性、舒适性和可靠性,必须对车架结构的固有频率进行分析,通过结构设计避开各种振源的激励频率。
因此,车架结构模态分析在现代汽车结构设计中也具有重要的意义。
2车架的有限元分析2.1半挂车车架的结构本文采用的模型是某厂设计的半挂车车架,主纵梁由四根优质成型工字刚或焊接工字钢组成,分为前后两部分,前段纵梁为阶梯形,承载面下凹距地面较低,以降低重心。
由于货台较长,其行驶的转弯半径较大,通过性不好,因此在空载状态下,需将前货台与后货台直接叉接连接,以提高整车的通过性。
前段纵梁采用冲压钢板成型或成型槽钢连接,后段纵梁上翼板采用扁钢连接,下翼板采用矩形管连接。
因纵梁的截面过高,为防止纵梁的截面失稳,采用加强板把纵梁的上下翼板连接起来。
车架前部通过牵引销连接牵引车,中部可以放置风力发电的叶片等工程机械。
车架表面铺有压花钢板和若干防滑条,车架下部通过钢板弹簧连接三车桥。
半挂车架的尺寸为前端纵梁上、下翼板厚度均为20 mm,腹板高度为510 mm;后段纵梁上下翼板厚度为20 mm,腹板高度为560 111111,三桥轴距为l 850 mm。
铝合金半挂车车架结构设计及有限元分析摘要:现阶段,在各地进行物资交换的运输过程中,半挂车具有高效、灵活的优点,在运输领域发挥着重要的作用。
半挂车不仅可进行滚装运输、区间运输和甩挂运输,而且具有装卸方便,运输效率高、可靠、安全,运输成本低廉的优点。
半挂车将向节油环保、轻量化、专业化、多样化以及标准化未来的发展方向,对于不同半挂车生产厂家而言,半挂车车架在满足刚度以及强度的同时,半挂车车架的轻量化不仅会为企业自身带来更大的利润,也会提升企业自身的市场竞争力。
因此对半挂车车架进行有限元分析与轻量化问题的研究有着十分重要的意义。
关键词:铝合金;半挂车车架结构设计;有限元分析引言随着我国经济的快速发展,电商、快递业爆发式增长,货物运输量剧增,导致商用物流车需求加大,物流运输行业竞争加剧。
为控制成本,增加货运量,各物流企业对车辆的性能、油耗、载质量利用率要求越来越高,而解决上述问题的最佳方案莫过于减重。
轻量化对传统燃油汽车可显著降低油耗,对新能源汽车可增加续航能力,对于商用物流车最明显的优势是多拉货物,空载降低油耗,从而在相同运费情况下降本增效。
车架是半挂车最关键的部件,承载着整车载荷。
因此,车架轻量化要充分考虑其强度和刚度,目前钢制半挂车车架纵梁、横梁普遍采用高强钢板冲压、折弯成型,再焊接而成。
相对于低碳钢车架,高强钢车架在钢板壁厚上做了一定程度的减薄,因其材料屈服和抗拉强度高,也能满足使用要求,轻量化效果也不错。
但因钢板壁厚薄,工作环境恶劣,容易锈蚀,影响车架强度,使用寿命很短。
铝合金密度仅为钢的三分之一,其表面有一层致密的氧化膜,可隔绝空气与铝的接触,作为车架材料永不生锈。
通过合理的结构设计,将铝合金应用于该领域,实现轻、强、耐用的效果,对半挂车的轻量化很有意义。
1半挂车车架有限元分析1.1有限元法概念有限元法是用简单的问题替换复杂的问题并进行求解,具有计算精度较高的优点,可对不同复杂形状的工程问题进行科学有效的分析以及计算。
某型号矿用半挂牵引车车架的有限元分析杨扬(神东煤炭集团责任有限公司,榆林719315)摘要:对某型号矿用半挂牵引车车架进行了有限元分析,建立了以壳单元为基本单元并采用多点约束MPC)单元模拟铆钉传力的有限元计算模型。
通过静态分析表明了车架在满载弯曲工况与满载扭转工况下的应力及变形分布情况。
经过模态分析,获得了车架的固有频率和振形特征。
综合分析结果,对车架结构的改进提供了一些建议。
关键词:牵引车;车架;静态分析;模态中图分类号:U463.320.2文献标识码:A0引言矿用半挂牵引车车架作为非承载式车身结构的主要部件,其主要功能是固定汽车的大部分部件的相对位置,还要承载半挂牵引车车身包含的各种载荷。
汽车在行驶时,要承受来自路面的弯曲、扭转载荷以及由路面、悬架等各部件所产生的振动。
车架在设计时,不仅要保证有足够的强度和弯曲及扭转刚度,还要避免车架由外部激振频率所引发的共振导致车架使用寿命的下降。
本文建立了某型号矿用半挂牵引车车架的有限元模型,对其刚度和强度以及模态进行了有限元分析,为以后的结构改进设计提供理论依据。
1半挂牵引车车架有限元模型的建立车架有限元模型建立是采用的壳单元模型,有效避免了横梁连接点不易确定和梁单元模型纵的等一些问题,尤其是能明确展示出连接点位置的变化和加强板以及支架的一些情况,经过与实验数据的比较其计算精度也比较高。
此外,在车架有限元分析中还需要考虑汽车悬架的因素和各种约束模拟。
首先,我们应该在分析的过程中在solidworks或在UG软件里进行建立模型,可以依据其中关联的原则性简单化操作,实体模型如图1所示,接下来把模型快速导入ANSYS里,再采用shell63单元将半挂牵引车架采用整体网格分划,一定要在所有连接点和形状有明显突变的区域进行网格多次细化,在铆接处采取mpc184单元连接,这样半挂牵引车车架就形成了一个新的建模整体。
接下来利用mass21单元和combine14单元以及beam4单元对悬架和轮胎分别进行模拟。
半挂牵引车车架有限元分析的开题报告题目:半挂牵引车车架有限元分析一、选题背景和意义:半挂牵引车是一种常用的运输工具,其安全稳定性对于交通运输行业至关重要。
车架是半挂牵引车的主体结构,负责承载车身和所装载物品的重量和力量,因此其结构安全性是半挂牵引车运行安全的重要保障。
有限元分析是一种理论计算方法,可以模拟实际的结构受力情况,对于车架的结构设计和优化具有重要的意义。
二、研究内容和方法:本研究将以一辆半挂牵引车的车架为研究对象,利用有限元分析软件进行车架的有限元建模,通过加载不同的载荷,分析车架的受力情况,找出车架的薄弱环节,并提出相应的优化方案。
研究方法主要包括以下几个步骤:1.车架有限元建模采用有限元分析软件对半挂牵引车的车架进行建模,选择合适的单元类型和网格划分,构建数值分析模型。
2.载荷分析根据实际情况,确定车架承受的载荷情况,在有限元分析软件中加载各种载荷,如静载荷、动载荷等。
3.应力分析利用有限元分析软件分析车架的应力分布情况,得出车架的最大应力和应力集中点位置。
4.应变分析利用有限元分析软件分析车架的应变分布情况,得出车架的最大应变和应变集中点位置。
5.结构优化根据有限元分析结果,找出车架的薄弱环节,提出结构优化方案。
采用有限元分析软件对优化方案进行验证和优化。
三、预期结果和意义:通过本研究,可以建立半挂牵引车车架的有限元模型,分析车架在不同载荷作用下的受力情况,找到车架的薄弱环节,提出优化方案,最终得到经过优化的车架结构。
这些结果可以为半挂牵引车车架结构设计和优化提供参考,提高其安全性和稳定性,减少车辆事故的发生,为国家交通运输事业的发展做出贡献。
关于半挂车车架有限元分析与轻量化分析摘要:文章主要从半挂车实体建模及有限元的简述出发,分别简述了车架有限元模型的建立,以及轻量化的车架结构优化,旨在与广大同行共同探讨学习。
关键词:半挂车车架;有限元分析;轻量化一、半挂车实体建模及有限元的简述1.半挂车介绍半挂车是一种道路运输车辆,由两部分构成,一部分是带有动力的车头,另一部分为承载货物的半挂。
半挂车是目前普遍应用的运输工具,按用途分为专用和普通两种。
按大梁的结构来分有平板式、阶梯式、凹梁式三种。
如下图1-1所示。
图1-1 半挂车分类板式半挂车可以最大利用空间,同时离地面较高,方便公路运输。
阶梯式半挂车货台比较低,方便货物的装卸,凹梁式半挂车具有较小的离地间隙和较低的货台。
半挂车第二部分半挂结构主要由车架、双侧保护装置、工具箱、挡泥板、轮轴、牵引装置、电路、气制动、支撑、悬架装置、备胎、车箱、后保险杠等结构组成。
2.有限元法介绍有限元法是用简单的问题替换复杂的问题并进行求解,具有计算精度较高的优点,可对不同复杂形状的工程问题进行科学有效的分析以及计算。
二、车架有限元模型的建立建立有限元模型是进行有限元分析的基础,也即选择单元类型、赋予材料属性、划分网格、模拟连接方式、施加边界条件的过程,其中划分网格是前处理最为重要也是最为繁琐的步骤。
1.建立车架有限元模型应遵循的原则(1)确保模型的计算效率。
网格的大小、稀疏程度,也即单元与节点的数目多少,决定着计算结果的准确性和计算效率,在进行车架有限元模型建立的过程中应权衡好计算结果的准确性与计算效率的矛盾,找到最合适的网格尺寸。
(2)确保计算结果的准确性。
建立车架三维几何模型的过程中,在不影响分析结果的前提下,已经对车架进行了一定的简化,目的就是为了能够得到准确的结果,避免造成应力集中等问题。
2.模型导入及中面抽取(1)三维几何模型的导入和修复我们将利用 Solidworks 软件建立的车架的三维几何模型导入 Hypermesh 中。
车架纵梁简化模型有限元分析的操作步骤1.静力分析1.1一维模型的静力分析1、选择分析类型在Toolbox—Analysis Systems中双击2、前处理(1)定义材料属性在弹出的分析项目窗口中双击并在弹出的窗口中Outline Filter—General Materials,在Outline of General Materials添加Structural Steel—Engineering Data,对Structural Steel的密度,杨氏模量和泊松比进行更改编辑。
然后回到主界面的项目管理窗口。
(2)建模1)在Sketching中的XZ平面上建一条直线草图,长度为1800mm,然后将直线划分为5段,长度依次为400mm,100mm,800mm,100mm,500mm。
2)然后点击中的Lines From Sketches,然后选草图,点击Apply,再点击生成线体。
3)定义梁的截面形状,输入梁截面的长宽尺寸。
(3)划分网格1)点击进入Mechanical模块。
2)通过输入element size为10mm来划分网格,如右图所示。
3)最后点击Generat Mesh完成网格划分。
(4)施加载荷和边界条件1)点击添加重力,然后再输入重力加速度的大小,指明重力方向,如。
2)在梁上第二个和第三个分割点处分别添加集中力,大小为1000N,方向向下,如。
3)分别在梁的第二、第三、第四段线上添加Line Pressure,大小皆为2N/mm,方向向下,如。
4)添加边界条件:在梁的左边添加,设置为5)在梁的左边添加,设置为3、选择需要查看的结果(1)总位移:-- --(2)查看最大弯曲应力:点击。
(3)查看约束反力:点击中的,然后在中选择需要查看约束反力的作用点(如Remote Displacement)。
4、求解点击求解5、后处理依次查看并分析结果。
1.2二维模型的静力分析1.选择分析类型在Toolbox—Analysis Systems中双击2.前处理(1)定义材料属性在弹出的分析项目窗口中双击并在弹出的窗口中Outline Filter—General Materials,在Outline of General Materials添加Structural Steel—Engineering Data,对Structural Steel的密度,杨氏模量和泊松比进行更改编辑。
上装研究有限元分析在半挂车上的实战运用王大俊新乡华烁车辆有限公司,河南新乡,453011摘要:受轻量化趋势影响,市场上通常使用性能更好的材料和结构优化相结合的方法,使用有限元仿真技术辅助设计,来减少产品的研发周期。
由于专用车车型众多,没有相应的分析规范和标准,加上受人为因素和环境条件影响,有限元结果与实际产品使用存在不小的偏差,很多人质疑有限元研发仅仅存在于理论阶段。
据此,通过对半挂车研发设计和产品使用中暴露的问题,发现运用有限元分析具备有可行性和实战性,并为半挂车产品研发提供了可视化的有效参考答案。
关键词:半挂车;有限元分析;可行性;实战性中图分类号:U469.5收稿日期:2023-11-13DOI:10 19999/j cnki 1004-0226 2024 01 0111前言近年来,随着相关法规的完善和行业竞争日趋激烈,市场对半挂车轻量化要求越来越高。
很多企业在满足使用要求前提下,采用强度更高和厚度更薄的板材,再通过结构优化的方法,进而达到降低整车重量。
本研究以38m³粉罐半挂车和13m 鹅颈半挂车为对象,应用HyperWorks 软件进行结构仿真分析。
通过实际车辆建立分析模型,分析结果与售后的车辆进行对比,然后进行结构再优化设计,得出有限元分析在结构研发设计和优化上具备有很强的实战性。
2有限元模型建立2.1材料特性参数本文通过两种车型作为研究对象,一种车型38m³粉罐半挂车,整车使用板材为T610L ;另一种车型13m 鹅颈半挂车,小零部件使用板材为T700,腹板和下翼板使用板材为T980。
材料性能参数见表1。
表1材料性能参数T610L T700T9807830783078302062062060.30.30.362970110106747551033252814.22.2网格划分整车由薄钢板直接拼焊、折弯或者卷制成型后拼焊而成,零部件的几何尺寸远大于板厚,所以对车架采用壳单元(PSHELL )进行网格划分,网格单元类型以四边形单元为主[1-2]。
0引言半挂车是一种重要的运输机械,具有运输效率高、油耗低等特点,在运输业发挥着重要作用。
半挂车车架结构十分复杂,不仅形状复杂,而且载荷作用也较为复杂。
在半挂车结构设计过程中,需要在保证安全性的情况下,对车架结构进行优化设计,使其便于加工和装配,同时减少材料成本,提高半挂车制造的经济效益。
传统的力学分析方法在半挂车车架结构的强度和刚度分析中存在一定的不足,难以得出精准的数据。
在计算机软件技术的推动下,有限元法成为一种优秀的结构强度分析方法。
在半挂车设计中,可以利用有限元分析法对车架结构的强度进行精确地分析,进而有针对性地对重要构件进行优化设计。
1半挂车车架结构分析半挂车是一种在车辆均匀受载的重心后边配置车轴,并且装有可将水平和垂直力传递到牵引车的联结装置的挂车。
车架是半挂车的主要构件之一,为各总成及专用工作装置提供安装基础。
半挂车车架结构不仅要承受整车静载荷,同时还要能够承受半挂车行使中的各种动载荷,因此,对其结构强度要求较高。
通常而言,半挂车车架结构为边梁式,主要包括主纵梁、边纵梁、横梁、支撑梁等,各个部件采用的都是优质的钢板和型材,通过组焊方式构成车架结构。
在半挂车结构中,纵梁是主要的承载部件,能够承受弯曲应力,为有效应对运输道路条件差的情况,纵梁可以采用箱型结构,具有良好的抗弯性能。
同时,为了保证牵引装置活动的灵活性,需要提高车架纵梁前段,降低后段货箱,从而增强半挂车的稳定性,便于装卸货物[1]。
此外,横梁是半挂车车架中连接左右纵梁的重要构件,其抗扭转性和分布情况对纵梁的内应力大小及分布具有直接影响作用。
因此,横梁也是车架扭转结构中的主要元件,通常需要采用质量轻而密的横梁,增强车架的扭转刚度,同时有效减小与横梁连接的纵梁的扭转应力。
2有限元法及其应用2.1有限元法的基本理论有限元法是一种数值分析法,其基本原理就是将整体离散成有限个单元体,这些单元体需要按照一定的方式相互连接,从而来模拟或逼近原来的物体,将整体的连续自由度问题化简为离散的有限元自由度求解。
第9卷第4期2009年2月1671—1819(2009、4-1068—04科学技术与工程
ScienceTechnologyandEngineering
VoL9No.4Feb.2009
@2009Sci.TeeKEngnb
半挂车车架主纵梁的有限元分析
张孝琼张维强
(南京农业大学工学院,南京210031)
摘要通过工程分析软件ANSYSl0.0对某半挂车车架主纵梁进行建模、分网、静态扭转分析,得到了该半挂车车架主纵粱在不同工况下的变形量和强度载荷,校核该半挂车车架主纵梁强度是满足要求的。
关键词静态扭转强度分析ANSYS有限元车架主纵梁
中图法分类号U463.32;文献标志玛A
半挂车车架主纵梁是整个半挂车关键部位,它承受着半挂车内外的各种载荷受力非常复杂。
所以,要保证车架主纵梁具有足够的强度和刚度。
采用传统的数学计算方法分析车架的受力情况时,往往会得到高次不静定式方程组,很难得到精确的解析解[1]。
有限元方法是随着计算机技术发展而发展起来的、用于各种结构分析的数值计算方法。
它运用离散概念,把连续体划分为有限个单元的集合,通过单元分析和组合,考虑边界条件和载荷,得到一组方程组,求解此方程组获得相应指标口J。
当前,在计算汽车各部件强度和刚度时,有限元方法得到了广泛的应用。
本文针对某半挂车车架的主纵梁,在静态扭转工况下的强度和刚度的问题,利用ANSYSl0.0有限元分析软件建立了该车架主纵梁有限元模型,并在此基础上进行了位移和应力分析。
1车架有限元模型的建立
1.1模型的简化‘3】
根据圣维南原理,模型的局部细小变化和改动并不影响模型总的分析结果,因此为了简化后续的
2008年10月22日收到
第一作者简介:张孝琼(19r78一),女,硕士研究生,研究方向:车辆设计。
E—mail:zxq304_77@slna.oflqn。
网格划分、减少计算量、提高计算效率,对总的实体模型做如下简化:
(1)部分离应力远的圆弧过渡简化为直角,工艺上需要的倒角、拔模斜度等都不予考虑,这样可以减少在这些区域上的网格划分的数量,提高计算速度:
(2)车架上有些构件,如凸台、销孑L、线路孑L、吊环孔等,仅是为了满足功能要求而设置的对结构的强度没有很大的影响,可以忽略;
(3)除去对车架结构应力分布不产生太大影响的工具箱和防护网等零部件L4J。
1.2材料的力学特性
车架材料采用16Mn低合金结构钢,力学参数如:弹性模量:E=2.1×10nMPa;泊松比:p=0.3;密度:P=7.8×10柚t/mm3;屈服强度:瓯=350MPa1.3模型的网格划分
对于网格划分我们遵循“均匀应力区粗化,应力梯度大的区域细化”的原则,对于具体的模型应该具体对待。
一般来说,网格划分的越细,质量越高,计算精度就越高。
但是网格划分的越细,计算量就越大,要求电脑的配置就越高。
本模型采用solid92单元,网格划分采用ANSYS软件自带的Meshtool工具,设置单元变长为30inIn,采用自由体划分。
车架主纵梁模型共化为196804个单元,396071个节点。
4期张孝琼,等:半挂车车架主纵梁的有限元分析
2约束与边界条件的处理
本文研究的车架主纵梁所对应的为前面牵引
销,后面钢板弹簧的结构。
为便于计算,静态扭转
分析采用刚性支撑。
整个车架上共安装了6个用于连接钢板弹簧的固定支座和吊耳,因此在每个纵梁
底面建立了3个关键点。
车架前端牵引销板处完全固定,施加x,y,z三个方向的全部约束;在车架后部右侧第一个钢板弹簧吊耳处不约束,相当于悬
空,其余吊耳处实施垂直l,方向的位移约束。
这是为了保证消除车架主纵梁的刚体位移,又不影响车
架主纵梁的自由变形。
3加载及求解
半挂车实际工况复杂,所以作用在车架上的载荷变化也很大。
货车额定载荷为20t,并考虑自重,其中额定载荷以均布载荷方式加载。
根据实际情
况不同分为以下四种工况。
3。
1分析
工况一:货物均匀在整个车架上的静态扭转分
析。
额定载荷均匀加载在整个车架上。
加载后如
图1所示。
工况二:货物偏前方的静态扭转分析。
额定载荷均匀加载在车架前部,加载后车架图如图
2所示。
工况三:货物偏中部的静态扭转分析。
额
定载荷均匀加载在车架中部,加载后车架图如图3所示。
工况四:货物偏后部的静态扭转分析。
额定
载荷均匀加载在车架后部,加载后车架图如图4
所示。
图2工况二
图3工况三
图4工况四
及单元数较多,通过分析比较,又考虑到计算规模
和精度,最终选择PCGout.of-core(非内核的预条件
共轭梯度法)求解器‘5f。
4后处理及结果分析
通过后处理对计算结果的分析得到各工况下
的位移和应力云图。
如图5~图12所示。
图1工况一
3.2求解
由于选的是实体单元,模型尺寸又较大,节点
图5工况一位移云图
1070
科学技术与工程
9卷
图6工况一应力云图
图7工况二位移云图
图9工况三位移云图
图10工况三应力云图
图8工况二应力云图
分析车架变形云图可以看出,在4种情况下车
图11工况四位移云图
架变形最大的部位在悬空侧纵梁的中部,两端变形
较小,符合实际。
车架中部较大的变形还有利于改
4期张孝琼,等:半挂车车架主纵梁的有限元分析
图12工况四应力云图
善车架整体的应力状况,并起到一定的缓冲作用‘6】。
分析车架应力云图可以看出,应力最大的部
位在牵引销板与纵梁的连接部位和悬架与纵梁的连接部位。
各工况计算结果如表1所示。
表1
4种工况下的计算结果
由表l可知,车架在4种工况下应力最大值为
275
MPa。
小于车架所用材料的屈服极限350
MPa,
则车架结构的强度安全系数为n=or/盯一=350/275
>1说明在该工况下,车架结构强度是满足要求的。
5总结
本文对重型半挂车车架主纵梁进行了有限元
建模和静态扭转的强度分析。
通过对不同工况下车架的静态扭转强度分析得出了各个工况下车架的最大变形值和发生最大变形的节点,并得出了相应工况下车架的最大应力值和最大应力的节点。
最后得出车架的强度符合实际要求的结论。
另外,
通过对该车架的静态扭转分析还为以后车架的优化设计奠定了基础∞3。
参考文献
l陈大陆.车架结构设计优化.拖拉机与农用运输车,2004;4(2):
5—_7
2高云凯.汽车车身结构分析.北京:北京理工大学出版社,20063王珲云.低速载货汽车车架静动态特性研究,南京:南京农业大
学,2007;21
4俞德津.基于有限元理论的重型半挂车车架动静态分析.南京:
东南大学.2007;12一13
5博弈创作室.ANSYS9.0经典产品基础教程与实例详解.北京:中
国水利水电出版社,2005;228--232
6钟佩思.孙雪颜,赵丹。
等.基于ANSYS的货车车架的有限元静
态分析.拖拉机与农用运输车,2008;35(2):89—93
FEMAnalysis
of
Main
Longitudinal
Beam
of
Semi-trailerFrame
ZHANGXiao—qiong,ZHANGWei—qiang
(CollegeofEngineering,NanjingAgriculturalUniversity,Nanjing210031,P.R.China)
[Abstract]ThemodelofMainLongitudinalBeamofSemi—trailerFrameissetupandthemodelismeshedand
thestatictorsionstrengthanalysisismadebyengineeringanalysissoftwareANSYSl0.0.Finally,gettingthede-formationvalueandstrengthenloadofMainLongitudinalBeamofSemi—trailerFrameindifferentconditionsandcheckingthestrengthofframeissatisfied.
[Keywords]
static
torsionstrengthenanalysis
ANSYS
FEMmain
longitudinal
beamofsemi-
trailer
frame。