半挂牵引车车架强度的有限元分析
- 格式:pdf
- 大小:180.24 KB
- 文档页数:3
半挂牵引车整车结构有限元分析的开题报告一、研究背景和意义随着交通运输业的发展,半挂牵引车的使用越来越广泛,而对其安全性能的研究也越来越重要。
传统的半挂牵引车结构设计多采用经验式或试错方法,难以充分考虑车辆在行驶过程中所受到的各种力和变形,因此需要采用有限元方法对其整车结构进行分析和优化设计。
本研究旨在通过有限元分析方法,建立半挂牵引车整车模型,对其结构进行静力学和动力学分析,探索提高半挂牵引车结构的安全性能和效率的途径,为半挂牵引车的工程设计和制造提供理论依据和技术支持。
二、研究内容和方法本研究将采用有限元分析方法,建立半挂牵引车整车模型,研究其静力学和动力学性能。
具体研究内容包括:1. 建立半挂牵引车整车有限元模型,包括车架、车轮、悬架系统、驱动系统等部件。
2. 对半挂牵引车整车进行静力学分析,计算其在不同载荷条件下的应力和变形情况,并分析其承载能力和耐久性。
3. 对半挂牵引车整车进行动力学分析,模拟车辆在行驶过程中所受到的各种力和变形,计算其对车辆性能的影响。
4. 优化半挂牵引车整车结构设计,探索提高车辆结构安全性和效率的途径。
本研究主要采用理论分析和计算机仿真方法进行。
三、研究计划本研究计划分为以下阶段:1. 文献调研和理论分析,研究有限元分析方法在半挂牵引车整车结构分析中的应用,明确研究的目的和内容。
2. 建立半挂牵引车整车有限元模型,包括车架、车轮、悬架系统、驱动系统等部件。
3. 对半挂牵引车整车进行静力学分析,计算其在不同载荷条件下的应力和变形情况,并分析其承载能力和耐久性。
4. 对半挂牵引车整车进行动力学分析,模拟车辆在行驶过程中所受到的各种力和变形,计算其对车辆性能的影响。
5. 优化半挂牵引车整车结构设计,探索提高车辆结构安全性和效率的途径。
6. 编写研究报告,总结研究成果,并提出进一步研究的方向和建议。
四、预期成果和意义通过有限元分析方法,本研究将得到半挂牵引车整车结构的静力学和动力学特性参数,为提高半挂牵引车结构的安全性能和效率提供技术支持。
重型半挂车车架有限元分析作者:北京理工大学林程陈思忠吴志成摘要:本文采用了参数化建模方法建立了60t 重型半挂车车架有限元模型,采用了曲棱四面体等参单元,比传统方法提高了建模效率和可修改性以及计算精度。
文中介绍了车架有限元模型的简化方法和不同工况下的力学模型抽象方法,根据计算结果,改进了结构并进行了验算,最后对有限元计算误差产生的可能原因进行了论述。
关键词:车架半挂车有限元方法参数化建模1 前言泰安专用汽车制造厂开发研制的重型半挂车将承担60t 坦克的运输任务,为了全面了解该半挂车车架在不同工况下的强度和刚度状况,确定应力危险点、进行优化分析等,对其进行了有限元分析。
分析计算利用Pro/Engineer 软件对车架进行了三维实体参数化建模,并将模型导入Ansys 软件中进行边界条件设定、加载、网格划分、计算及后处理。
该方法的优势在于充分发挥了这两种的优势,Pro/Engineer 软件是功能强大的参数化建模软件,可轻易实现三维实体模型的建立和修改;而Ansys 软件是著名的工程分析软件,但在建立象半挂车车架这样复杂的实体模型方面,明显能力不足。
现通过接口程序实现模型传递,将两种软件有机结合起来,取得了很好的效果,具体流程参见图1。
图1 有限元计算流程2 车架参数化建模2.1 车架结构特点分析半挂车车架包括两根纵梁和若干根横梁,皆为厚板和型材组焊而成。
车架前部可通过牵引销连接牵引车,中前部可停放坦克,左右侧分别装有工具箱和备胎等附件,尾部可连接渡板。
表面铺有压花铝板和若干防滑条,下部通过相互串通的空气弹簧连接五个车桥。
车架为对称结构,但受力不对称。
表1 计算中采用的主要半挂车参数2.2 结构简化根据车架的结构与工作特点,在有限元分析计算前将对车架划分实体单元,因此需进行实体建模。
但在实体建模时应充分考虑未来划分单元的密度和质量,必须尽量在不影响精度的前提下对模型进行简化。
简化工作主要包括:(1) 忽略了刚性较差的4mm 压花铝板(平板)(2) 忽略了细长的防滑条进行(3) 对结构中细小的结构(如细小的倒角等)进行简化和忽略在Pro/Engineer 软件中对挂车车架进行参数化建模,装配模型如图2 所示。
基于Hypermesh的牵引车车架拓扑优化及有限元分析牵引车车架是牵引车的重要部件,其结构设计和优化一直是汽车工程领域的研究热点。
本篇文章将基于Hypermesh软件对牵引车车架进行拓扑优化和有限元分析。
首先,我们需要进行该车架的CAD建模。
通过对车架进行测量和采集数据,我们可以在软件中建立3D模型。
然后,在Hypermesh中进行前处理,包括网格划分、材料属性设定、边界条件设定等。
接下来,运用拓扑优化方法对车架进行优化,以降低其重量,提高车架的强度和刚度。
在进行拓扑优化时,我们需要设置指定的约束和目标函数。
约束条件可以包括材料体积和尺寸等考虑因素。
目标函数可以是最小化材料使用量或是最大化车架的强度和刚度,可以根据具体需求来设置。
拓扑优化的结果可以优化原始车架结构,使其变成更优的流线型设计,同时在一定程度上可以提高车架的强度和刚度。
完成拓扑优化后,我们开始进行有限元分析(FEA),对车架进行应力和变形分析。
通过给车架施加仿真荷载,可以预测车架在现实世界中的行为并帮助设计师进行结构优化。
有限元分析可以帮助我们预测车架在实际使用过程中的应力情况,从而确定关键部件的厚度、形状和位置,以及车架整体结构的强度设计。
在完成有限元分析后,我们可以根据分析结果对车架进行优化设计。
比如,可以调整材料的厚度和纤维层间距,以适应不同的承载情况和荷载要求。
同时,我们还可以根据分析结果对车架进行优化设计,如增加加强筋,调整截面形状等。
综上所述,通过Hypermesh软件对牵引车车架进行拓扑优化和有限元分析,可以帮助设计者快速分析车架结构,并在优化过程中提高其强度和刚度,以同时保持车架的轻量化和结构优化。
这样做可以显著提高牵引车车架的性能和使用寿命,同时减少制造成本和提高制造效率。
除了拓扑优化和有限元分析,还有其他的技术可以帮助完善牵引车车架的设计。
例如疲劳分析、碰撞模拟、流体动力学分析等。
这些分析可以帮助解决车架在使用过程中可能面临的问题,如疲劳、振动、碰撞等。
重型半挂车架有限元静态分析2007-12-18 [ 字体:大中小 ]1 概述重型半挂车的车架为边梁式结构,中间有两根主承载梁纵梁,纵梁为优质成型工字钢或焊接工字钢,其结构做成阶梯形,以降低重心。
两纵梁间采用焊接横梁,横梁采用优质钢板冲压成型或成型槽钢,两纵梁外侧采用翼梁焊接,翼梁为变截面优质钢板,横梁、翼梁与纵梁连接采用交叉结构,增加了车架抗弯强度和抗扭刚度。
整个车架是全金属结构焊接而成,车架前部可通过牵引销连接牵引车,中前部可停放重型履带式车辆,左右侧分别装有工具箱、防护网和备胎等附件,表面铺有压花钢板和若干防滑条,下部可通过钢板弹簧连接三个车桥,车架为对称结构,如图1所示。
有限元法是一种求解数理方程的数值计算方法,是解决实际工程问题的强有力的分析手段,它的基本思想是将结构进行有限元离散化,用有限个容易分析的单元来表示复杂的工程结构,各单元之间通过有限元节点相互连接,根据有限元理论建立有限元总体方程,然后求解。
其计算结果的可靠性在科学方面已经得到广泛的认可。
ANSYS软件是融结构、热、流体、电磁、声学和耦合场于一体的大型CAE有限元处理工具。
有限元静态分析为复杂重型车架结构受力分析提供了有效的手段。
在载荷作用点恒定、加载速度缓慢或者为零、加载量值缓慢变化或保持恒定情况下,计算结构的应力、应变、位移的过程,能够在车架设计初期全面了解该半挂车车架在不同工况下的强度和刚度状况,确定应力、应变危险点,同时也能对车架结构优化设计进行分析指导。
在重型半挂车开发设计阶段,由于缺乏必要的动态试验设备和完善的实验方法,对车架在各种载荷工况和路面条件下的可靠性不能进行准确的有效分析和计算。
采用有限元分析,通过建立适当的有限元模型,可在车架的开发设计阶段,对其进行强度分析,以提高车架的开发速度和质量。
2 有限元分析车架静态有限元分析是计算在固定不变的载荷作用下的结构响应,它不考虑惯性和阻尼的影响,如结构随时间变化载荷的情况,静态分析主要是结合有限元理论,从静力学、几何学、物理学三方面对结构进行分析。
铝合金半挂车车架结构设计及有限元分析摘要:现阶段,在各地进行物资交换的运输过程中,半挂车具有高效、灵活的优点,在运输领域发挥着重要的作用。
半挂车不仅可进行滚装运输、区间运输和甩挂运输,而且具有装卸方便,运输效率高、可靠、安全,运输成本低廉的优点。
半挂车将向节油环保、轻量化、专业化、多样化以及标准化未来的发展方向,对于不同半挂车生产厂家而言,半挂车车架在满足刚度以及强度的同时,半挂车车架的轻量化不仅会为企业自身带来更大的利润,也会提升企业自身的市场竞争力。
因此对半挂车车架进行有限元分析与轻量化问题的研究有着十分重要的意义。
关键词:铝合金;半挂车车架结构设计;有限元分析引言随着我国经济的快速发展,电商、快递业爆发式增长,货物运输量剧增,导致商用物流车需求加大,物流运输行业竞争加剧。
为控制成本,增加货运量,各物流企业对车辆的性能、油耗、载质量利用率要求越来越高,而解决上述问题的最佳方案莫过于减重。
轻量化对传统燃油汽车可显著降低油耗,对新能源汽车可增加续航能力,对于商用物流车最明显的优势是多拉货物,空载降低油耗,从而在相同运费情况下降本增效。
车架是半挂车最关键的部件,承载着整车载荷。
因此,车架轻量化要充分考虑其强度和刚度,目前钢制半挂车车架纵梁、横梁普遍采用高强钢板冲压、折弯成型,再焊接而成。
相对于低碳钢车架,高强钢车架在钢板壁厚上做了一定程度的减薄,因其材料屈服和抗拉强度高,也能满足使用要求,轻量化效果也不错。
但因钢板壁厚薄,工作环境恶劣,容易锈蚀,影响车架强度,使用寿命很短。
铝合金密度仅为钢的三分之一,其表面有一层致密的氧化膜,可隔绝空气与铝的接触,作为车架材料永不生锈。
通过合理的结构设计,将铝合金应用于该领域,实现轻、强、耐用的效果,对半挂车的轻量化很有意义。
1半挂车车架有限元分析1.1有限元法概念有限元法是用简单的问题替换复杂的问题并进行求解,具有计算精度较高的优点,可对不同复杂形状的工程问题进行科学有效的分析以及计算。
半挂牵引车车架的强度特性分析摘要:车架是车辆的关键承重结构,各种载荷最终都会传递到车架上。
因此,车架的结构性能直接关系到整车结构性能。
本文以某型半挂牵引车车架设计为例,采用有限元分析法对车架结构强度展开深入分析,提出优化方案并进行仿真验证,结果显示结构优化方案可显著降低车架关键测点的等效应力最大值,实现强化车架结构的目的。
关键词:半挂牵引车;车架;强度分析;有限元分析半挂车是公路运输的重要车型。
欧美等发达国家的公路货运绝大多数由半挂车完成。
而在国内,半挂车是目前第二常见的大型牵引车类型,其车架除了要承受发动机、车架和货物的重量,还要承受车辆行驶过程中产生的各种力和力矩,所以其可靠性不仅与承载能力有关,也关系到车辆的运行安全[1]。
车架出现疲劳裂纹会导致车架断裂等安全问题。
为确保车架结构强度符合要求,需对车架结构强度进行有限元分析,根据分析结果提出结构优化方案。
本文对某型半挂车车架结构强度进行了有限元分析,建立相关有限元分析模型,并利用有限元分析软件对半挂车车架的强度进行了有限元分析,根据分析结果提出车架结构的改进方案并进行验证。
1车架有限元模型建立1.1车架结构某型半挂车车架材料为16MnL,结构为梯形边梁结构,框架外宽876mm,内侧边梁与盖梁采用直径15mm的铆钉牢固连接。
前后梁为槽式结构,第二梁为圆管梁,中梁为铸件,平衡轴梁为背靠背槽式结构,其余梁为上下叶片结构体。
为了增加车架的坚固性和方便挂斗,在车架两侧的轴梁水平处铆接厚8mm的侧角板。
前桥悬架板簧满载垂直刚度为383 N/mm,中、后桥平衡器悬架板簧满载垂直刚度为2285 N/mm。
主成分材料的弹性模量为2.17×105,泊松比为0.30。
图1为优化前的原始车架结构设计。
图1 优化前的原始车架结构设计1.2模型构建改性半挂牵引车车架结构复杂,由大梁、立梁、双梁、平衡器轴、平衡器悬挂支架、前后板簧支架等众多大型部件组成[2]。
某型号矿用半挂牵引车车架的有限元分析杨扬(神东煤炭集团责任有限公司,榆林719315)摘要:对某型号矿用半挂牵引车车架进行了有限元分析,建立了以壳单元为基本单元并采用多点约束MPC)单元模拟铆钉传力的有限元计算模型。
通过静态分析表明了车架在满载弯曲工况与满载扭转工况下的应力及变形分布情况。
经过模态分析,获得了车架的固有频率和振形特征。
综合分析结果,对车架结构的改进提供了一些建议。
关键词:牵引车;车架;静态分析;模态中图分类号:U463.320.2文献标识码:A0引言矿用半挂牵引车车架作为非承载式车身结构的主要部件,其主要功能是固定汽车的大部分部件的相对位置,还要承载半挂牵引车车身包含的各种载荷。
汽车在行驶时,要承受来自路面的弯曲、扭转载荷以及由路面、悬架等各部件所产生的振动。
车架在设计时,不仅要保证有足够的强度和弯曲及扭转刚度,还要避免车架由外部激振频率所引发的共振导致车架使用寿命的下降。
本文建立了某型号矿用半挂牵引车车架的有限元模型,对其刚度和强度以及模态进行了有限元分析,为以后的结构改进设计提供理论依据。
1半挂牵引车车架有限元模型的建立车架有限元模型建立是采用的壳单元模型,有效避免了横梁连接点不易确定和梁单元模型纵的等一些问题,尤其是能明确展示出连接点位置的变化和加强板以及支架的一些情况,经过与实验数据的比较其计算精度也比较高。
此外,在车架有限元分析中还需要考虑汽车悬架的因素和各种约束模拟。
首先,我们应该在分析的过程中在solidworks或在UG软件里进行建立模型,可以依据其中关联的原则性简单化操作,实体模型如图1所示,接下来把模型快速导入ANSYS里,再采用shell63单元将半挂牵引车架采用整体网格分划,一定要在所有连接点和形状有明显突变的区域进行网格多次细化,在铆接处采取mpc184单元连接,这样半挂牵引车车架就形成了一个新的建模整体。
接下来利用mass21单元和combine14单元以及beam4单元对悬架和轮胎分别进行模拟。
半挂牵引车车架有限元分析的开题报告题目:半挂牵引车车架有限元分析一、选题背景和意义:半挂牵引车是一种常用的运输工具,其安全稳定性对于交通运输行业至关重要。
车架是半挂牵引车的主体结构,负责承载车身和所装载物品的重量和力量,因此其结构安全性是半挂牵引车运行安全的重要保障。
有限元分析是一种理论计算方法,可以模拟实际的结构受力情况,对于车架的结构设计和优化具有重要的意义。
二、研究内容和方法:本研究将以一辆半挂牵引车的车架为研究对象,利用有限元分析软件进行车架的有限元建模,通过加载不同的载荷,分析车架的受力情况,找出车架的薄弱环节,并提出相应的优化方案。
研究方法主要包括以下几个步骤:1.车架有限元建模采用有限元分析软件对半挂牵引车的车架进行建模,选择合适的单元类型和网格划分,构建数值分析模型。
2.载荷分析根据实际情况,确定车架承受的载荷情况,在有限元分析软件中加载各种载荷,如静载荷、动载荷等。
3.应力分析利用有限元分析软件分析车架的应力分布情况,得出车架的最大应力和应力集中点位置。
4.应变分析利用有限元分析软件分析车架的应变分布情况,得出车架的最大应变和应变集中点位置。
5.结构优化根据有限元分析结果,找出车架的薄弱环节,提出结构优化方案。
采用有限元分析软件对优化方案进行验证和优化。
三、预期结果和意义:通过本研究,可以建立半挂牵引车车架的有限元模型,分析车架在不同载荷作用下的受力情况,找到车架的薄弱环节,提出优化方案,最终得到经过优化的车架结构。
这些结果可以为半挂牵引车车架结构设计和优化提供参考,提高其安全性和稳定性,减少车辆事故的发生,为国家交通运输事业的发展做出贡献。
河北工业大学城市学院毕业设计(论文)前期报告学生姓名:赵坤学号: 117468 系别:机械工程系专业:车辆工程设计(论文)题目:自卸式半挂车车架建模及有限元分析设计(论文)地点:河北工业大学城市学院指导教师:王金刚职称:教授2015年 04 月 03 日一、文献综述(不少于2000字)1.课题背景随着社会的发展,自卸车在二十世纪五十年代应运而生,自卸车的问世是一场重大的技术革新,是有效节省劳动力、降低劳动强度、提高生产效率的特色产品。
自卸车又称翻斗车,是指通过液压或机械举升而自行卸载货物的车辆,是应用较多、环境适应能力强的一种专用车,可以运输绝大部分的散货,由于运输货物相对比较固定,所以具有均衡性强的特点,在粮食、采矿、建筑、矿粉运输、电厂、钢厂的许多行业都有广泛的应用[1]。
目前国内自卸车主要用于能源物流运输(煤碳、砂石、矿石等)和工地道路施工作业,其中煤碳、砂石料、铁粉运输比例占有相当大的比重。
半挂车,是车轴置于车辆重心(当车辆均匀受载时)后面,并且装有可将水平或垂直力传递到牵引车的联结装置的挂车[2]。
其设计结构合理,且外型美观,制动效果好,可靠性高。
其次,半挂车设计符合人体工程学,具有装载质量大,装载物品稳当、结实的特点。
缩短了汽车的总长,提高了整车的行驶稳定性和机动性,更重要的是它的区段运输、甩挂运输、滚装运输还能对我国物流的组织形式起到一定程度的促进作用[3]。
与汽车相比,半挂车更能够提高公路运输的综合经济效益。
运输效率可提高30-50%,油耗下降20-30%,成本降低30-40%[4]。
正因为自卸车和半挂车各自特点和优势,所以二者的结合更是绝佳的配合,节省了劳动力、提高了运输效率、降低了成本,成为汽车行业的一枝独秀。
2.项目的国内外发展情况自卸半挂车最早源于国外,日本、北美、西欧的技术比较先进,在发达国家随着基础设施的日趋完善,自卸半挂车市场品种齐全、产品技术含量高,一些新材料诸如高强度钢板、新型铝合金材料、塑料等的使用,使车身的重量变得更轻,在降低了能耗的同时,更增加了美感和抗变形能力[5]。
关于半挂车车架有限元分析与轻量化分析摘要:文章主要从半挂车实体建模及有限元的简述出发,分别简述了车架有限元模型的建立,以及轻量化的车架结构优化,旨在与广大同行共同探讨学习。
关键词:半挂车车架;有限元分析;轻量化一、半挂车实体建模及有限元的简述1.半挂车介绍半挂车是一种道路运输车辆,由两部分构成,一部分是带有动力的车头,另一部分为承载货物的半挂。
半挂车是目前普遍应用的运输工具,按用途分为专用和普通两种。
按大梁的结构来分有平板式、阶梯式、凹梁式三种。
如下图1-1所示。
图1-1 半挂车分类板式半挂车可以最大利用空间,同时离地面较高,方便公路运输。
阶梯式半挂车货台比较低,方便货物的装卸,凹梁式半挂车具有较小的离地间隙和较低的货台。
半挂车第二部分半挂结构主要由车架、双侧保护装置、工具箱、挡泥板、轮轴、牵引装置、电路、气制动、支撑、悬架装置、备胎、车箱、后保险杠等结构组成。
2.有限元法介绍有限元法是用简单的问题替换复杂的问题并进行求解,具有计算精度较高的优点,可对不同复杂形状的工程问题进行科学有效的分析以及计算。
二、车架有限元模型的建立建立有限元模型是进行有限元分析的基础,也即选择单元类型、赋予材料属性、划分网格、模拟连接方式、施加边界条件的过程,其中划分网格是前处理最为重要也是最为繁琐的步骤。
1.建立车架有限元模型应遵循的原则(1)确保模型的计算效率。
网格的大小、稀疏程度,也即单元与节点的数目多少,决定着计算结果的准确性和计算效率,在进行车架有限元模型建立的过程中应权衡好计算结果的准确性与计算效率的矛盾,找到最合适的网格尺寸。
(2)确保计算结果的准确性。
建立车架三维几何模型的过程中,在不影响分析结果的前提下,已经对车架进行了一定的简化,目的就是为了能够得到准确的结果,避免造成应力集中等问题。
2.模型导入及中面抽取(1)三维几何模型的导入和修复我们将利用 Solidworks 软件建立的车架的三维几何模型导入 Hypermesh 中。
【分析】车架刚度及强度的有限元分析展开全文车架是汽车主要的承载部件,汽车大部分部件如:动力总成、驾驶室、货箱和车桥等都与车架直接相连。
因此车架就必须具有足够的刚度和强度以保证有承受冲击载荷和忍受各种工况的能力。
由于车架本身结构的复杂性。
无法用传统的计算方法实现对车架的精确计算,而随着计算机技术发展所逐渐兴起的有限元方法可有效地计算车架在各种工况下的响应。
进而为后续设计提供有力的理论依据。
有限元法的基本思想是将一个复杂的结构拆分成有限个单元,对这些单元分别进行分析。
建立位移与内力之间的关系,以变分原理为工具,将微分方程化为代数方程,再将单元组装成结构。
形成整体结构的刚度方程后再进行计算。
目前大多的车架有限元分析在模拟车架组成梁之间的连接时,大都采用点对点刚性连接直接将其连接,这种模拟方法相对于实际情况误差较大。
本文采用MPC184单元设计了合理的连接模拟形式。
相对而言可降低结果误差。
1 有限元模型的建立以某边梁式车架为研究对象,其由左右分开的两根纵梁和若干根横梁组成。
纵梁和横梁是由薄壁型钢制成,再通过焊接和铆接而形成整体。
在有限元前处理软件Hypermesh中对车架进行单元划分。
忽略半径5 mill以下的孔、过渡圆角、倒角及2 mill以下的搭接边上的凸台。
单元选用二维4节点壳单元Shell43,Shell43单元可有效地模拟一定厚度的板壳及其线形和弯曲变形。
单元每个节点均具有6个自由度,即,y,z向平动自由度和绕,y,轴的转动自由度。
在平面内变形为线性变形,对于非平面的情况单元采用对组成向量进行混合插补的方法。
从而使对车架的模拟更为合理。
纵梁、横梁及其连接板之间的铆钉连接,选用如图l所示的连接模拟方式。
采用刚性连接单元MPC184单元MPC184单元是由一组通过使用拉格朗日算法来实现运动学上的约束的多点约束单元组成。
可用于模拟两个变形体之间的刚性约束或常在工程实际应用中被用来作为传递力和力矩的刚性组件。
上装研究有限元分析在半挂车上的实战运用王大俊新乡华烁车辆有限公司,河南新乡,453011摘要:受轻量化趋势影响,市场上通常使用性能更好的材料和结构优化相结合的方法,使用有限元仿真技术辅助设计,来减少产品的研发周期。
由于专用车车型众多,没有相应的分析规范和标准,加上受人为因素和环境条件影响,有限元结果与实际产品使用存在不小的偏差,很多人质疑有限元研发仅仅存在于理论阶段。
据此,通过对半挂车研发设计和产品使用中暴露的问题,发现运用有限元分析具备有可行性和实战性,并为半挂车产品研发提供了可视化的有效参考答案。
关键词:半挂车;有限元分析;可行性;实战性中图分类号:U469.5收稿日期:2023-11-13DOI:10 19999/j cnki 1004-0226 2024 01 0111前言近年来,随着相关法规的完善和行业竞争日趋激烈,市场对半挂车轻量化要求越来越高。
很多企业在满足使用要求前提下,采用强度更高和厚度更薄的板材,再通过结构优化的方法,进而达到降低整车重量。
本研究以38m³粉罐半挂车和13m 鹅颈半挂车为对象,应用HyperWorks 软件进行结构仿真分析。
通过实际车辆建立分析模型,分析结果与售后的车辆进行对比,然后进行结构再优化设计,得出有限元分析在结构研发设计和优化上具备有很强的实战性。
2有限元模型建立2.1材料特性参数本文通过两种车型作为研究对象,一种车型38m³粉罐半挂车,整车使用板材为T610L ;另一种车型13m 鹅颈半挂车,小零部件使用板材为T700,腹板和下翼板使用板材为T980。
材料性能参数见表1。
表1材料性能参数T610L T700T9807830783078302062062060.30.30.362970110106747551033252814.22.2网格划分整车由薄钢板直接拼焊、折弯或者卷制成型后拼焊而成,零部件的几何尺寸远大于板厚,所以对车架采用壳单元(PSHELL )进行网格划分,网格单元类型以四边形单元为主[1-2]。
DL4100型半挂牵引车车架弯扭工况强度分析及改进DL4100型半挂牵引车是一种重型运输车辆,主要用于货物运输。
在道路运输中,车架是半挂牵引车的主要承载部件。
因此,车架的强度和刚度对半挂牵引车的安全性质和运动性能具有重要影响。
本文将对DL4100型半挂牵引车的车架进行弯扭工况强度分析,并提出改进措施,以提高半挂牵引车的安全性和运动性能。
首先,进行有限元分析(FEA)。
通过创建DL4100型半挂牵引车车架的有限元模型并进行分析,可以获得车架在弯扭工况下的应力分布、变形和位移等信息。
在分析的过程中,需要考虑载重情况以及车辆在路面上行驶时的动态载荷。
由于半挂牵引车车架结构较为复杂,需要对整个车架进行分块和进行网格划分,以便进行有限元分析。
在分析结果中,我们可以发现DL4100型半挂牵引车车架的强度不足,存在一定的死区。
这可能导致车架在行驶过程中出现变形或断裂的情况,从而影响半挂牵引车的行驶安全。
因此,我们需要对车架进行改进,以提高其强度和刚度。
改进方案一:增加车架的材料厚度。
通过增加DL4100型半挂牵引车的车架材料厚度,可以提高车架的强度和刚度。
这种方法比较容易实施,但会增加车辆自重和制造成本,可能会影响车辆的载重能力和经济性。
改进方案二:增加车架的支撑和连接部件。
通过增加DL4100型半挂牵引车车架的支撑和连接部件来增强其强度和刚度。
这种方法可能需要进行车架的局部加强,需要对车架结构进行重新设计,并且加工难度比较大。
改进方案三:改善车架的力学性能。
通过改善DL4100型半挂牵引车车架的力学性能,可以减小车架的应力和变形。
这种方法需要对车架的悬挂系统和减震系统进行改良或调整。
例如,使用气动悬架或液压悬架来提高车架的稳定性和平稳性,从而减少车架受力情况。
通过对半挂牵引车的车架进行强度分析和改进方案的探讨,可以有效提高半挂牵引车的安全性和运动性能。
因此,在设计和制造半挂牵引车时,应该将车架的强度和刚度作为重点考虑因素,并进行综合考虑,以提高车辆的整体性能。
基于Hyperworks的半挂车车架结构分析与改进摘要:本文借助Hyperworks软件对一款半挂车车架结构进行了有限元分析,找出了车架的弱点并提出了改进设计方案。
通过模拟不同载荷情况下车架的应力、应变等物理特性,找出了构成车架的不同部件的材料疲劳极限。
然后针对这些不足之处,提出了优化设计方案,包括调整材料使用、增加支撑支架和加强焊缝等,进一步增强了车架的稳定性和耐久性。
关键词:Hyperworks;半挂车车架;有限元分析;改进设计;稳定性;耐久性正文:1.引言半挂车作为重型运输车辆的一种,通常用于货物运输等大容量、远距离的物流任务。
但随着工业发展和城市化进程的加速,货物运输对车辆的要求也越来越高,特别是对半挂车车架的耐久性和稳定性要求更高。
因此,对半挂车车架的结构分析和改进设计显得尤为重要。
Hyperworks是一款专业的有限元分析工具,能够模拟车架在不同条件下的物理行为和力学特性,找出其中的不足之处,并提出有效的改进方案。
本文利用Hyperworks对一款半挂车车架进行了分析,找出了车架的弱点并提出了改进设计方案。
2.分析方法2.1 结构建模本文选用一款常见的半挂车车架进行分析。
首先,借助Hyperworks中的CAD软件将车架模型导入,并建立三维有限元分析模型。
然后,根据车架的材料参数和重量等信息,进行网格剖分、单元分析和装配等。
2.2 物理行为模拟本文通过Hyperworks中的静力学、动力学和疲劳分析等工具对车架进行了物理行为模拟。
具体来说,分别对不同载荷、速度、路况等情况下的车架应力、应变、位移等物理行为进行了模拟,找出了车架的不足之处。
3.分析结果3.1 应力和应变分析通过车架的有限元分析,可以得到各部件的应力和应变分布情况。
具体来说,车架的各部件在不同载荷下所承受的应力大小、应变的程度等都可以被可视化地展示出来。
通过这些数据,可以找出构成车架的不同部件的材料疲劳极限。
3.2 弱点分析根据应力和应变分析结果,可以找出车架的弱点。