全国名校高考数学经典复习题导数专题汇编(附详解)导数应用中的构造函数专题训练
- 格式:docx
- 大小:38.94 KB
- 文档页数:4
函数与导数一、单选题1.(2024·全国)已知函数为f (x )=-x 2-2ax -a ,x <0e x+ln (x +1),x ≥0,在R 上单调递增,则a 取值的范围是()A.(-∞,0]B.[-1,0]C.[-1,1]D.[0,+∞)2.(2024·全国)已知函数为f (x )的定义域为R ,f (x )>f (x -1)+f (x -2),且当x <3时f (x )=x ,则下列结论中一定正确的是()A.f (10)>100B.f (20)>1000C.f (10)<1000D.f (20)<100003.(2024·全国)设函数f (x )=a (x +1)2-1,g (x )=cos x +2ax ,当x ∈(-1,1)时,曲线y =f (x )与y =g (x )恰有一个交点,则a =()A.-1B.12C.1D.24.(2024·全国)设函数f (x )=(x +a )ln (x +b ),若f (x )≥0,则a 2+b 2的最小值为()A.18B.14C.12D.15.(2024·全国)曲线f x =x 6+3x -1在0,-1 处的切线与坐标轴围成的面积为()A.16B.32C.12D.-326.(2024·全国)函数f x =-x 2+e x -e -x sin x 在区间[-2.8,2.8]的大致图像为()A. B.C. D.7.(2024·全国)设函数f x =e x +2sin x1+x 2,则曲线y =f x 在0,1 处的切线与两坐标轴围成的三角形的面积为()A.16B.13C.12D.238.(2024·北京)已知x 1,y 1 ,x 2,y 2 是函数y =2x图象上不同的两点,则下列正确的是()A.log 2y 1+y 22>x 1+x22 B.log 2y 1+y 22<x 1+x22C.log 2y 1+y 22>x 1+x 2D.log 2y 1+y 22<x 1+x 29.(2024·天津)下列函数是偶函数的是()A.y=e x-x2x2+1B.y=cos x+x2x2+1C.y=e x-xx+1D.y=sin x+4xe|x|10.(2024·天津)若a=4.2-0.3,b=4.20.3,c=log4.20.2,则a,b,c的大小关系为()A.a>b>cB.b>a>cC.c>a>bD.b>c>a11.(2024·上海)下列函数f x 的最小正周期是2π的是()A.sin x+cos xB.sin x cos xC.sin2x+cos2xD.sin2x-cos2x12.(2024·上海)已知函数f(x)的定义域为R,定义集合M=x0x0∈R,x∈-∞,x0,f x <f x0,在使得M =-1,1的所有f x 中,下列成立的是()A.存在f x 是偶函数B.存在f x 在x=2处取最大值C.存在f x 是严格增函数D.存在f x 在x=-1处取到极小值二、多选题13.(2024·全国)设函数f(x)=(x-1)2(x-4),则()A.x=3是f(x)的极小值点B.当0<x<1时,f(x)<f x2C.当1<x<2时,-4<f(2x-1)<0D.当-1<x<0时,f(2-x)>f(x)14.(2024·全国)设函数f(x)=2x3-3ax2+1,则()A.当a>1时,f(x)有三个零点B.当a<0时,x=0是f(x)的极大值点C.存在a,b,使得x=b为曲线y=f(x)的对称轴D.存在a,使得点1,f1为曲线y=f(x)的对称中心三、填空题15.(2024·全国)若曲线y=e x+x在点0,1处的切线也是曲线y=ln(x+1)+a的切线,则a=.16.(2024·全国)已知a>1,1log8a -1log a4=-52,则a=.17.(2024·全国)曲线y=x3-3x与y=-x-12+a在0,+∞上有两个不同的交点,则a的取值范围为.18.(2024·天津)若函数f x =2x2-ax-ax-2+1有唯一零点,则a的取值范围为.19.(2024·上海)已知f x =x,x>01,x≤0,则f3 =.四、解答题20.(2024·全国)已知函数f(x)=ln x2-x+ax+b(x-1)3(1)若b=0,且f (x)≥0,求a的最小值;(2)证明:曲线y=f(x)是中心对称图形;(3)若f (x )>-2当且仅当1<x <2,求b 的取值范围.21.(2024·全国)已知函数f (x )=e x -ax -a 3.(1)当a =1时,求曲线y =f (x )在点1,f (1) 处的切线方程;(2)若f (x )有极小值,且极小值小于0,求a 的取值范围.22.(2024·全国)已知函数f x =a x -1 -ln x +1.(1)求f x 的单调区间;(2)若a ≤2时,证明:当x >1时,f x <e x -1恒成立.23.(2024·全国)已知函数f x =1-ax ln 1+x -x .(1)当a =-2时,求f x 的极值;(2)当x ≥0时,f x ≥0恒成立,求a 的取值范围.24.(2024·北京)已知f x =x +k ln 1+x 在t ,f t t >0 处切线为l .(1)若切线l 的斜率k =-1,求f x 单调区间;(2)证明:切线l 不经过0,0 ;(3)已知k =1,A t ,f t ,C 0,f t ,O 0,0 ,其中t >0,切线l 与y 轴交于点B 时.当2S △ACO =15S △ABO ,符合条件的A 的个数为?(参考数据:1.09<ln3<1.10,1.60<ln5<1.61,1.94<ln7<1.95)25.(2024·天津)设函数f x =x ln x .(1)求f x 图象上点1,f 1 处的切线方程;(2)若f x ≥a x -x 在x ∈0,+∞ 时恒成立,求a 的取值范围;(3)若x 1,x 2∈0,1 ,证明f x 1 -f x 2 ≤x 1-x 2 12.26.(2024·上海)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.27.(2024·上海)对于一个函数f x 和一个点M a ,b ,令s x =(x -a )2+f x -b 2,若P x 0,f x 0 是s x取到最小值的点,则称P 是M 在f x 的“最近点”.(1)对于f (x )=1x(x >0),求证:对于点M 0,0 ,存在点P ,使得点P 是M 在f x 的“最近点”;(2)对于f x =e x ,M 1,0 ,请判断是否存在一个点P ,它是M 在f x 的“最近点”,且直线MP 与y =f (x )在点P 处的切线垂直;(3)已知y =f (x )在定义域R 上存在导函数f (x ),且函数g (x )在定义域R 上恒正,设点M 1t -1,f t -g t ,M 2t +1,f t +g t .若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,试判断f x 的单调性.参考答案:1.B【分析】根据二次函数的性质和分界点的大小关系即可得到不等式组,解出即可.【解析】因为f x 在R上单调递增,且x≥0时,f x =e x+ln x+1单调递增,则需满足--2a2×-1≥0-a≤e0+ln1,解得-1≤a≤0,即a的范围是[-1,0].故选:B.2.B【分析】代入得到f(1)=1,f(2)=2,再利用函数性质和不等式的性质,逐渐递推即可判断.【解析】因为当x<3时f(x)=x,所以f(1)=1,f(2)=2,又因为f(x)>f(x-1)+f(x-2),则f(3)>f(2)+f(1)=3,f(4)>f(3)+f(2)>5,f(5)>f(4)+f(3)>8,f(6)>f(5)+f(4)>13,f(7)>f(6)+f(5)>21,f(8)>f(7)+f(6)>34,f(9)>f(8)+f(7)>55,f(10)>f(9)+f(8)>89,f(11)>f(10)+f(9)>144,f(12)>f(11)+f(10)>233,f(13)>f(12)+f(11)>377f(14)>f(13)+f(12)>610,f(15)>f(14)+f(13)>987,f(16)>f(15)+f(14)>1597>1000,则依次下去可知f(20)>1000,则B正确;且无证据表明ACD一定正确.故选:B.【点睛】关键点点睛:本题的关键是利用f(1)=1,f(2)=2,再利用题目所给的函数性质f(x)>f(x-1)+ f(x-2),代入函数值再结合不等式同向可加性,不断递推即可.3.D【分析】解法一:令F x =ax2+a-1,G x =cos x,分析可知曲线y=F(x)与y=G(x)恰有一个交点,结合偶函数的对称性可知该交点只能在y轴上,即可得a=2,并代入检验即可;解法二:令h x =f(x)-g x ,x∈-1,1,可知h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即可得a=2,并代入检验即可.【解析】解法一:令f(x)=g x ,即a(x+1)2-1=cos x+2ax,可得ax2+a-1=cos x,令F x =ax2+a-1,G x =cos x,原题意等价于当x∈(-1,1)时,曲线y=F(x)与y=G(x)恰有一个交点,注意到F x ,G x 均为偶函数,可知该交点只能在y轴上,可得F0 =G0 ,即a-1=1,解得a=2,若a=2,令F x =G x ,可得2x2+1-cos x=0因为x∈-1,1,则2x2≥0,1-cos x≥0,当且仅当x=0时,等号成立,可得2x2+1-cos x≥0,当且仅当x=0时,等号成立,则方程2x2+1-cos x=0有且仅有一个实根0,即曲线y=F(x)与y=G(x)恰有一个交点,所以a=2符合题意;综上所述:a=2.解法二:令h x =f(x)-g x =ax2+a-1-cos x,x∈-1,1,原题意等价于h x 有且仅有一个零点,因为h -x =a -x 2+a -1-cos -x =ax 2+a -1-cos x =h x ,则h x 为偶函数,根据偶函数的对称性可知h x 的零点只能为0,即h 0 =a -2=0,解得a =2,若a =2,则h x =2x 2+1-cos x ,x ∈-1,1 ,又因为2x 2≥0,1-cos x ≥0当且仅当x =0时,等号成立,可得h x ≥0,当且仅当x =0时,等号成立,即h x 有且仅有一个零点0,所以a =2符合题意;故选:D .4.C【分析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,分类讨论-a 与-b ,1-b 的大小关系,结合符号分析判断,即可得b =a +1,代入可得最值;解法二:根据对数函数的性质分析ln (x +b )的符号,进而可得x +a 的符号,即可得b =a +1,代入可得最值.【解析】解法一:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;若-a ≤-b ,当x ∈-b ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-b <-a <1-b ,当x ∈-a ,1-b 时,可知x +a >0,ln x +b <0,此时f (x )<0,不合题意;若-a =1-b ,当x ∈-b ,1-b 时,可知x +a <0,ln x +b <0,此时f (x )>0;当x ∈1-b ,+∞ 时,可知x +a ≥0,ln x +b ≥0,此时f (x )≥0;可知若-a =1-b ,符合题意;若-a >1-b ,当x ∈1-b ,-a 时,可知x +a 0,ln x +b 0,此时f (x )<0,不合题意;综上所述:-a =1-b ,即b =a +1,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12;解法二:由题意可知:f (x )的定义域为-b ,+∞ ,令x +a =0解得x =-a ;令ln (x +b )=0解得x =1-b ;则当x ∈-b ,1-b 时,ln x +b <0,故x +a ≤0,所以1-b +a ≤0;x ∈1-b ,+∞ 时,ln x +b >0,故x +a ≥0,所以1-b +a ≥0;故1-b +a =0,则a 2+b 2=a 2+a +1 2=2a +12 2+12≥12,当且仅当a =-12,b =12时,等号成立,所以a 2+b 2的最小值为12.故选:C .【点睛】关键点点睛:分别求x +a =0、ln (x +b )=0的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.5.A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】f x =6x 5+3,所以f 0 =3,故切线方程为y =3(x -0)-1=3x -1,故切线的横截距为13,纵截距为-1,故切线与坐标轴围成的面积为12×1×13=16故选:A .6.B【分析】利用函数的奇偶性可排除A 、C ,代入x =1可得f 1 >0,可排除D .【解析】f -x =-x 2+e -x -e x sin -x =-x 2+e x -e -x sin x =f x ,又函数定义域为-2.8,2.8 ,故该函数为偶函数,可排除A 、C ,又f 1 =-1+e -1e sin1>-1+e -1e sin π6=e 2-1-12e >14-12e>0,故可排除D .故选:B .7.A【分析】借助导数的几何意义计算可得其在点0,1 处的切线方程,即可得其与坐标轴交点坐标,即可得其面积.【解析】fx =ex+2cos x 1+x 2 -e x +2sin x ⋅2x1+x 22,则f0 =e 0+2cos0 1+0 -e 0+2sin0 ×01+02=3,即该切线方程为y -1=3x ,即y =3x +1,令x =0,则y =1,令y =0,则x =-13,故该切线与两坐标轴所围成的三角形面积S =12×1×-13 =16.故选:A .8.A【分析】根据指数函数和对数函数的单调性结合基本不等式分析判断AB ;举例判断CD 即可.【解析】由题意不妨设x 1<x 2,因为函数y =2x 是增函数,所以0<2x 1<2x 2,即0<y 1<y 2,对于选项AB :可得2x1+2x 22>2x 1·2x 2=2x 1+x 22,即y 1+y 22>2x 1+x 22>0,根据函数y =log 2x 是增函数,所以log 2y 1+y 22>log 22x 1+x22=x 1+x22,故A 正确,B 错误;对于选项C :例如x 1=0,x 2=1,则y 1=1,y 2=2,可得log 2y 1+y 22=log 232∈0,1 ,即log 2y 1+y 22<1=x 1+x 2,故C 错误;对于选项D :例如x 1=-1,x 2=-2,则y 1=12,y 2=14,可得log 2y 1+y 22=log 238=log 23-3∈-2,-1 ,即log 2y 1+y 22>-3=x 1+x 2,故D 错误,故选:A .9.B【分析】根据偶函数的判定方法一一判断即可.【解析】对A ,设f x =e x -x 2x 2+1,函数定义域为R ,但f -1 =e -1-12,f 1 =e -12,则f -1 ≠f 1 ,故A 错误;对B ,设g x =cos x +x 2x 2+1,函数定义域为R ,且g -x =cos -x +-x 2-x 2+1=cos x +x 2x 2+1=g x ,则g x 为偶函数,故B 正确;对C ,设h x =e x -xx +1,函数定义域为x |x ≠-1 ,不关于原点对称,则h x 不是偶函数,故C 错误;对D ,设φx =sin x +4x e |x |,函数定义域为R ,因为φ1 =sin1+4e ,φ-1 =-sin1-4e ,则φ1 ≠φ-1 ,则φx 不是偶函数,故D 错误.故选:B .10.B【分析】利用指数函数和对数函数的单调性分析判断即可.【解析】因为y =4.2x 在R 上递增,且-0.3<0<0.3,所以0<4.2-0.3<4.20<4.20.3,所以0<4.2-0.3<1<4.20.3,即0<a <1<b ,因为y =log 4.2x 在(0,+∞)上递增,且0<0.2<1,所以log 4.20.2<log 4.21=0,即c <0,所以b >a >c ,故选:B 11.A【分析】根据辅助角公式、二倍角公式以及同角三角函数关系并结合三角函数的性质一一判断即可 .【解析】对A ,sin x +cos x =2sin x +π4,周期T =2π,故A 正确;对B ,sin x cos x =12sin2x ,周期T =2π2=π,故B 错误;对于选项C ,sin 2x +cos 2x =1,是常值函数,不存在最小正周期,故C 错误;对于选项D ,sin 2x -cos 2x =-cos2x ,周期T =2π2=π,故D 错误,故选:A .12.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数f x =-2,x <-1x ,-1≤x ≤11,x >1即可判断.【解析】对于A ,若存在y =f (x )是偶函数, 取x 0=1∈[-1,1],则对于任意x ∈(-∞,1),f (x )<f (1), 而f (-1)=f (1), 矛盾, 故A 错误;对于B ,可构造函数f x =-2,x <-1,x ,-1≤x ≤1,1,x >1,满足集合M =-1,1 ,当x <-1时,则f x =-2,当-1≤x ≤1时,f x ∈-1,1 ,当x >1时,f x =1,则该函数f x 的最大值是f 2 ,则B 正确;对C ,假设存在f x ,使得f x 严格递增,则M =R ,与已知M =-1,1 矛盾,则C 错误;对D ,假设存在f x ,使得f x 在x =-1处取极小值,则在-1的左侧附近存在n ,使得f n >f -1 ,这与已知集合M 的定义矛盾,故D 错误;故选:B .13.ACD【分析】求出函数f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数f x 在1,3 上的值域即可判断C ;直接作差可判断D .【解析】对A ,因为函数f x 的定义域为R ,而f x =2x -1 x -4 +x -1 2=3x -1 x -3 ,易知当x ∈1,3 时,f x <0,当x ∈-∞,1 或x ∈3,+∞ 时,f x >0函数f x 在-∞,1 上单调递增,在1,3 上单调递减,在3,+∞ 上单调递增,故x =3是函数f x 的极小值点,正确;对B ,当0<x <1时,x -x 2=x 1-x >0,所以1>x >x 2>0,而由上可知,函数f x 在0,1 上单调递增,所以f x >f x 2 ,错误;对C ,当1<x <2时,1<2x -1<3,而由上可知,函数f x 在1,3 上单调递减,所以f 1 >f 2x -1 >f 3 ,即-4<f 2x -1 <0,正确;对D ,当-1<x <0时,f (2-x )-f (x )=1-x 2-2-x -x -1 2x -4 =x -1 22-2x >0,所以f (2-x )>f (x ),正确;故选:ACD .14.AD【分析】A 选项,先分析出函数的极值点为x =0,x =a ,根据零点存在定理和极值的符号判断出f (x )在(-1,0),(0,a ),(a ,2a )上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,则f (x )=f (2b -x )为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.【解析】A 选项,f (x )=6x 2-6ax =6x (x -a ),由于a >1,故x ∈-∞,0 ∪a ,+∞ 时f (x )>0,故f (x )在-∞,0 ,a ,+∞ 上单调递增,x ∈(0,a )时,f (x )<0,f (x )单调递减,则f (x )在x =0处取到极大值,在x =a 处取到极小值,由f (0)=1>0,f (a )=1-a 3<0,则f (0)f (a )<0,根据零点存在定理f (x )在(0,a )上有一个零点,又f (-1)=-1-3a <0,f (2a )=4a 3+1>0,则f (-1)f (0)<0,f (a )f (2a )<0,则f (x )在(-1,0),(a ,2a )上各有一个零点,于是a >1时,f (x )有三个零点,A 选项正确;B 选项,f (x )=6x (x -a ),a <0时,x ∈(a ,0),f (x )<0,f (x )单调递减,x ∈(0,+∞)时f (x )>0,f (x )单调递增,此时f (x )在x =0处取到极小值,B 选项错误;C 选项,假设存在这样的a ,b ,使得x =b 为f (x )的对称轴,即存在这样的a ,b 使得f (x )=f (2b -x ),即2x 3-3ax 2+1=2(2b -x )3-3a (2b -x )2+1,根据二项式定理,等式右边(2b -x )3展开式含有x 3的项为2C 33(2b )0(-x )3=-2x 3,于是等式左右两边x 3的系数都不相等,原等式不可能恒成立,于是不存在这样的a ,b ,使得x =b 为f (x )的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简f (1)=3-3a ,若存在这样的a ,使得(1,3-3a )为f (x )的对称中心,则f (x )+f (2-x )=6-6a ,事实上,f (x )+f (2-x )=2x 3-3ax 2+1+2(2-x )3-3a (2-x )2+1=(12-6a )x 2+(12a -24)x +18-12a ,于是6-6a =(12-6a )x 2+(12a -24)x +18-12a即12-6a =012a -24=018-12a =6-6a,解得a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,f (x )=2x 3-3ax 2+1,f (x )=6x 2-6ax ,f (x )=12x -6a ,由f (x )=0⇔x =a 2,于是该三次函数的对称中心为a 2,f a2,由题意(1,f (1))也是对称中心,故a2=1⇔a =2,即存在a =2使得(1,f (1))是f (x )的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)f (x )的对称轴为x =b ⇔f (x )=f (2b -x );(2)f (x )关于(a ,b )对称⇔f (x )+f (2a -x )=2b ;(3)任何三次函数f (x )=ax 3+bx 2+cx +d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是f (x )=0的解,即-b 3a ,f -b3a 是三次函数的对称中心15.ln2【分析】先求出曲线y =e x +x 在0,1 的切线方程,再设曲线y =ln x +1 +a 的切点为x 0,ln x 0+1 +a ,求出y ,利用公切线斜率相等求出x 0,表示出切线方程,结合两切线方程相同即可求解.【解析】由y =e x +x 得y =e x +1,y |x =0=e 0+1=2,故曲线y =e x +x 在0,1 处的切线方程为y =2x +1;由y =ln x +1 +a 得y =1x +1,设切线与曲线y =ln x +1 +a 相切的切点为x 0,ln x 0+1 +a ,由两曲线有公切线得y =1x 0+1=2,解得x 0=-12,则切点为-12,a +ln 12 ,切线方程为y =2x +12 +a +ln 12=2x +1+a -ln2,根据两切线重合,所以a -ln2=0,解得a =ln2.故答案为:ln216.64【分析】将log 8a ,log a 4利用换底公式转化成log 2a 来表示即可求解.【解析】由题1log 8a -1log a 4=3log 2a -12log 2a =-52,整理得log 2a 2-5log 2a -6=0,⇒log 2a =-1或log 2a =6,又a >1,所以log 2a =6=log 226,故a =26=64故答案为:64.17.-2,1【分析】将函数转化为方程,令x 3-3x =-x -1 2+a ,分离参数a ,构造新函数g x =x 3+x 2-5x +1,结合导数求得g x 单调区间,画出大致图形数形结合即可求解.【解析】令x 3-3x =-x -1 2+a ,即a =x 3+x 2-5x +1,令g x =x 3+x 2-5x +1x >0 ,则g x =3x 2+2x -5=3x +5 x -1 ,令g x =0x >0 得x =1,当x ∈0,1 时,g x <0,g x 单调递减,当x ∈1,+∞ 时,g x >0,g x 单调递增,g 0 =1,g 1 =-2,因为曲线y =x 3-3x 与y =-x -1 2+a 在0,+∞ 上有两个不同的交点,所以等价于y =a 与g x 有两个交点,所以a ∈-2,1.故答案为:-2,1 18.-3,-1 ∪1,3【分析】结合函数零点与两函数的交点的关系,构造函数g x =2x 2-ax 与h x =ax -3,x ≥2a1-ax ,x <2a,则两函数图象有唯一交点,分a =0、a >0与a <0进行讨论,当a >0时,计算函数定义域可得x ≥a 或x ≤0,计算可得a ∈0,2 时,两函数在y 轴左侧有一交点,则只需找到当a ∈0,2 时,在y 轴右侧无交点的情况即可得;当a <0时,按同一方式讨论即可得.【解析】令f x =0,即2x 2-ax =ax -2 -1,由题可得x 2-ax ≥0,当a =0时,x ∈R ,有2x 2=-2 -1=1,则x =±22,不符合要求,舍去;当a >0时,则2x 2-ax =ax -2 -1=ax -3,x ≥2a1-ax ,x <2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a有唯一交点,由x 2-ax ≥0,可得x ≥a 或x ≤0,当x ≤0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =2时,即4x +1=0,即x =-14,当a ∈0,2 ,x =-12+a 或x =12-a>0(正值舍去),当a ∈2,+∞ 时,x =-12+a <0或x =12-a<0,有两解,舍去,即当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≤0时有唯一解,则当a ∈0,2 时,2x 2-ax -ax -2 +1=0在x ≥a 时需无解,当a ∈0,2 ,且x ≥a 时,由函数h x =ax -3,x ≥2a1-ax ,x <2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在1a ,2a上单调递减,在2a ,3a上单调递增,令g x =y =2x 2-ax ,即x -a 2 2a 24-y 2a 2=1,故x ≥a 时,g x 图象为双曲线x2a 24-y 2a2=1右支的x 轴上方部分向右平移a2所得,由x2a 24-y 2a2=1的渐近线方程为y =±aa 2x =±2x ,即g x 部分的渐近线方程为y =2x -a 2,其斜率为2,又a ∈0,2 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x ≥2a 时的斜率a ∈0,2 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在a ,+∞ 上单调递增,故有1a <a 3a>a,解得1<a <3,故1<a <3符合要求;当a <0时,则2x 2-ax =ax -2 -1=ax -3,x ≤2a1-ax ,x >2a,即函数g x =2x 2-ax 与函数h x =ax -3,x ≤2a1-ax ,x >2a有唯一交点,由x 2-ax ≥0,可得x ≥0或x ≤a ,当x ≥0时,则ax -2<0,则2x 2-ax =ax -2 -1=1-ax ,即4x 2-4ax =1-ax 2,整理得4-a 2 x 2-2ax -1=2+a x +1 2-a x -1 =0,当a =-2时,即4x -1=0,即x =14,当a ∈-2,0 ,x =-12+a <0(负值舍去)或x =12-a0,当a ∈-∞,2 时,x =-12+a >0或x =12-a>0,有两解,舍去,即当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≥0时有唯一解,则当a ∈-2,0 时,2x 2-ax -ax -2 +1=0在x ≤a 时需无解,当a ∈-2,0 ,且x ≤a 时,由函数h x =ax -3,x ≤2a1-ax ,x >2a关于x =2a 对称,令h x =0,可得x =1a 或x =3a ,且函数h x 在2a ,1a上单调递减,在3a ,2a上单调递增,同理可得:x ≤a 时,g x 图象为双曲线x 2a 24-y 2a 2=1左支的x 轴上方部分向左平移a2所得,g x 部分的渐近线方程为y =-2x +a 2,其斜率为-2,又a ∈-2,0 ,即h x =ax -3,x ≥2a1-ax ,x <2a在x <2a 时的斜率a ∈-2,0 ,令g x =2x 2-ax =0,可得x =a 或x =0(舍去),且函数g x 在-∞,a 上单调递减,故有1a >a 3a<a,解得-3<a <-1,故-3<a <-1符合要求;综上所述,a ∈-3,-1 ∪1,3 .故答案为:-3,-1 ∪1,3 .【点睛】关键点点睛:本题关键点在于将函数f x 的零点问题转化为函数g x =2x 2-ax 与函数h x =ax -3,x ≥2a1-ax ,x <2a的交点问题,从而可将其分成两个函数研究.19.3【分析】利用分段函数的形式可求f 3 .【解析】因为f x =x ,x >01,x ≤0, 故f 3 =3,故答案为:3.20.(1)-2(2)证明见解析(3)b ≥-23【分析】(1)求出f x min =2+a 后根据f (x )≥0可求a 的最小值;(2)设P m ,n 为y =f x 图象上任意一点,可证P m ,n 关于1,a 的对称点为Q 2-m ,2a -n 也在函数的图像上,从而可证对称性;(3)根据题设可判断f 1 =-2即a =-2,再根据f (x )>-2在1,2 上恒成立可求得b ≥-23.【解析】(1)b =0时,f x =ln x2-x+ax ,其中x ∈0,2 ,则f x =1x +12-x =2x 2-x+a ,x ∈0,2 ,因为x 2-x ≤2-x +x 2 2=1,当且仅当x =1时等号成立,故f x min =2+a ,而f x ≥0成立,故a +2≥0即a ≥-2,所以a 的最小值为-2.,(2)f x =ln x2-x+ax +b x -1 3的定义域为0,2 ,设P m ,n 为y =f x 图象上任意一点,P m ,n 关于1,a 的对称点为Q 2-m ,2a -n ,因为P m ,n 在y =f x 图象上,故n =ln m2-m+am +b m -1 3,而f 2-m =ln 2-m m +a 2-m +b 2-m -1 3=-ln m2-m +am +b m -1 3 +2a ,=-n +2a ,所以Q 2-m ,2a -n 也在y =f x 图象上,由P 的任意性可得y =f x 图象为中心对称图形,且对称中心为1,a .(3)因为f x >-2当且仅当1<x<2,故x=1为f x =-2的一个解,所以f1 =-2即a=-2,先考虑1<x<2时,f x >-2恒成立.此时f x >-2即为lnx2-x+21-x+b x-13>0在1,2上恒成立,设t=x-1∈0,1,则ln t+11-t-2t+bt3>0在0,1上恒成立,设g t =ln t+11-t-2t+bt3,t∈0,1,则g t =21-t2-2+3bt2=t2-3bt2+2+3b1-t2,当b≥0,-3bt2+2+3b≥-3b+2+3b=2>0,故g t >0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当-23≤b<0时,-3bt2+2+3b≥2+3b≥0,故g t ≥0恒成立,故g t 在0,1上为增函数,故g t >g0 =0即f x >-2在1,2上恒成立.当b<-23,则当0<t<1+23b<1时,g t <0故在0,1+2 3b上g t 为减函数,故g t <g0 =0,不合题意,舍;综上,f x >-2在1,2上恒成立时b≥-2 3 .而当b≥-23时,而b≥-23时,由上述过程可得g t 在0,1递增,故g t >0的解为0,1,即f x >-2的解为1,2.综上,b≥-2 3 .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.21.(1)e-1x-y-1=0(2)1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析a≤0和a>0两种情况,利用导数判断单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可;解法二:求导,可知f (x)=e x-a有零点,可得a>0,进而利用导数求f x 的单调性和极值,分析可得a2+ln a-1>0,构建函数解不等式即可.【解析】(1)当a=1时,则f(x)=e x-x-1,f (x)=e x-1,可得f(1)=e-2,f (1)=e-1,即切点坐标为1,e-2,切线斜率k=e-1,所以切线方程为y-e-2=e-1x-1,即e-1x-y-1=0.(2)解法一:因为f(x)的定义域为R,且f (x)=e x-a,若a≤0,则f (x)≥0对任意x∈R恒成立,可知f (x )在R 上单调递增,无极值,不合题意;若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,则g a =2a +1a>0,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ ;解法二:因为f (x )的定义域为R ,且f (x )=e x -a ,若f (x )有极小值,则f (x )=e x -a 有零点,令f (x )=e x -a =0,可得e x =a ,可知y =e x 与y =a 有交点,则a >0,若a >0,令f (x )>0,解得x >ln a ;令f (x )<0,解得x <ln a ;可知f (x )在-∞,ln a 内单调递减,在ln a ,+∞ 内单调递增,则f (x )有极小值f ln a =a -a ln a -a 3,无极大值,符合题意,由题意可得:f ln a =a -a ln a -a 3<0,即a 2+ln a -1>0,构建g a =a 2+ln a -1,a >0,因为则y =a 2,y =ln a -1在0,+∞ 内单调递增,可知g a 在0,+∞ 内单调递增,且g 1 =0,不等式a 2+ln a -1>0等价于g a >g 1 ,解得a >1,所以a 的取值范围为1,+∞ .22.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当x >1时,e x -1-2x +1+ln x >0即可.【解析】(1)f (x )定义域为(0,+∞),f (x )=a -1x =ax -1x当a ≤0时,f (x )=ax -1x <0,故f (x )在(0,+∞)上单调递减;当a >0时,x ∈1a,+∞ 时,f (x )>0,f (x )单调递增,当x ∈0,1a时,f (x )<0,f (x )单调递减.综上所述,当a ≤0时,f (x )在(0,+∞)上单调递减;a >0时,f (x )在1a ,+∞ 上单调递增,在0,1a上单调递减.(2)a ≤2,且x >1时,e x -1-f (x )=e x -1-a (x -1)+ln x -1≥e x -1-2x +1+ln x ,令g (x )=e x -1-2x +1+ln x (x >1),下证g (x )>0即可.g (x )=e x -1-2+1x ,再令h (x )=g (x ),则h (x )=e x -1-1x2,显然h (x )在(1,+∞)上递增,则h (x )>h (1)=e 0-1=0,即g (x )=h (x )在(1,+∞)上递增,故g (x)>g (1)=e0-2+1=0,即g(x)在(1,+∞)上单调递增,故g(x)>g(1)=e0-2+1+ln1=0,问题得证23.(1)极小值为0,无极大值.(2)a≤-12【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就a≤-12、-12<a<0、a≥0分类讨论后可得参数的取值范围.【解析】(1)当a=-2时,f(x)=(1+2x)ln(1+x)-x,故f (x)=2ln(1+x)+1+2x1+x-1=2ln(1+x)-11+x+1,因为y=2ln(1+x),y=-11+x+1在-1,+∞上为增函数,故f (x)在-1,+∞上为增函数,而f (0)=0,故当-1<x<0时,f (x)<0,当x>0时,f (x)>0,故f x 在x=0处取极小值且极小值为f0 =0,无极大值.(2)f x =-a ln1+x+1-ax1+x-1=-a ln1+x-a+1x1+x,x>0,设s x =-a ln1+x-a+1x1+x,x>0,则s x =-ax+1-a+11+x2=-a x+1+a+11+x2=-ax+2a+11+x2,当a≤-12时,sx >0,故s x 在0,+∞上为增函数,故s x >s0 =0,即f x >0,所以f x 在0,+∞上为增函数,故f x ≥f0 =0.当-12<a<0时,当0<x<-2a+1a时,sx <0,故s x 在0,-2a+1 a上为减函数,故在0,-2a+1a上s x <s0 ,即在0,-2a+1 a上f x <0即f x 为减函数,故在0,-2a+1 a上f x <f0 =0,不合题意,舍.当a≥0,此时s x <0在0,+∞上恒成立,同理可得在0,+∞上f x <f0 =0恒成立,不合题意,舍;综上,a≤-1 2 .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.24.(1)单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)证明见解析(3)2【分析】(1)直接代入k=-1,再利用导数研究其单调性即可;(2)写出切线方程y-f(t)=1+k1+t(x-t)(t>0),将(0,0)代入再设新函数F(t)=ln(1+t)-t1+t,利用导数研究其零点即可;(3)分别写出面积表达式,代入2S △ACO =15S ABO 得到13ln (1+t )-2t -15t1+t=0,再设新函数h (t )=13ln (1+t )-2t -15t1+t(t >0)研究其零点即可.【解析】(1)f (x )=x -ln (1+x ),f (x )=1-11+x =x1+x(x >-1),当x ∈-1,0 时,f x <0;当x ∈0,+∞ ,f x >0;∴f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.则f (x )的单调递减区间为(-1,0),单调递增区间为(0,+∞).(2)f (x )=1+k 1+x ,切线l 的斜率为1+k1+t,则切线方程为y -f (t )=1+k1+t (x -t )(t >0),将(0,0)代入则-f (t )=-t 1+k 1+t,f (t )=t 1+k1+t ,即t +k ln (1+t )=t +t k 1+t ,则ln (1+t )=t 1+t ,ln (1+t )-t1+t =0,令F (t )=ln (1+t )-t1+t,假设l 过(0,0),则F (t )在t ∈(0,+∞)存在零点.F (t )=11+t -1+t -t (1+t )2=t(1+t )2>0,∴F (t )在(0,+∞)上单调递增,F (t )>F (0)=0,∴F (t )在(0,+∞)无零点,∴与假设矛盾,故直线l 不过(0,0).(3)k =1时,f (x )=x +ln (1+x ),f (x )=1+11+x =x +21+x>0.S △ACO =12tf (t ),设l 与y 轴交点B 为(0,q ),t >0时,若q <0,则此时l 与f (x )必有交点,与切线定义矛盾.由(2)知q ≠0.所以q >0,则切线l 的方程为y -t -ln t +1 =1+11+t x -t ,令x =0,则y =q =y =ln (1+t )-tt +1.∵2S △ACO =15S ABO ,则2tf (t )=15t ln (1+t )-t t +1,∴13ln (1+t )-2t -15t 1+t =0,记h (t )=13ln (1+t )-2t -15t1+t(t >0),∴满足条件的A 有几个即h (t )有几个零点.h(t )=131+t -2-15(t +1)2=13t +13-2t 2+2t +1 -15(t +1)2=2t 2+9t -4(t +1)2=(-2t +1)(t -4)(t +1)2,当t ∈0,12 时,h t <0,此时h t 单调递减;当t ∈12,4 时,h t >0,此时h t 单调递增;当t ∈4,+∞ 时,h t <0,此时h t 单调递减;因为h (0)=0,h 120,h (4)=13ln5-20 13×1.6-20=0.8>0,h (24)=13ln25-48-15×2425=26ln5-48-725<26×1.61-48-725=-20.54<0,所以由零点存在性定理及h (t )的单调性,h (t )在12,4 上必有一个零点,在(4,24)上必有一个零点,综上所述,h (t )有两个零点,即满足2S ACO =15S ABO 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.25.(1)y =x -1(2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到a =2,再证明a =2时条件满足;(3)先确定f x 的单调性,再对x 1,x 2分类讨论.【解析】(1)由于f x =x ln x ,故f x =ln x +1.所以f 1 =0,f 1 =1,所以所求的切线经过1,0 ,且斜率为1,故其方程为y =x -1.(2)设h t =t -1-ln t ,则h t =1-1t =t -1t,从而当0<t <1时h t <0,当t >1时h t >0.所以h t 在0,1 上递减,在1,+∞ 上递增,这就说明h t ≥h 1 ,即t -1≥ln t ,且等号成立当且仅当t =1.设g t =a t -1 -2ln t ,则f x -a x -x =x ln x -a x -x =x a 1x -1-2ln 1x=x ⋅g 1x.当x ∈0,+∞ 时,1x的取值范围是0,+∞ ,所以命题等价于对任意t ∈0,+∞ ,都有g t ≥0.一方面,若对任意t ∈0,+∞ ,都有g t ≥0,则对t ∈0,+∞ 有0≤g t =a t -1 -2ln t =a t -1 +2ln 1t ≤a t -1 +21t -1 =at +2t-a -2,取t =2,得0≤a -1,故a ≥1>0.再取t =2a ,得0≤a ⋅2a +2a 2-a -2=22a -a -2=-a -2 2,所以a =2.另一方面,若a =2,则对任意t ∈0,+∞ 都有g t =2t -1 -2ln t =2h t ≥0,满足条件.综合以上两个方面,知a 的取值范围是2 .(3)先证明一个结论:对0<a <b ,有ln a +1<f b -f ab -a<ln b +1.证明:前面已经证明不等式t -1≥ln t ,故b ln b -a ln a b -a =a ln b -a ln ab -a +ln b =ln b a b a -1+ln b <1+ln b ,且b ln b -a ln a b -a =b ln b -b ln a b -a +ln a =-ln a b 1-a b +ln a >-ab-1 1-a b+ln a =1+ln a ,所以ln a +1<b ln b -a ln ab -a <ln b +1,即ln a +1<f b -f a b -a<ln b +1.由f x =ln x +1,可知当0<x <1e 时f x <0,当x >1e时f x >0.所以f x 在0,1e 上递减,在1e,+∞ 上递增.不妨设x 1≤x 2,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1e≤x 1≤x 2<1时,有f x 1 -f x 2 =f x 2 -f x 1 <ln x 2+1 x 2-x 1 <x 2-x 1<x 2-x 1,结论成立;情况二:当0<x 1≤x 2≤1e时,有f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2.对任意的c ∈0,1e,设φx =x ln x -c ln c -c -x ,则φx =ln x +1+12c -x.由于φx 单调递增,且有φ c 2e1+12c=ln c2e1+12c+1+12c -c2e1+12c<ln1e1+12c+1+12c -c2=-1-12c +1+12c=0,且当x ≥c -14ln 2c-1 2,x >c 2时,由12c -x≥ln 2c -1可知φ x =ln x +1+12c -x >ln c 2+1+12c -x =12c -x-ln 2c -1 ≥0.所以φ x 在0,c 上存在零点x 0,再结合φ x 单调递增,即知0<x <x 0时φ x <0,x 0<x <c 时φ x >0.故φx 在0,x 0 上递减,在x 0,c 上递增.①当x 0≤x ≤c 时,有φx ≤φc =0;②当0<x <x 0时,由于c ln 1c =-2f c ≤-2f 1e =2e <1,故我们可以取q ∈c ln 1c,1 .从而当0<x <c1-q 2时,由c -x >q c ,可得φx =x ln x -c ln c -c -x <-c ln c -c -x <-c ln c -q c =c c ln 1c-q <0.再根据φx 在0,x 0 上递减,即知对0<x <x 0都有φx <0;综合①②可知对任意0<x ≤c ,都有φx ≤0,即φx =x ln x -c ln c -c -x ≤0.根据c ∈0,1e和0<x ≤c 的任意性,取c =x 2,x =x 1,就得到x 1ln x 1-x 2ln x 2-x 2-x 1≤0.所以f x 1 -f x 2 =f x 1 -f x 2 =x 1ln x 1-x 2ln x 2≤x 2-x 1.情况三:当0<x 1≤1e ≤x 2<1时,根据情况一和情况二的讨论,可得f x 1 -f 1e≤1e -x 1≤x 2-x 1,f 1e -f x 2 ≤x 2-1e ≤x 2-x 1.而根据f x 的单调性,知f x 1 -f x 2 ≤f x 1 -f 1e 或f x 1 -f x 2 ≤f 1e-f x 2 .故一定有f x 1 -f x 2 ≤x 2-x 1成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合f x 的单调性进行分类讨论.26.(1)x |1<x <2(2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【解析】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.27.(1)证明见解析(2)存在,P 0,1 (3)严格单调递减【分析】(1)代入M (0,0),利用基本不等式即可;(2)由题得s x =(x -1)2+e 2x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到s 1 x 0 =s 2 x 0 =0,对两等式化简得f x 0 =-1g (t ),再利用“最近点”的定义得到不等式组,即可证明x 0=t ,最后得到函数单调性.【解析】(1)当M (0,0)时,s x =(x -0)2+1x -0 2=x 2+1x2≥2x 2⋅1x 2=2,当且仅当x 2=1x 2即x =1时取等号,故对于点M 0,0 ,存在点P 1,1 ,使得该点是M 0,0 在f x 的“最近点”.(2)由题设可得s x =(x -1)2+e x -0 2=(x -1)2+e 2x ,则s x =2x -1 +2e 2x ,因为y =2x -1 ,y =2e 2x 均为R 上单调递增函数,则s x =2x -1 +2e 2x 在R 上为严格增函数,而s 0 =0,故当x <0时,s x <0,当x >0时,s x >0,故s x min =s 0 =2,此时P 0,1 ,而f x =e x ,k =f 0 =1,故f x 在点P 处的切线方程为y =x +1.而k MP =0-11-0=-1,故k MP ⋅k =-1,故直线MP 与y =f x 在点P 处的切线垂直.(3)设s 1x =(x -t +1)2+f x -f t +g t 2,s 2x =(x -t -1)2+f x -f t -g t 2,而s 1x =2(x -t +1)+2f x -f t +g t f x ,s 2x =2(x -t -1)+2f x -f t -g t f x ,若对任意的t ∈R ,存在点P 同时是M 1,M 2在f x 的“最近点”,设P x 0,y 0 ,则x 0既是s 1x 的最小值点,也是s 2x 的最小值点,因为两函数的定义域均为R ,则x 0也是两函数的极小值点,则存在x0,使得s 1 x 0 =s 2 x 0 =0,即s 1 x 0 =2x 0-t +1 +2f x 0 f x 0 -f (t )+g (t ) =0①s 2 x 0 =2x 0-t -1 +2f x 0 f x 0 -f (t )-g (t ) =0②由①②相等得4+4g (t )⋅f x 0 =0,即1+f x 0 g (t )=0,即f x 0 =-1g (t ),又因为函数g (x )在定义域R 上恒正,则f x 0 =-1g (t )<0恒成立,接下来证明x 0=t ,因为x 0既是s 1x 的最小值点,也是s 2x 的最小值点,则s 1x 0 ≤s (t ),s 2x 0 ≤s (t ),即x 0-t +1 2+f x 0 -f t +g t 2≤1+g t 2,③x 0-t -12+f x 0 -f t -g t 2≤1+g t 2,④③+④得2x 0-t 2+2+2f x 0 -f (t ) 2+2g 2(t )≤2+2g 2(t )即x 0-t 2+f x 0 -f t 2≤0,因为x 0-t 2≥0,f x 0 -f t 2≥0则x 0-t =0f x 0 -f t =0,解得x 0=t ,则f t =-1g (t )<0恒成立,因为t 的任意性,则f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到f x 0 =-1g (t ),再利用最值点定义得到x 0=t 即可.。
2024全国高考真题数学汇编导数在研究函数中的应用一、单选题1.(2024上海高考真题)已知函数()f x 的定义域为R ,定义集合 0000,,,M x x x x f x f x R ,在使得 1,1M 的所有 f x 中,下列成立的是()A .存在 f x 是偶函数B .存在 f x 在2x 处取最大值C .存在 f x 是严格增函数D .存在 f x 在=1x 处取到极小值二、多选题2.(2024全国高考真题)设函数2()(1)(4)f x x x ,则()A .3x 是()f x 的极小值点B .当01x 时, 2()f x f xC .当12x 时,4(21)0f xD .当10x 时,(2)()f x f x 3.(2024全国高考真题)设函数32()231f x x ax ,则()A .当1a 时,()f x 有三个零点B .当0a 时,0x 是()f x 的极大值点C .存在a ,b ,使得x b 为曲线()y f x 的对称轴D .存在a ,使得点 1,1f 为曲线()y f x 的对称中心三、填空题4.(2024全国高考真题)曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,则a 的取值范围为.四、解答题5.(2024全国高考真题)已知函数3()e x f x ax a .(1)当1a 时,求曲线()y f x 在点 1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.6.(2024全国高考真题)已知函数 1ln 1f x ax x x .(1)当2a 时,求 f x 的极值;(2)当0x 时, 0f x ,求a 的取值范围.7.(2024全国高考真题)已知函数 1ln 1f x a x x .(1)求 f x 的单调区间;(2)当2a 时,证明:当1x 时, 1e x f x 恒成立.8.(2024上海高考真题)对于一个函数 f x 和一个点 ,M a b ,令 22()()s x x a f x b ,若 00,P x f x 是 s x 取到最小值的点,则称P 是M 在 f x 的“最近点”.(1)对于1()(0)f x x x,求证:对于点 0,0M ,存在点P ,使得点P 是M 在 f x 的“最近点”;(2)对于 e ,1,0x f x M ,请判断是否存在一个点P ,它是M 在 f x 的“最近点”,且直线MP 与()y f x 在点P 处的切线垂直;(3)已知()y f x 在定义域R 上存在导函数()f x ,且函数()g x 在定义域R 上恒正,设点11,M t f t g t , 21,M t f t g t .若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,试判断 f x 的单调性.9.(2024北京高考真题)设函数 ln 10f x x k x k ,直线l 是曲线 y f x 在点 ,0t f t t 处的切线.(1)当1k 时,求 f x 的单调区间.(2)求证:l 不经过点 0,0.(3)当1k 时,设点 ,0A t f t t , 0,C f t , 0,0O ,B 为l 与y 轴的交点,ACO S 与ABO S 分别表示ACO △与ABO 的面积.是否存在点A 使得215ACO ABO S S △△成立?若存在,这样的点A 有几个?(参考数据:1.09ln31.10 ,1.60ln51.61 ,1.94ln71.95 )10.(2024天津高考真题)设函数 ln f x x x .(1)求 f x 图象上点 1,1f 处的切线方程;(2)若 f x a x 在 0,x 时恒成立,求a 的值;(3)若 12,0,1x x ,证明 121212f x f x x x .11.(2024全国高考真题)已知函数3()ln (1)2x f x ax b x x (1)若0b ,且()0f x ,求a 的最小值;(2)证明:曲线()y f x 是中心对称图形;(3)若()2f x 当且仅当12x ,求b 的取值范围.参考答案1.B【分析】对于ACD 利用反证法并结合函数奇偶性、单调性以及极小值的概念即可判断,对于B ,构造函数2,1,111,1x f x x x x即可判断.【详解】对于A ,若存在()y f x 是偶函数,取01[1,1]x ,则对于任意(,1),()(1)x f x f ,而(1)(1)f f ,矛盾,故A 错误;对于B ,可构造函数 2,1,,11,1,1,x f x x x x满足集合 1,1M ,当1x 时,则 2f x ,当11x 时, 1,1f x ,当1x 时, 1f x ,则该函数 f x 的最大值是 2f ,则B 正确;对C ,假设存在 f x ,使得 f x 严格递增,则M R ,与已知 1,1M 矛盾,则C 错误;对D ,假设存在 f x ,使得 f x 在=1x 处取极小值,则在1 的左侧附近存在n ,使得 1f n f ,这与已知集合M 的定义矛盾,故D 错误;故选:B.2.ACD【分析】求出函数 f x 的导数,得到极值点,即可判断A ;利用函数的单调性可判断B ;根据函数 f x 在 1,3上的值域即可判断C ;直接作差可判断D.【详解】对A ,因为函数 f x 的定义域为R ,而 22141313f x x x x x x ,易知当 1,3x 时, 0f x ,当 ,1x 或 3,x 时, 0f x 函数 f x 在 ,1 上单调递增,在 1,3上单调递减,在 3, 上单调递增,故3x 是函数 f x 的极小值点,正确;对B ,当01x 时, 210x x x x ,所以210x x ,而由上可知,函数 f x 在 0,1上单调递增,所以 2f x f x ,错误;对C ,当12x 时,1213x ,而由上可知,函数 f x 在 1,3上单调递减,所以 1213f f x f ,即 4210f x ,正确;对D ,当10x 时, 222(2)()12141220f x f x x x x x x x ,所以(2)()f x f x ,正确;故选:ACD.3.AD【分析】A 选项,先分析出函数的极值点为0,x x a ,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a 上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,则()(2)f x f b x 为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a ,由于1a ,故 ,0,x a 时()0f x ,故()f x 在 ,0,,a 上单调递增,(0,)x a 时,()0f x ,()f x 单调递减,则()f x 在0x 处取到极大值,在x a 处取到极小值,由(0)10 f ,3()10f a a ,则(0)()0f f a ,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a ,3(2)410f a a ,则(1)(0)0,()(2)0f f f a f a ,则()f x 在(1,0),(,2)a a 上各有一个零点,于是1a 时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a ,a<0时,(,0),()0x a f x ,()f x 单调递减,,()0x 时()0f x ,()f x 单调递增,此时()f x 在0x 处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b 为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x ,即32322312(2)3(2)1x ax b x a b x ,根据二项式定理,等式右边3(2)b x 展开式含有3x 的项为303332C (2)()2b x x ,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b 为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a ,若存在这样的a ,使得(1,33)a 为()f x 的对称中心,则()(2)66f x f x a ,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a ,于是266(126)(1224)1812a a x a x a即126012240181266a a a a,解得2a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax ,2()66f x x ax ,()126f x x a ,由()02a f x x ,于是该三次函数的对称中心为,22a a f ,由题意(1,(1))f 也是对称中心,故122a a ,即存在2a 使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x ;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ;(3)任何三次函数32()f x ax bx cx d 都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x 的解,即,33b b f aa是三次函数的对称中心4. 2,1 【分析】将函数转化为方程,令 2331x x x a ,分离参数a ,构造新函数 3251,g x x x x 结合导数求得 g x 单调区间,画出大致图形数形结合即可求解.【详解】令 2331x x x a ,即3251a x x x ,令 32510,g x x x x x 则 2325351g x x x x x ,令 00g x x 得1x ,当 0,1x 时, 0g x , g x 单调递减,当 1,x 时, 0g x , g x 单调递增, 01,12g g ,因为曲线33y x x 与 21y x a 在 0, 上有两个不同的交点,所以等价于y a 与 g x 有两个交点,所以 2,1a .故答案为:2,1 5.(1) e 110x y (2)1, 【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a 和0a 两种情况,利用导数判断单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可;解法二:求导,可知()e x f x a 有零点,可得0a ,进而利用导数求 f x 的单调性和极值,分析可得2ln 10a a ,构建函数解不等式即可.【详解】(1)当1a 时,则()e 1x f x x ,()e 1x f x ,可得(1)e 2f ,(1)e 1f ,即切点坐标为 1,e 2 ,切线斜率e 1k ,所以切线方程为 e 2e 11y x ,即 e 110x y .(2)解法一:因为()f x 的定义域为R ,且()e x f x a ,若0a ,则()0f x 对任意x R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,则 120g a a a,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, ;解法二:因为()f x 的定义域为R ,且()e x f x a ,若()f x 有极小值,则()e x f x a 有零点,令()e 0x f x a ,可得e x a ,可知e x y 与y a 有交点,则a ,若0a ,令()0f x ,解得ln x a ;令()0f x ,解得ln x a ;可知()f x 在 ,ln a 内单调递减,在 ln ,a 内单调递增,则()f x 有极小值 3ln ln f a a a a a ,无极大值,符合题意,由题意可得: 3ln ln 0f a a a a a ,即2ln 10a a ,构建 2ln 1,0g a a a a ,因为则2,ln 1y a y a 在 0, 内单调递增,可知 g a 在 0, 内单调递增,且 10g ,不等式2ln 10a a 等价于 1g a g ,解得1a ,所以a 的取值范围为 1, .6.(1)极小值为0,无极大值.(2)12a 【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值.(2)求出函数的二阶导数,就12a 、102a 、0a 分类讨论后可得参数的取值范围.【详解】(1)当2a 时,()(12)ln(1)f x x x x ,故121()2ln(1)12ln(1)111x f x x x x x,因为12ln(1),11y x y x在 1, 上为增函数,故()f x 在 1, 上为增函数,而(0)0f ,故当10x 时,()0f x ,当0x 时,()0f x ,故 f x 在0x 处取极小值且极小值为 00f ,无极大值.(2) 11ln 11ln 1,011a x ax f x a x a x x x x,设 1ln 1,01a x s x a x x x,则222111211111a a x a a ax a s x x x x x ,当12a 时, 0s x ,故 s x 在 0, 上为增函数,故 00s x s ,即 0f x ,所以 f x 在 0, 上为增函数,故 00f x f .当102a 时,当0x 0s x ,故 s x 在210,a a 上为减函数,故在210,a a上 0s x s ,即在210,a a上 0f x 即 f x 为减函数,故在210,a a上 00f x f ,不合题意,舍.当0a ,此时 0s x 在 0, 上恒成立,同理可得在 0, 上 00f x f 恒成立,不合题意,舍;综上,12a .【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.7.(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性;(2)先根据题设条件将问题可转化成证明当1x 时,1e 21ln 0x x x 即可.【详解】(1)()f x 定义域为(0,) ,11()ax f x a x x当0a 时,1()0ax f x x,故()f x 在(0,) 上单调递减;当0a 时,1,x a时,()0f x ,()f x 单调递增,当10,x a时,()0f x ,()f x 单调递减.综上所述,当0a 时,()f x 的单调递减区间为(0,) ;0a 时,()f x 的单调递增区间为1,a ,单调递减区间为10,a.(2)2a ,且1x 时,111e ()e (1)ln 1e 21ln x x x f x a x x x x ,令1()e 21ln (1)x g x x x x ,下证()0g x 即可.11()e 2x g x x ,再令()()h x g x ,则121()e x h x x,显然()h x 在(1,) 上递增,则0()(1)e 10h x h ,即()()g x h x 在(1,) 上递增,故0()(1)e 210g x g ,即()g x 在(1,) 上单调递增,故0()(1)e 21ln10g x g ,问题得证8.(1)证明见解析(2)存在,0,1P (3)严格单调递减【分析】(1)代入(0,0)M ,利用基本不等式即可;(2)由题得 22(1)e x s x x ,利用导函数得到其最小值,则得到P ,再证明直线MP 与切线垂直即可;(3)根据题意得到 10200s x s x ,对两等式化简得 01()f xg t ,再利用“最近点”的定义得到不等式组,即可证明0x t ,最后得到函数单调性.【详解】(1)当(0,0)M 时, 222211(0)02s x x x x x ,当且仅当221x x 即1x 时取等号,故对于点 0,0M ,存在点 1,1P ,使得该点是 0,0M 在 f x 的“最近点”.(2)由题设可得 2222(1)e 0(1)e x x s x x x ,则 2212e x s x x ,因为 221,2e x y x y 均为R 上单调递增函数,则 2212e xs x x 在R 上为严格增函数,而 00s ,故当0x 时, 0s x ,当0x 时, 0s x ,故 min 02s x s ,此时 0,1P ,而 e ,01x f x k f ,故 f x 在点P 处的切线方程为1y x .而01110MP k ,故1MP k k ,故直线MP 与 y f x 在点P 处的切线垂直.(3)设 221(1)()s x x t f x f t g t ,222(1)()s x x t f x f t g t ,而 12(1)2()s x x t f x f t g t f x , 22(1)2()s x x t f x f t g t f x ,若对任意的t R ,存在点P 同时是12,M M 在 f x 的“最近点”,设 00,P x y ,则0x 既是 1s x 的最小值点,也是 2s x 的最小值点,因为两函数的定义域均为R ,则0x 也是两函数的极小值点,则存在0x ,使得 10200s x s x ,即 10000212()()0s x x t f x f x f t g t ① 20000212()()0s x x t f x f x f t g t ②由①②相等得 044()0g t f x ,即 01()0f x g t ,即 01()f x g t,又因为函数()g x 在定义域R 上恒正,则 010()f xg t 恒成立,接下来证明0x t ,因为0x 既是 1s x 的最小值点,也是 2s x 的最小值点,则 1020(),()s x s t s x s t ,即 2220011x t f x f t g t g t ,③ 2220011x t f x f t g t g t ,④③ ④得 222200222()2()22()x t f x f t g t g t 即 22000x t f x f t ,因为 2200,00x t f x f t 则 0000x t f x f t,解得0x t ,则 10()f tg t 恒成立,因为t 的任意性,则 f x 严格单调递减.【点睛】关键点点睛:本题第三问的关键是结合最值点和极小值的定义得到 01()f x g t,再利用最值点定义得到0x t 即可.9.(1)单调递减区间为(1,0) ,单调递增区间为(0,) .(2)证明见解析(3)2【分析】(1)直接代入1k ,再利用导数研究其单调性即可;(2)写出切线方程()1()(0)1k y f t x t t t,将(0,0)代入再设新函数()ln(1)1t F t t t ,利用导数研究其零点即可;(3)分别写出面积表达式,代入215ACO ABO S S 得到13ln(1)21501t t t t ,再设新函数15()13ln(1)2(0)1t h t t t t t研究其零点即可.【详解】(1)1()ln(1),()1(1)11x f x x x f x x x x,当 1,0x 时, 0f x ;当 0,x ,()0f x ¢>;()f x 在(1,0) 上单调递减,在(0,) 上单调递增.则()f x 的单调递减区间为(1,0) ,单调递增区间为(0,) .(2)()11k f x x ,切线l 的斜率为11k t,则切线方程为()1()(0)1k y f t x t t t,将(0,0)代入则()1,()111k k f t t f t t t t,即ln(1)1k t k t t tt ,则ln(1)1t t t ,ln(1)01t t t ,令()ln(1)1t F t t t,假设l 过(0,0),则()F t 在(0,)t 存在零点.2211()01(1)(1)t t t F t t t t ,()F t 在(0,) 上单调递增,()(0)0F t F ,()F t 在(0,) 无零点, 与假设矛盾,故直线l 不过(0,0).(3)1k 时,12()ln(1),()1011x f x x x f x x x.1()2ACO S tf t ,设l 与y 轴交点B 为(0,)q ,0t 时,若0q ,则此时l 与()f x 必有交点,与切线定义矛盾.由(2)知0q .所以0q ,则切线l 的方程为 111ln 1x t y t t t,令0x ,则ln(1)1t y q y t t.215ACO ABO S S ,则2()15ln(1)1t tf t t t t,13ln(1)21501t t t t ,记15()13ln(1)2(0)1th t t t t t, 满足条件的A 有几个即()h t 有几个零点.2222221313221151315294(21)(4)()21(1)(1)(1)(1)t t t t t t t h t t t t t t ,当10,2t时, 0h t ,此时 h t 单调递减;当1,42t时, 0h t ,此时 h t 单调递增;当 4,t 时, 0h t ,此时 h t 单调递减;因为1(0)0,0,(4)13ln 520131.6200.802h h h,15247272(24)13ln 254826ln 548261.614820.5402555h,所以由零点存在性定理及()h t 的单调性,()h t 在1,42上必有一个零点,在(4,24)上必有一个零点,综上所述,()h t 有两个零点,即满足215ACO ABO S S 的A 有两个.【点睛】关键点点睛:本题第二问的关键是采用的是反证法,转化为研究函数零点问题.10.(1)1y x (2)2(3)证明过程见解析【分析】(1)直接使用导数的几何意义;(2)先由题设条件得到2a ,再证明2a 时条件满足;(3)先确定 f x 的单调性,再对12,x x 分类讨论.【详解】(1)由于 ln f x x x ,故 ln 1f x x .所以 10f , 11f ,所以所求的切线经过 1,0,且斜率为1,故其方程为1y x .(2)设 1ln h t t t ,则 111t h t t t,从而当01t 时 0h t ,当1t 时 0h t .所以 h t 在 0,1上递减,在 1, 上递增,这就说明 1h t h ,即1ln t t ,且等号成立当且仅当1t .设 12ln g t a t t ,则ln 1f x a x x x a x x a x g .当 0,x0, ,所以命题等价于对任意 0,t ,都有 0g t .一方面,若对任意 0,t ,都有 0g t ,则对 0,t 有112012ln 12ln 1212g t a t t a t a t at a t t t,取2t ,得01a ,故10a .再取t,得2022a a a,所以2a .另一方面,若2a ,则对任意 0,t 都有 212ln 20g t t t h t ,满足条件.综合以上两个方面,知a 的值是2.(3)先证明一个结论:对0a b ,有 ln 1ln 1f b f a a b b a.证明:前面已经证明不等式1ln t t ,故lnln ln ln ln ln ln 1ln 1bb b a a a b a aa b b b b b a b a a,且1lnln ln ln ln ln ln ln 1ln 11a a b b a a b b b a b b a a a a a a b a b a b b,所以ln ln ln 1ln 1b b a a a b b a,即 ln 1ln 1f b f a a b b a.由 ln 1f x x ,可知当10e x 时 0f x ,当1ex 时()0f x ¢>.所以 f x 在10,e上递减,在1,e上递增.不妨设12x x ,下面分三种情况(其中有重合部分)证明本题结论.情况一:当1211ex x 时,有122122121ln 1f x f x f x f x x x x x x ,结论成立;情况二:当1210e x x 时,有 12121122ln ln f x f x f x f x x x x x .对任意的10,e c,设ln ln x x x c cln 1x x 由于 x单调递增,且有1111111ln 1ln11102e2e ec c,且当2124ln 1x c c,2cx2ln 1c 可知2ln 1ln 1ln 102c x x c.所以 x 在 0,c 上存在零点0x ,再结合 x 单调递增,即知00x x 时 0x ,0x x c 时 0x .故 x 在 00,x 上递减,在 0,x c 上递增.①当0x x c 时,有 0x c ;②当00x x112221e e f f c,故我们可以取1,1q c .从而当201cx q1ln ln ln ln 0x x x c c c c c c q c.再根据 x 在 00,x 上递减,即知对00x x 都有 0x ;综合①②可知对任意0x c ,都有 0x ,即ln ln 0x x x c c .根据10,e c和0x c 的任意性,取2c x ,1x x,就得到1122ln ln 0x x x x .所以12121122ln ln f x f x f x f x x x x x 情况三:当12101e x x时,根据情况一和情况二的讨论,可得11e f x f21e f f x而根据 f x 的单调性,知 1211e f x f x f x f或 1221e f x f x f f x .故一定有12f x f x 成立.综上,结论成立.【点睛】关键点点睛:本题的关键在于第3小问中,需要结合 f x 的单调性进行分类讨论.11.(1)2 (2)证明见解析(3)23b【分析】(1)求出 min 2f x a 后根据()0f x 可求a 的最小值;(2)设 ,P m n 为 y f x 图象上任意一点,可证 ,P m n 关于 1,a 的对称点为 2,2Q m a n 也在函数的图像上,从而可证对称性;(3)根据题设可判断 12f 即2a ,再根据()2f x 在 1,2上恒成立可求得23b .【详解】(1)0b 时, ln 2xf x ax x,其中 0,2x ,则112,0,222f x a a x x x x x,因为 22212x x x x,当且仅当1x 时等号成立,故 min 2f x a ,而 0f x 成立,故20a 即2a ,所以a 的最小值为2 .,(2) 3ln12x f x ax b x x的定义域为 0,2,设 ,P m n 为 y f x 图象上任意一点,,P m n 关于 1,a 的对称点为 2,2Q m a n ,因为 ,P m n 在 y f x 图象上,故 3ln 12m n am b m m,而 3322ln221ln 122m m f m a m b m am b m a m m,2n a ,所以 2,2Q m a n 也在 y f x 图象上,由P 的任意性可得 y f x 图象为中心对称图形,且对称中心为 1,a .(3)因为 2f x 当且仅当12x ,故1x 为 2f x 的一个解,所以 12f 即2a ,先考虑12x 时, 2f x 恒成立.此时 2f x 即为 3ln21102x x b x x在 1,2上恒成立,设 10,1t x ,则31ln201t t bt t在 0,1上恒成立,设 31ln2,0,11t g t t bt t t,则2222232322311t bt b g t bt t t,当0b ,232332320bt b b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当203b 时,2323230bt b b ,故 0g t 恒成立,故 g t 在 0,1上为增函数,故 00g t g 即 2f x 在 1,2上恒成立.当23b ,则当01t 时, 0g t故在 上 g t 为减函数,故 00g t g ,不合题意,舍;综上, 2f x 在 1,2上恒成立时23b .而当23b 时,而23b 时,由上述过程可得 g t 在 0,1递增,故 0g t 的解为 0,1,即 2f x 的解为 1,2.综上,23b .【点睛】思路点睛:一个函数不等式成立的充分必要条件就是函数不等式对应的解,而解的端点为函数对一个方程的根或定义域的端点,另外,根据函数不等式的解确定参数范围时,可先由恒成立得到参数的范围,再根据得到的参数的范围重新考虑不等式的解的情况.。
2024届高考数学专题:同构、构造函数选择填空压轴题一、单选题1.若对∀x ∈12e ,12,不等式(ax -4)ln x <2ln a -ax ln2恒成立,则实数a 的取值范围是()A.(0,4e ]B.(4e ,+∞)C.[4e ,+∞)D.(4e ,+∞)【答案】C【分析】不等式(ax -4)ln x <2ln a -ax ln2变形为ln (2x )2x <ln (ax 2)ax 2,令f x =ln xx ,利用导数研究函数单调性,解不等式求实数a 的取值范围.【详解】由已知得:a >0,由ax -4 ln x <2ln a -ax ln2,得ax ln 2x <2ln a +2ln x 即ax ln (2x )2<ln (ax 2),可得ln (2x )2x <ln (ax 2)ax 2.令f x =ln xx,x ∈0,+∞ ,则f (2x )<f (ax 2),求导得f (x )=1-ln x x2,f(x )>0,解得0<x <e ;f (x )<0,解得x >e ,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,且当0<x <1时f (x )<0;当x >1时,f (x )>0,函数图像如图所示.∵x ∈12е,12,∴2x ∈1е,1,∴f (2x )<0,由f (2x )<f (ax 2)及f x =ln x x 的图像可知,2x <ax 2恒成立,即a >2x成立,而2x ∈(4,4e ),∴a ≥4е,实数a 的取值范围是[4e ,+∞).故选:C .2.对任意x ∈0,+∞ ,k e kx +1 -1+1xln x >0恒成立,则实数k 的可能取值为()A.-1B.13C.1eD.2e【答案】D【分析】将恒成立的不等式化为e kx +1 ln e kx >x +1 ln x ,构造函数f x =x +1 ln x ,利用导数可求得f x 单调性,从而得到e kx >x ,分离变量可得k >ln x x ;令h x =ln xx,利用导数可求得h x 最大值,由此可得k 的范围,从而确定k 可能的取值.【详解】当x >0时,由k e kx +1 -1+1xln x >0得:kx e kx +1 >x +1 ln x ,∴e kx +1 ln e kx >x +1 ln x ,令f x =x +1 ln x ,则f x =ln x +1+1x,令g x =f x ,则g x =1x -1x 2=x -1x 2,∴当x ∈0,1 时,g x <0;当x ∈1,+∞ 时,g x >0;∴f x 在0,1 上单调递减,在1,+∞ 上单调递增,∴f x ≥f 1 =2>0,∴f x 在0,+∞ 上单调递增,由e kx +1 ln e kx >x +1 ln x 得:f e kx >f x ,∴e kx >x ,即k >ln xx;令h x =ln x x ,则h x =1-ln xx 2,∴当x ∈0,e 时,h x >0;当x ∈e ,+∞ 时,h x <0;∴h x 在0,e 上单调递增,在e ,+∞ 上单调递减,∴h x ≤h e =1e,∴当x >0时,k >ln x x 恒成立,则k >1e,∴实数k 的可能取值为2e,ABC 错误,D 正确.故选:D .【点睛】关键点点睛:本题考查利用导数求解恒成立问题,解题关键是能够对于恒成立的不等式进行同构变化,将其转化为同一函数的两个函数值之间的大小关系的问题,从而利用函数的单调性来进行求解.3.已知对任意的x ∈0,+∞ ,不等式kx e kx +1 -x +1 ln x >0恒成立,则实数k 的取值范围是()A.e ,+∞B.1e ,eC.1e,+∞D.1e2,1e【答案】C【分析】对已知不等式进行变形,通过构造函数法,利用导数的性质、常变量分离法进行求解即可.【详解】因为kx e kx +1 >(x +1)ln x ,所以e kx +1 ln e kx >(x +1)ln x ①,令f (x )=(x +1)ln x ,则f (x )=1x +1+ln x ,设g (x )=f (x )=1x+1+ln x ,所以g (x )=-1x 2+1x =x -1x2,当0<x <1时,g(x )<0,当x >1时,g (x )>0,所以f (x )在(0,1)单调递减,在(1,+∞)单调递增,所以f x ≥f 1 =2,所以f (x )在(0,+∞)单调递增,因为①式可化为f e kx >f (x ),所以e kx >x ,所以k >ln xx,令h (x )=ln x x ,则h (x )=1-ln xx 2,当x ∈(0,e )时,h (x )>0,当x ∈(e ,+∞)时,h (x )<0,所以h (x )在(0,e )单调递增,在(e ,+∞)单调递减,所以h (x )max =h (e )=1e ,所以k >1e,故选:C .4.设实数a >0,对任意的x ∈1e3,+∞,不等式e 2ax -ln x 2a ≥1a -e 2ax ax 恒成立,则实数a 的取值范围是()A.1e ,+∞B.12e,+∞ C.0,1eD.1e2,+∞【答案】B【分析】将e 2ax-ln x 2a ≥1a -e 2ax ax化简为e 2ax 2ax +2 ≥x ln x +2 ,再构造函数f x =x ln x +2 ,求导分析单调性可得e 2ax ≥x 在区间1e3,+∞上恒成立,再参变分离构造函数求最值解决恒成立问题即可.【详解】因为e 2ax-ln x 2a ≥1a -e 2ax ax恒成立即2axe 2ax -x ln x ≥2x -2e 2ax ,可得e 2ax 2ax +2 ≥x ln x +2 ,令f x =x ln x +2 ,则f e 2ax ≥f x 恒成立.又f x =ln x +3,故当x ∈1e 3,+∞时,fx >0,故f x =x ln x +2 在区间1e3,+∞上为增函数.又f e 2ax ≥f x 恒成立,则e 2ax ≥x 在区间1e3,+∞上恒成立,即2ax ≥ln x ,2a ≥ln xx .构造g x =ln x x ,x ∈1e 3,+∞,则g x =1-ln xx2,令g x =0有x =e ,故当x ∈1e3,e时g x >0,g x 为增函数;当x ∈e ,+∞ 时g x <0,g x 为减函数.故g x ≤g e =1e ,故2a ≥1e ,即a ≥12e.故选:B 【点睛】方法点睛:恒(能)成立问题的解法:若f (x )在区间D 上有最值,则(1)恒成立:∀x ∈D ,f x >0⇔f x min >0;∀x ∈D ,f x <0⇔f x max <0;(2)能成立:∃x ∈D ,f x >0⇔f x max >0;∃x ∈D ,f x <0⇔f x min <0.若能分离常数,即将问题转化为:a >f x (或a <f x ),则(1)恒成立:a >f x ⇔a >f x max ;a <f x ⇔a <f x min ;(2)能成立:a >f x ⇔a >f x min ;a <f x ⇔a <f x max .5.已知函数f x =ln x +ax 2,若对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是()A.14,+∞B.12,+∞C.14,+∞ D.12,+∞ 【答案】D【分析】构造函数g (x )=f (x )-2x =ln x +ax 2-2x (x >0),则转化得到g x 在(0,+∞)上单调递增,将题目转化为g (x )=1x+2ax -2≥0在(0,+∞)上恒成立,再利用分离参数法即可得到答案.【详解】由题意,不妨设x 1>x 2>0,因为对任意两个不等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,所以f x 1 -f x 2 >2x 1-2x 2,即f x 1 -2x 1>f x 2 -2x 2,构造函数g(x)=f(x)-2x=ln x+ax2-2x(x>0),则g x1>g x2,所以g(x)在(0,+∞)上单调递增,所以g (x)=1x+2ax-2≥0在(0,+∞)上恒成立,即a≥1x-12x2在(0,+∞)上恒成立,设m(x)=1x-12x2(x>0),则m (x)=-1x2+1x3=1-xx3,所以当x∈(0,1)时,m (x)>0,m(x)单调递增,x∈(1,+∞)时,m (x)<0,m(x)单调递减,所以m(x)max=m(1)=1-12=12,所以a≥1 2 .故选:D.6.已知f x 是定义在R上的函数f x 的导函数,且f x +xf x <0,则a=2f2 ,b=ef e ,c=3f3 的大小关系为()A.a>b>cB.c>a>bC.c>b>aD.b>a>c【答案】A【分析】构建g x =xf x ,求导,利用导数判断g x 的单调性,进而利用单调性比较大小.【详解】构建g x =xf x ,则g x =f x +xf x ,因为f x +xf x <0对于x∈R恒成立,所以g x <0,故g x 在R上单调递减,由于a=2f2 =g2 ,b=ef e =g e ,c=3f3 =g3 ,且2<e<3,所以g2 >g e >g3 ,即a>b>c.故选:A.【点睛】结论点睛:1.f x +xf x 的形式,常构建xf x ;f x -xf x 的形式,常构建f x x;2.f x +f x 的形式,常构建e x⋅f x ;f x -f x 的形式,常构建f x e x.7.若函数f x =e x2-2ln x-2a ln x+ax2有两个不同的零点,则实数a的取值范围是()A.-∞,-eB.-∞,-eC.-e,0D.-e,0【答案】A【分析】将问题转化为函数y=-a与y=e x2-2ln xx2-2ln x图象有两个不同的交点,根据换元法将函数y=e x2-2ln x x2-2ln x 转化为g t =e tt,利用导数讨论函数的单调性求出函数的值域,进而得出参数的取值范围.【详解】函数f(x)的定义域为(0,+∞),f x =e x2-2ln x-2a ln x+ax2=e x2-2ln x+a x2-2ln x,设h(x)=x2-2ln x(x>0),则h (x)=2x-2x=2(x+1)(x-1)x,令h (x)>0⇒x>1,令h (x)<0⇒0<x<1,所以函数h (x )在(0,1)上单调递减,在(1,+∞)上单调递增,且h (1)=1,所以h (x )min =h (1)=1,所以h (x )≥1,函数f (x )有两个不同的零点等价于方程f (x )=0有两个不同的解,则e x 2-2ln x+a x 2-2ln x =0⇒-a =e x 2-2ln x x 2-2ln x,等价于函数y =-a 与y =e x 2-2ln xx 2-2ln x 图象有两个不同的交点.令x 2-2ln x =t ,g t =e t t ,t >1,则函数y =-a 与g t =e tt ,t >1图象有一个交点,则g t =te t -et t 2=e t t -1 t2>0,所以函数g (t )在(1,+∞)上单调递增,所以g t >g 1 =e ,且t 趋向于正无穷时,g t =e tt趋向于正无穷,所以-a >e ,解得a <-e.故选:A .【点睛】方法点睛:与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.对于不适合分离参数的等式,常常将参数看作常数直接构造函数,常用分类讨论法,利用导数研究单调性、最值,从而得出参数范围.8.函数f x 是定义在0,+∞ 上的可导函数,其导函数为f x ,且满足f x +2xf x >0,若不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax在x ∈1,+∞ 上恒成立,则实数a 的取值范围是()A.0,1eB.1e ,+∞C.0,eD.1e,+∞【答案】B【分析】根据题目条件可构造函数g x =x 2f x ,利用导函数判断出函数单调性,将不等式转化成g ax≥g ln x ,即a ≥ln x x 在x ∈1,+∞ 上恒成立,求出函数ln xx在1,+∞ 上的最大值即可得a 的取值范围.【详解】设g x =x 2f x ,x >0,g x =x 2f x +2xf x =x 2fx +2x f x >0所以函数g x 在0,+∞ 上为增函数.由f x 的定义域为0,+∞ 可知ax >0,得a >0,将不等式ax ⋅f ax ln x ≥f ln x ⋅ln xax整理得a 2x 2⋅f ax ≥f ln x ⋅ln 2x ,即g ax ≥g ln x ,可得ax ≥ln x 在x ∈1,+∞ 上恒成立,即a ≥ln xx在x ∈1,+∞ 上恒成立;令φx =ln xx ,其中x >1,所以a ≥φx maxφ x =1-ln xx2,令φ x =0,得x =e .当x ∈1,e 时,φ x >0,所以φx 在1,e 上单调递增;当x ∈e ,+∞ 时,φ x <0,所以φx 在e ,+∞ 上单调递减;所以φx max =φe =1e ,即a ≥1e故选:B .9.已知函数f (x )=xe x -a ln x +x -x a +1,若f (x )>0在定义域上恒成立,则实数a 的取值范围是()A.(-∞,e )B.0,eC.(-∞,1)D.0,1【答案】B【分析】构造函数g x =x +e x ,从而原不等式可转化为g x +ln x >g a ln x +ln x ,根据g x 的单调性可得x -a ln x >0,根据a 不同取值分类讨论求解即可.【详解】由f x >0得xe x +x >a ln x +x a +1,所以xe x +x +ln x >a ln x +ln x +x a +1,即e x +ln x +x +ln x >a ln x +ln x +x a +1,构造函数g x =x +e x ,则不等式转化为g x +ln x >g a ln x +ln x ,又易知g x 在R 上单调递增,故不等式等价于x +ln x >a ln x +ln x ,即x -a ln x >0.设h x =x -a ln x ,若a <0,h e1a=e1a-a lne 1a =e 1a-1<0,不符合题意;若a =0,则当x >0时,h x =x >0,符合题意;若a >0,则h x =1-ax,h x 在0,a 上单调递减,在a ,+∞ 上单调递增,所以h (x )min =h a ,要使h x >0恒成立,只需h a =a 1-ln a >0,所以0<a <e.综上可知a 的取值范围是0,e .故选:B .10.已知函数f (x )=xe x +e x ,g (x )=x ln x +x ,若f x 1 =g x 2 >0,则x 2x 1可取()A.-1 B.-1eC.1D.e【答案】A【分析】探讨函数g x 在1e 2,+∞上单调性,由已知可得x 2=e x 1(x 1>-1),再构造函数并求出其最小值即可判断作答.【详解】依题意,由g x 2 =x 2(ln x 2+1)>0得x 2>1e,令g x =2+ln x >0,函数g x 在1e 2,+∞上单调递增,由f x 1 =e x 1x 1+1 >0得x 1>-1,则f x =e x ln e x +1 =g (e x ),由f x 1 =g x 2 >0得:g (e x 1)=g (x 2),又e x 1>1e ,x 2>1e,于是得x 2=e x 1(x 1>-1),x 2x 1=ex1x 1,令h (x )=e x x (x >-1),求导得h(x )=e x (x -1)x 2,当-1<x <0,0<x <1时,h (x )<0,当x >1时,h (x )>0,即函数h (x )在(-1,0),(0,1)上单调递减,在(1,+∞)上单调递增,当x >0时,h (x )min =h (1)=e ,且x →+∞,h (x )→+∞,h (-1)=-1e ,且x →0-,h (x )→-∞,故h (x )∈-∞,-1e∪[e ,+∞)即x 2x 1∈-∞,-1e ∪[e ,+∞),显然选项A 符合要求,选项B ,C ,D 都不符合要求.故选:A 一、填空题11.设实数m >0,若对∀x ∈0,+∞ ,不等式e mx -ln xm≥0恒成立,则m 的取值范围为.【答案】m ≥1e【分析】构造函数f x =xe x 判定其单调性得mx ≥ln x ,分离参数根据恒成立求y =ln xx max即可.【详解】由e mx -ln xm≥0⇔mxe mx ≥x ln x =ln x ⋅e ln x ,构造函数f x =xe x x >0 ⇒f x =x +1 e x >0,∴f x 在0,+∞ 为增函数,则mx ⋅e mx ≥ln x ⋅e ln x ⇔mx ≥ln x 即对∀x ∈0,+∞ ,不等式mx ≥ln x 恒成立,则∀x ∈0,+∞ ,m ≥ln xx max,构造函数g x =ln x x ⇒g x =1-ln xx 2,令g x >0,得0<x <e ;令g x <0,得x >e ;∴g x =ln xx在0,e 上单调递增,在e ,+∞ 上单调递减,∴g x max =g e =1e ,即m ≥1e .故答案为:m ≥1e .12.已知函数f (x )=e x +1-a ln x ,若f (x )≥a (ln a -1)对x >0恒成立,则实数a 的取值范围是.【答案】0,e 2【分析】对不等式进行合理变形同构得e x +1-ln a +x +1-ln a ≥x +ln x ,构造函数利用函数的单调性计算即可.【详解】易知a >0,由e x +1-a ln x ≥a (ln a -1)可得e x +1a+1-ln a ≥ln x ,即e x +1-ln a +1-ln a ≥ln x ,则有e x +1-ln a +x +1-ln a ≥x +ln x ,设h (x )=e x +x ,易知h x 在R 上单调递增,故h (x +1-ln a )≥h (ln x ),所以x +1-ln a ≥ln x ,即x -ln x ≥ln a -1,设g (x )=x -ln x ⇒g x =x -1x,令g x >0⇒x >1,g x <0⇒0<x <1,故g x 在0,1 上单调递减,在1,+∞ 上单调递增,所以g x ≥g 1 =1,则有1≥ln a -1,解之得a ∈0,e 2 .故答案为:0,e 2 .13.已知a >1,若对于任意的x ∈13,+∞,不等式13x -2x +ln3x ≤1ae2x +ln a 恒成立,则a 的最小值为.【答案】32e【分析】根据题意可得13x +ln3x ≤1ae2x +ln ae 2x ,再构造f (x )=1x +ln x (x ≥1),利用导数研究该函数的单调性,从而利用函数的单调性,可得3x ≤ae 2x ,然后再参变量分离,将恒成立问题转为变量的最值,最后利用导数求出变量式的最值,从而得解.【详解】因为ln a +2x =ln a +ln e 2x =ln ae 2x ,所以13x -2x +ln3x ≤1ae 2x +ln a 可化为13x +ln3x ≤1ae2x +ln ae 2x ,设f (x )=1x +ln x (x ≥1),则f (x )=-1x 2+1x =x -1x 2≥0,∴f (x )在1,+∞ 上单调递增,因为a >1,x ∈13,+∞,所以3x ≥1,e 2x ≥e 23>1,ae 2x >1,所以13x +ln3x ≤1ae 2x +ln ae 2x 可化为f (3x )≤f (ae 2x ),所以3x ≤ae 2x ,∴a ≥3x e2x 在x ∈13,+∞ 上恒成立,∴a ≥3x e2xmax ,x ∈13,+∞ ,设g (x )=3x e 2x ,x ∈13,+∞ ,则g(x )=3(1-2x )e 2x,令g (x )>0,得13≤x <12;g (x )<0,得x >12,所以g (x )在13,12上单调递增,在12,+∞ 上单调递减,所以g x max =g 12 =32e ,所以a ≥32e ,即a 的最小值为32e .故答案为:32e.【点睛】关键点睛:本题的关键是将式子同构成13x +ln3x ≤1ae 2x +ln ae 2x ,再构造函数.14.若不等式ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,则实数a 的最小值为.【答案】13e【分析】将不等式变形为e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,构造函数g x =e x +x ,求导得单调性,进而问题进一步转化为ln a ≥ln x -3x 成立,构造h x =ln x -3x ,即可由导数求最值求解.【详解】因为ae 3x +2x +ln a ≥ln x 对任意x ∈0,+∞ 成立,不等式可变形为:ae 3x +3x +ln a ≥ln x +x ,即e ln a e 3x +3x +ln a ≥ln x +e ln x ,即e 3x +ln a +3x +ln a ≥e ln x +ln x 对任意x ∈0,+∞ 成立,记g x =e x +x ,则g x =e x +1>0,所以g x 在R 上单调递增,则e 3x +ln a +3x +ln a ≥e ln x +ln x 可写为g 3x +ln a ≥g ln x ,根据g x 单调性可知,只需3x +ln a ≥ln x 对任意x ∈0,+∞ 成立即可,即ln a ≥ln x -3x 成立,记h x =ln x -3x ,即只需ln a ≥h x max ,因为h x =1x -3=1-3x x ,故在x ∈0,13 上,h x >0,h x 单调递增,在x ∈13,+∞ 上,h x <0,h x 单调递减,所以h x max =h 13 =ln 13-1=ln 13e,所以只需ln a ≥ln 13e 即可,解得a ≥13e.故答案为:13e【点睛】方法点睛:利用导数求解不等式恒成立或者存在类问题:1.通常要构造新函数,利用导数研究函数的单调性与极值(最值),从而得出不等关系;2.利用可分离变量,构造新函数,直接把问题转化为函数的最值问题,从而判定不等关系;3.适当放缩构造法:根据已知条件适当放缩或利用常见放缩结论,从而判定不等关系;4.构造“形似”函数,变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.15.已知函数f x =ln x +ax 2,若对任意两个不相等的正实数x 1,x 2,都有f x 1 -f x 2x 1-x 2>2,则实数a 的取值范围是【答案】12,+∞ 【分析】设x 2>x 1>0,令g x =f x -2x ,将问题转化为g x 在0,+∞ 上单调递增,即g x ≥0在0,+∞ 上恒成立,采用分离变量的方式可得2a ≥-1x 2+2x ,结合二次函数性质可确定2a ≥1,由此可得结果.【详解】不妨设x 2>x 1>0,由f x 1 -f x 2x 1-x 2>2得:f x 1 -2x 1<f x 2 -2x 2,令g x =f x -2x ,则g x 在0,+∞ 上单调递增,∴g x =1x +2ax -2≥0在0,+∞ 上恒成立,∴2a ≥-1x 2+2x ,当1x =1,即x =1时,y =-1x2+2x 取得最大值1,∴2a ≥1,解得:a ≥12,∴实数a 的取值范围为12,+∞ .故答案为:12,+∞ .16.已知函数f x =12x 2-a ln x +1,当-2≤a <0,对任意x 1,x 2∈1,2 ,不等式f x 1 -f x 2 ≤m1x 1-1x 2恒成立,则m 的取值范围为.【答案】12,+∞【分析】构造新函数,利用导数研究函数的单调性与最值,求m 的取值范围即可.【详解】因为-2≤a <0,函数f x 在1,2 上单调递增,不妨设1≤x 1≤x 2≤2,则f x 1 -f x 2 ≤m1x 1-1x 2,可化为f x 2 +m x 2≤f x 1 +mx 1,设h x =f x +mx=12x2-a ln x+1+mx,则h x1≥h x2,所以h x 为1,2上的减函数,即h x =x-ax-mx2≤0在1,2上恒成立,等价于m≥x3-ax在1,2上恒成立,设g x =x3-ax,所以m≥g(x)max,因-2≤a<0,所以g x =3x2-a>0,所以函数g x 在1,2上是增函数,所以g(x)max=g2 =8-2a≤12(当且仅当a=-2时等号成立).所以m≥12.故答案为:12,+∞.17.已知实数x,y满足e x=xy2ln x+ln y,则xy的取值范围为.【答案】[e,+∞)【分析】把e x=xy2ln x+ln y化为xe x=x2y⋅ln(x2y),构造函数f(x)=xe x(x>0),可得xy=e xx,再求出函数g(x)=e xx(x>0)的值域即可得答案.【详解】依题意有x>0,y>0,设f(x)=xe x(x>0),则f (x)=(x+1)e x>0,所以f(x)在(0,+∞)上单调递增,由e x=xy2ln x+ln y,得xe x=x2y⋅ln(x2y),即有f(x)=f(ln(x2y)),因为f(x)在(0,+∞)上单调递增,所以有x=ln(x2y),即x2y=e x,所以xy=e x x,设g(x)=e xx(x>0),则g (x)=(x-1)e xx2,令g (x)=0,得x=1,x∈(0,1)时,g (x)<0,g(x)单调递减,x∈(1,+∞)时,g (x)>0,g(x)单调递增,所以g(x)min=g(1)=e,所以x∈(0,+∞)时,g(x)∈[e,+∞),所以xy的取值范围为[e,+∞).故答案为:[e,+∞)18.已知x0是方程e3x-ln x+2x=0的一个根,则ln x0x0=.【答案】3【分析】依题意得e3x0+3x0=x0+ln x0,构造函数f(x)=e x+x,则有f(3x0)=f(ln x0),得出f(x)的单调性即可求解.【详解】因为x0是方程e3x-ln x+2x=0的一个根,则x0>0,所以e3x0-ln x0+2x0=0,即e3x0+3x0=x0+ln x0,令f(x)=e x+x,则f (x)=e x+1>0,所以f(x)在R单调递增,又e3x0+3x0=x0+ln x0,即f(3x0)=f(ln x0),所以3x0=ln x0,所以ln x0x0=3.故答案为:319.已知函数f x =e ax-2ln x-x2+ax,若f x >0恒成立,则实数a的取值范围为.【答案】2e,+∞ 【分析】根据f x >0恒成立,可得到含有x ,a 的不等式,再进行分离变量,将“恒成立”转化为求函数的最大值或最小值,最后得出a 的范围.【详解】已知函数f x =e ax -2ln x -x 2+ax ,若f x >0恒成立,则实数a 的取值范围为令g x =e x +x ,g x =e x +1>0,所以g x 单调递增,因为f x =e ax -2ln x -x 2+ax >0x >0 ,所以e ax +ax >ln x 2+e ln x 2,可得g ax >g ln x 2 ,所以ax >ln x 2,所以a >ln x 2xx >0 恒成立,即求ln x 2x max x >0 ,令F x =ln x 2x x >0 ,F x =ln x 2 x -x ln x 2x 2=21-ln x x 2,当x ∈0,e 时,F x >0,F x 单调递增,当x ∈e ,+∞ 时,F x <0,F x 单调递减,所以F x ≤F e =2e ,可得a <2e .故答案为:2e ,+∞ .【点睛】对于“恒成立问题”,关键点为:对于任意的x ,使得f x >a 恒成立,可得出f x min >a ;对于任意的x ,使得f x <a 恒成立,可得出f x max <a .20.若ln x +ln2a -1-2a x -e x ≤0,则实数a 的取值范围为.【答案】0<a ≤e 2【分析】利用同构法,构造函数f (x )=ln x +x ,将问题转化为f (2ax )≤f (e x),从而得到2a ≤e x x恒成立问题,再构造g (x )=e x x,利用导数求得其最小值,由此得解.【详解】因为ln x +ln2a -1-2a x -e x ≤0,a >0,x >0⇔ln (2ax )-x +2ax -e x ≤0,⇔ln (2ax )+2ax ≤x +e x =ln e x +e x ,令f (x )=ln x +x ,x >0,则原式等价于f (2ax )≤f (e x ),f (x )=1x +1=1+x x>0恒成立,所以f (x )在定义域内单调递增,所以2ax ≤e x ⇒2a ≤e x x,令g (x )=e x x (x >0),g (x )=e x (x -1)x 2,则x >1时,g (x )>0,g (x )在(1,+∞)单调递增,0<x <1时,g (x )<0,g (x )在(0,1)单调递减,所以g (x )min =g (1)=e ,则2a ≤e ,a ≤e 2.又a 为正数,故答案为:0<a ≤e 2.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.21.已知a <0,不等式xe x +a ln x x a ≥0对∀x ∈1,+∞ 恒成立,则实数a 的最小值为.【答案】-e 【分析】将不等式等价变形为xe x ≥-a ln x ⋅e -a ln x ,构造函数f x =xe x ,进而问题转化成x ≥-a ln x ,构造g (x )=x ln x ,利用导数求解单调性进而得最值.【详解】xe x ≥-a ln x x a =-a ln x ⋅e -a ln x ,构造函数f x =xe x ,f x =x +1 e x >0x >0 ,故f x 在0,+∞ 上单调递增,故f x ≥f -a ln x 等价于x ≥-a ln x ,即a ≥-x ln x 任意的实数x >1恒成立.令g (x )=x ln x ,x >1则g (x )=ln x -1ln 2x ,故g (x )在(1,e )上单调递减,在(e ,+∞)上单调递增,g (x )min =e ,得a ≥-x ln x max=-e .故答案为:-e【点睛】对于利用导数研究函数的综合问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别22.关于x 的不等式a 2e 2x +1-ln x +x +1+2ln a ≥0在0,+∞ 上恒成立,则a 的最小值是.【答案】22e【分析】不等式转化为e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,构造函数f x =e x +x ,判断函数单调递增得到2x +1+ln a ≥ln x ,转化为2x +1-ln x +ln a ≥0,构造函数g x =2x +1-ln x +ln a ,根据函数的单调性计算最小值即得到答案.【详解】a 2e 2x +1-ln x +x +1+2ln a ≥0,即e 2x +1+2ln a +2x +1+2ln a ≥ln x +x =e ln x +ln x ,设f x =e x +x ,f x =e x +1>0恒成立,故f x 单调递增.原不等式转化为f 2x +1+2ln a ≥f ln x ,即2x +1+2ln a ≥ln x ,即2x +1-ln x +2ln a ≥0在(0,+∞)上恒成立.设g x =2x +1-ln x +2ln a ,g x =2x -1x ,当x ∈12,+∞ 时,g x >0,函数单调递增;当x ∈0,12 时,g x <0,函数单调递减;故g x min =g 12=2+ln2+2ln a ≥0,即2ln a ≥-2-ln2=-ln2e 2,解得a ≥22e.所以a 的最小值是22e.故答案为:22e.【点睛】方法点睛:将不等式a 2e 2x +1-ln x +x +1+2ln a ≥0化为e 2x +1+2ln a +2x +1+2ln a ≥e ln x +ln x ,这种方法就是同构法,同构即结构形式相同,对于一个不等式,对其移项后通过各种手段将其变形,使其左右两边呈现结构形式完全一样的状态,接着就可以构造函数,结合函数单调性等来对式子进行处理了.。
一轮大题专练7—导数(构造函数证明不等式1)1.已知函数()f x alnx x =+. (1)讨论()f x 的单调性;(2)当1a =时,证明:()x xf x e <. 解:(1)()f x alnx x =+,(0,)x ∈+∞. ()1af x x'=+, 0a 时,()0f x '>,函数()f x 在(0,)x ∈+∞上单调递增.0a <时,令()0f x '=,解得0x a =->,函数()f x 在(0,)x a ∈-上单调递减,在(,)a -+∞上单调递增.(2)证明:当1a =时,要证明:()xxf x e <,即证明21xlnx e x x+<, 令()1lnxg x x=+,21()lnx g x x -'=, 令()0g x '>,解得0x e <<;令()0g x '<,解得e x <. ∴函数()g x 在(0,)e 上单调递增,在(,)e +∞上单调递减.x e ∴=时,函数()g x 取得极大值即最大值,g (e )11e=+. 令2()xe h x x =,3(2)()xx e h x x -'=,令()0h x '<,解得02x <<;令()0h x '>,解得2x <. ∴函数()h x 在(0,)e 上单调递减,在(2,)+∞上单调递增.x e ∴=时,函数()h x 取得极小值即最小值,h (2)24e =.221251(1)1044 2.5e e ⋅-+>-->. ()()max min g x h x ∴<,即21xlnx e x x+<,也即()x xf x e <. 2.已知函数()f x x alnx =-.(Ⅰ)求曲线()y f x =在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间;(Ⅲ)若关于x 的方程0x alnx -=有两个不相等的实数根,记较小的实数根为0x ,求证:0(1)a x a ->.(Ⅰ)解:由()f x x alnx =-,可得()1a f x x'=-, 则f '(1)1a =-,又f (1)1=,所以曲线()y f x =在点(1,f (1))处的切线方程为1(1)(1)y a x -=--, 即(1)y a x a =-+.(Ⅱ)解:()f x x alnx =-的定义域为(0,)+∞,()1a x af x x x-'=-=, 当0a 时,()0f x '>,()f x 在(0,)+∞上单调递增;当0a >时,令()0f x '>,可得x a >,令()0f x '<,可得0x a <<, 所以()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.(Ⅲ)证明:由(Ⅱ)可知,当0a >时,()0f x x alnx =-=才有两个不相等的实根,且00x >, 则要证0(1)a x a ->,即证011a a x ->,即证0111a x ->, 而000x alnx -=,则000(1x a x lnx =≠,否则方程不成立), 所以即证00011lnx x x ->,化简得0010x lnx -->, 令000()1g x x lnx =--,则000011()1x g x x x -'=-=, 当001x <<时,0()0g x '<,0()g x 单调递减, 当01x >时,0()0g x '>,0()g x 单调递增, 所以0()g x g (1)0=,而01x ≠, 所以0()0g x >,所以0(1)a x a ->,得证.3.已知函数()f x alnx x =+,函数2()x g x e bx =+,(1)记2()()h x f x x =+,试讨论函数()h x 的单调性,并求出函数()h x 的极值点;(2)若已知曲线()y f x =和曲线()y g x =在1x =处的切线都过点(0,1).求证:当0x >时,()()(1)1xf x g x e x +--.解:(1)2()h x alnx x x =++,22()(0)x x ah x x x++'=>, 记2()2(0)x x x a x ϕ=++>,当0a 时,()0h x '>,()h x 在(0,)+∞单调递增,无极值点,当0a <时,△180a =->,()x ϕ有异号的两根10)x =<,20)x =>,x ∴∈,()0x ϕ<,()0h x '<,()h x 在单调递减,x ∈,)+∞,()0x ϕ>,()0h x '>,()h x 在,)+∞单调递减,()h x ∴有极小值点x =; (2)证明:()(0)x af x x x+'=>,()2x g x e bx '=+,f ∴'(1)1a =+,()f x 在1x =处的切线方程为1(1)(1)y a x -=+-,过点(0,1)得:1a =-,g '(1)2e b =+,()g x 在1x =处的切线方程为(2)(1)y e b e b x --=+-,过点(0,1)得:1b =-, ()f x lnx x ∴=-+,2()x g x e x =-,要证:()()(1)1xf x g x e x +--,即证:(1)10x e xlnx e x ----, 即证:1(1)0x e lnx e x x---,构造函数1()(1)x e K x lnx e x x =---,则2(1)(1)()x x e K x x --'=,0x >时,10x e ->,(0,1)x ∴∈时,()0K x '<,()K x 在(0,1)单调递减, (1,)x ∴∈+∞时,()0K x '>,()K x 在(1,)+∞单调递增,()K x K ∴(1)0=,故原不等式成立.4.已知函数()()f x ax lnx a R =+∈在1x =处取得极值.(Ⅰ)若对(0,)x ∀∈+∞,()1f x bx -恒成立,求实数b 的取值范围; (Ⅱ)设()()(2)x g x f x x e =+-,记函数()y g x =在1[4,1]上的最大值为m ,证明:(4)(3)0m m ++<.(Ⅰ)解:()()f x ax lnx a R =+∈,则1()f x a x'=+, 又()f x 在1x =处取得极值,则有f '(1)10a =+=,解得1a =-, 此时1()1f x x'=-,当01x <<时,()0f x '>,则()f x 单调递增, 当1x >时,()0f x '<,则()f x 单调递减, 所以()f x 确实在1x =处取得极值, 故1a =-,设()(1)1h x lnx b x =+--,则()1f x bx -在(0,)+∞上恒成立,即()0h x 在(0,)+∞上恒成立, 因为1()1h x b x'=+-, 当10b -,即1b 时,()0h x >在(0,)+∞上恒成立,不符合题意; 当1b <时,令()0h x '=,解得11x b=-, 当101x b<<-时,()0h x '>,则()h x 单调递增, 当11x b>-时,()0h x '<,则()h x 单调递减, 所以当11x b =-时,()h x 取得最大值111()1(1)2111b h ln ln b b b b-=+-=------, 要使得()0h x 在(0,)+∞上恒成立, 则有(1)20ln b ---,解得21b e --,综上所述,实数b 的取值范围为(-∞,21]e --;(Ⅱ)证明:要证(4)(3)0m m ++<,即证明43m -<<-即可, 因为()()(2)(2)x x g x f x x e lnx x x e =+-=-+-, 则111()1(2)(1)()(1)x x x x x g x e x e e x e x x x x-'=-++-=+-=--, 因为1[4x ∈,1]时,10x -恒成立,设1()x M x e x=-,1[4x ∈,1],则()M x 为单调递增函数,又113205112035()0,()0201153M e M e =-<=->,则存在0113(,)205x ∈,使得0()0M x =,即001x e x =,则当01[,)4x x ∈时,()0M x <,(1)0x -<,则()0g x '>,故()g x 单调递增,当0[x x ∈,1]时,()0M x ,(1)0x -且不同时为0,则()0g x ',故()g x 单调递减,所以()g x 在1[4,1]上的最大值为0000000000()(2)2x x x m g x lnx x x e lnx x x e e ==-+-=-+-,又001x e x =,则00021m lnx x x =-+-,0113(,)205x ∈,设2()1k x lnx x x =-+-,113(,)205x ∈, 则212()10k x x x'=-+>对于113(,)205x ∈恒成立, 故()k x 在113(,)205x ∈上单调递增 故1111114011940()()1420202011202011k x k ln ln >=-+-=+->-, 333103()()1 2.933355535k x k ln ln <=-+-≈-<-,于是43m -<<-, 故(4)(3)0m m ++<.5.已知函数()x f x e x a =--,对于x R ∀∈,()0f x 恒成立. (1)求实数a 的取值范围;(2)证明:当[0,]4x π∈时,cos tan x x x e +.解:(1)由0x e x a --恒成立,得x a e x -对x R ∀∈恒成立, 令()x g x e x =-,()1x g x e '=-, 当0x >,()0g x '>,()g x 单调递增,当0x <,()0g x '<,()g x 单调减,()(0)1min g x g ==, 故所求实数a 的取值范围为(-∞,1]; (2)证明:由(1)得1x e x +.欲证cos tan x x x e +,只需证cos tan 1x x x ++即可, 令()cos tan 1h x x x x =+--,222221sin (sin cos )sin (sin sin 1)()sin 1cos cos cos x x x x x x h x x x x x-+-'=-+-==,令2()sin sin 1F x x x =+-,则易知()F x 在[0,]4π单调递增,且(0)0F <,()04F π>,故存在0(0,)4x π∈,使得0()0F x =;当[0x ∈,0)x 时,()0F x <,()0h x ',()h x 单调递减,当0(,]4x x π∈时,()0F x >,()0h x '>,()h x 单调递增,又(0)0h =,()044h ππ<,()(0)0max h x h ==,故当[0,]4x π∈时,cos tan x x x e +.6.已知函数()x f x e =,()1g x ax =+. (Ⅰ)已知()()f x g x 恒成立,求a 的值;(Ⅱ)若(0,1)x ∈211x x+-<. 解:(1)已知()()f x g x 恒成立,即()()0f x g x -恒成立, 令()()()1x h x f x g x e ax =-=--,则有()x h x e a '=-,当0a 时,则恒有()0h x '>,此时函数()h x 单调递增,并且当x →-∞时,()h x →-∞,不满足题意;0a ∴>,此时令()0h x x lna '=⇒=;()0h x x lna '∴>⇒>;()0h x x lna '<⇒<,即函数()h x 在(,)lna -∞上单调递减,在(,)lna +∞上单调递增,()()1min h x h lna a alna ∴==--,若要满足题意,则需使10a alna --,恒成立, 令F (a )1(0)a alna a =-->,则有F '(a )lna =,由此可得,当01a <<时,F '(a )0<;当1a >时,F '(a )0>.F ∴(a )min F =(1)0=,即得F (a )0, 1a ∴=.(2)令()1((0,1))x G x e x x =--∈,则有()10x G x e '=->恒成立,故可得()G x 在(0,1)上单调递增,即有()(0)0G x G >=恒成立,故有101x x e x e x -->⇔>+在(0,1)上恒成立; 根据题意,要证2111()lnx x f x x-+-<,即证明1111lnx x x x -+-<+,即证2111x lnx x x x x+-++-<+, 即证2110lnx x x-++>, 令21()H x lnx x x x =-++,则有22111()2(1)2H x x x x x x x'=--=--,(0,1)x ∈,10x ∴-<,20x -<,()0H x '∴<在(0,1)上恒成立,即得函数()H x 在(0,1)上单调递减, ()H x H ∴>(1)10=>,由此得证当(0,1)x ∈时,原不等式成立.7.已知函数()(1)f x x lnx =-,()f x '的反函数为()h x (其中()f x '为()f x 的导函数,20.69)ln ≈. (1)判断函数2()()32g x f x x x '=+-+在(0,)+∞上零点的个数;(2)当(0,1)x ∈31x x >--. 解:(1)由题意得22()()3232g x f x x x lnx x x ='+-+=+-+, 则(21)(1)()x x g x x--'=,由()0g x '=得12x =或1x =, 由()0g x '>,得102x <<或1x >, 由()0g x '<,得112x <<, 当x 在(0,)+∞上变化时,()g x ',()g x 变化情况如下表:根据上表知13()2024g x g ln ⎛⎫==-> ⎪⎝⎭极大值,()g x g =极小值(1)0=,121()220416g ln =-<, 根据零点的存在性定理,函数()g x 在1(0,)2上存在唯一零点,又因为g (1)0=,所以根据()g x 的单调性可知,函数2()()32g x f x x x ='+-+在(0,)+∞上零点的个数为2. (2)证明:因为()f x lnx '=,其反函数为()x h x e =, 所以不等式为33(1)1(1)(1)x xx lnx x x x lnx x x e e->--⇔->--, 当(0,1)x ∈时,()0f x '<, 所以()f x 在(0,1)上单调递减,所以()f x f >(1)1=-, 设函数3()(1)x G x x x e =--, 则32()(32)x G x x x x e '=+--,设函数32()32p x x x x =+--,则2()361p x x x '=+-, 所以()p x '在(0,1)上单调递增, 因为(0)p p '⋅'(1)80=-<, 所以存在0(0,1)x ∈,使得0()0p x '=,所以函数()p x 在0(0,)x 上单调递减,在0(x ,1)上单调递增, 当0(0,)x x ∈时,0()(0)2p x p <=-, 当0(x x ∈,1)时,0()0p x <,p (1)0>, 所以存在1(0,1)x ∈,使得1()0G x '=, 所以当1(0,)x x ∈时,()0G x '<, 当1(x x ∈,1)时,()0G x '>,所以函数()G x 在1(0,)x 上单调递减,在1(x ,1)上单调递增, 因为(0)1G =-,G (1)e =-, 所以当(0,1)x ∈时,()(0)1G x G <=-, 所以3(1)(1)x x lnx x x e ->--, 所以3()1()f x x xg x >--.。
2024届新高考数学导数大题精选30题1(2024·安徽·二模)已知函数f (x )=x 2-10x +3f (1)ln x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)求f (x )的单调区间和极值.【答案】(1)y =4x -13;(2)递增区间为(0,2),(3,+∞),递减区间为2,3 ,极大值-16+12ln2,极小值-21+12ln3.【分析】(1)求出函数f (x )的导数,赋值求得f (1),再利用导数的几何意义求出切线方程.(2)由(1)的信息,求出函数f (x )的导数,利用导数求出单调区间及极值.【详解】(1)函数f (x )=x 2-10x +3f (1)ln x ,求导得f(x )=2x -10+3f (1)x,则f (1)=-8+3f (1),解得f (1)=4,于是f (x )=x 2-10x +12ln x ,f (1)=-9,所以所求切线方程为:y +9=4(x -1),即y =4x -13.(2)由(1)知,函数f (x )=x 2-10x +12ln x ,定义域为(0,+∞),求导得f (x )=2x -10+12x =2(x -2)(x -3)x,当0<x <2或x >3时,f (x )>0,当2<x <3时,f (x )<0,因此函数f (x )在(0,2),(3,+∞)上单调递增,在(2,3)上单调递减,当x =2时,f (x )取得极大值f (2)=-16+12ln2,当x =3时,f (x )取得极小值f (3)=-21+12ln3,所以函数f (x )的递增区间为(0,2),(3,+∞),递减区间为(2,3),极大值-16+12ln2,极小值-21+12ln3.2(2024·江苏南京·二模)已知函数f (x )=x 2-ax +ae x,其中a ∈R .(1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[0,a ]上的最小值为1e,求a 的值.【答案】(1)x -ey =0(2)a =1【分析】(1)由a =0,分别求出f (1)及f (1),即可写出切线方程;(2)计算出f (x ),令f (x )=0,解得x =2或x =a ,分类讨论a 的范围,得出f (x )的单调性,由f (x )在区间[0,a ]上的最小值为1e,列出方程求解即可.【详解】(1)当a =0时,f (x )=x 2e x ,则f (1)=1e ,f (x )=2x -x 2ex,所以f (1)=1e ,所以曲线y =f (x )在(1,f (1))处的切线方程为:y -1e =1e(x -1),即x -ey =0.(2)f(x )=-x 2+(a +2)x -2a e x =-(x -2)(x -a )ex,令f (x )=0,解得x =2或x =a ,当0<a <2时,x ∈[0,a ]时,f (x )≤0,则f (x )在[0,a ]上单调递减,所以f (x )min =f (a )=a ea =1e ,则a =1,符合题意;当a >2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,x ∈(2,a ]时,f (x )>0,则f (x )在(2,a ]上单调递增,所以f (x )min =f (2)=4-a e2=1e ,则a =4-e <2,不合题意;当a =2时,x ∈[0,2]时,f (x )≤0,则f (x )在[0,2]上单调递减,所以f (x )min =f (2)==2e 2≠1e ,不合题意;综上,a =1.3(2024·浙江绍兴·模拟预测)已知f x =ae x -x ,g x =cos x . (1)讨论f x 的单调性.(2)若∃x 0使得f x 0 =g x 0 ,求参数a 的取值范围.【答案】(1)当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)-∞,1【分析】(1)对f x =ae x -x 求导数,然后分类讨论即可;(2)直接对a >1和a ≤1分类讨论,即可得到结果.【详解】(1)由f x =ae x -x ,知f x =ae x -1.当a ≤0时,有f x =ae x -1≤0-1=-1<0,所以f x 在-∞,+∞ 上单调递减;当a >0时,对x <-ln a 有f x =ae x -1<ae -ln a -1=1-1=0,对x >-ln a 有f x =ae x -1>ae -ln a -1=1-1=0,所以f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.综上,当a ≤0时,f x 在-∞,+∞ 上单调递减;当a >0时,f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增.(2)当a >1时,由(1)的结论,知f x 在-∞,-ln a 上单调递减,在-ln a ,+∞ 上单调递增,所以对任意的x 都有f x ≥f -ln a =ae -ln a +ln a =1+ln a >1+ln1=1≥cos x =g x ,故f x >g x 恒成立,这表明此时条件不满足;当a ≤1时,设h x =ae x -x -cos x ,由于h -a -1 =ae -a -1+a +1-cos -a -1 ≥ae-a -1+a ≥-a e-a -1+a =a 1-e-a -1≥a 1-e 0=0,h 0 =ae 0-0-cos0=a -1≤0,故由零点存在定理,知一定存在x 0∈-a -1,0 ,使得h x 0 =0,故f x 0 -g x 0 =ae x 0-x 0-cos x 0=h x 0 =0,从而f x 0 =g x 0 ,这表明此时条件满足.综上,a 的取值范围是-∞,1 .4(2024·福建漳州·一模)已知函数f x =a ln x -x +a ,a ∈R 且a ≠0.(1)证明:曲线y =f x 在点1,f 1 处的切线方程过坐标原点.(2)讨论函数f x 的单调性.【答案】(1)证明见解析(2)答案见解析【分析】(1)先利用导数的几何意义求得f x 在1,f 1 处的切线方程,从而得证;(2)分类讨论a <0与a >0,利用导数与函数的单调性即可得解.【详解】(1)因为f x =a ln x -x +a x >0 ,所以f (x )=a x -1=a -xx,则f (1)=a ln1-1+a =a -1,f (1)=a -1,所以f x 在1,f 1 处的切线方程为:y -(a -1)=(a -1)(x -1),当x =0时,y -(a -1)=(a -1)(0-1)=-(a -1),故y =0,所以曲线y =f (x )在点1,f 1 处切线的方程过坐标原点.(2)由(1)得f (x )=ax -1=a -xx,当a<0时,a-x<0,则f x <0,故f(x)单调递减;当a>0时,令f (x)=0则x=a,当0<x<a时,f (x)>0,f(x)单调递增;当x>a时,f (x)<0,f(x)单调递减;综上:当a<0时,f(x)在(0,+∞)上单调递减;当a>0时,f(x)在(0,a)上单调递增,在(a,+∞)上单调递减.5(2024·山东·二模)已知函数f x =a2xe x-x-ln x.(1)当a=1e时,求f x 的单调区间;(2)当a>0时,f x ≥2-a,求a的取值范围.【答案】(1)f x 的减区间为0,1,增区间为1,+∞(2)a≥1【分析】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,求导得f x =x+1xxe x-1-1,令g x =xe x-1-1,求g x 确定g x 的单调性与取值,从而确定f x 的零点,得函数的单调区间;(2)求f x ,确定函数的单调性,从而确定函数f x 的最值,即可得a的取值范围.【详解】(1)当a=1e时,f x =xe x-1-x-ln x,x>0,则f x =x+1e x-1-1-1x=x+1xxe x-1-1,设g x =xe x-1-1,则g x =x+1e x-1>0恒成立,又g1 =e0-1=0,所以当x∈0,1时,f x <0,f x 单调递减,当x∈1,+∞时,f x >0,f x 单调递增,所以f x 的减区间为0,1,增区间为1,+∞;(2)f x =a2x+1e x-1-1x=x+1xa2xe x-1,设h x =a2xe x-1,则h x =a2x+1e x>0,所以h x 在0,+∞上单调递增,又h0 =-1<0,h1a2=e1a2-1>0,所以存在x0∈0,1 a2,使得h x0 =0,即a2x0e x0-1=0,当x∈0,x0时,f x <0,f x 单调递减,当x∈x0,+∞时,f x >0,f x 单调递增,当x=x0时,f x 取得极小值,也是最小值,所以f x ≥f x0=a2x0e x0-x0-ln x0=1-ln x0e x0=1+2ln a,所以1+2ln a≥2-a,即a+2ln a-1≥0,设F a =a+2ln a-1,易知F a 单调递增,且F1 =0,所以F a ≥F1 ,解得a≥1,综上,a≥1.6(2024·山东·一模)已知函数f(x)=ln x+12a(x-1)2.(1)当a=-12时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-2x+1有两个极值点x1,x2,且g(x1)+g(x2)≥-1-32a,求a的取值范围.【答案】(1)增区间(0,2),减区间(2,+∞)(2)[1,+∞)【分析】(1)将a=-12代入求导,然后确定单调性即可;(2)求导,根据导函数有两个根写出韦达定理,代入g(x1)+g(x2)≥-1-32a,构造函数,求导,研究函数性质进而求出a的取值范围.【详解】(1)当a=-12时,f(x)=ln x-14(x-1)2,x>0,则f (x)=1x-12(x-1)=-(x-2)(x+1)2x,当x∈(0,2),f (x)>0,f(x)单调递增,当x∈(2,+∞),f (x)<0,f(x)单调递减,所以f(x)的单调递增区间是(0,2),单调递减区间是(2,+∞);(2)g(x)=f(x)-2x+1=ln x+12a(x-1)2-2x+1,所以g (x)=1x+a(x-1)-2=ax2-(a+2)x+1x,设φ(x)=ax2-(a+2)x+1,令φ(x)=0,由于g(x)有两个极值点x1,x2,所以Δ=(a+2)2-4a=a2+4>0x1+x2=a+2a>0x1x2=1a>0,解得a>0.由x1+x2=a+2a,x1x2=1a,得g x1+g x2=ln x1+12a x1-12-2x1+1+ln x2+12a x2-12-2x2+1=ln x1x2+12a x1+x22-2x1x2-2x1+x2+2-2x1+x2+2=ln1a +12a a+2a2-2a-2⋅a+2a+2-2⋅a+2a+2=ln1a +a2-2a-1≥-1-32a,即ln a-12a-1a≤0,令m(a)=ln a-12a-1a,则m (a)=1a-12-12a2=-(a-1)22a2≤0,所以m(a)在(0,+∞)上单调递减,且m(1)=0,所以a≥1,故a的取值范围是[1,+∞).7(2024·湖北·二模)求解下列问题,(1)若kx-1≥ln x恒成立,求实数k的最小值;(2)已知a,b为正实数,x∈0,1,求函数g x =ax+1-xb-a x⋅b1-x的极值.【答案】(1)1(2)答案见解析【分析】(1)求导,然后分k≤0和k>0讨论,确定单调性,进而得最值;(2)先发现g0 =g1 =0,当a=b时,g x =0,当0<x<1,a≠b时,取ab=t,L x =tx+1-x-t x,求导,研究单调性,进而求出最值得答案.【详解】(1)记f x =kx-1-ln x x>0,则需使f x ≥0恒成立,∴f x =k-1xx>0,当k≤0时,f x <0恒成立,则f x 在(0,+∞)上单调递减,且在x>1时,f x <0,不符合题意,舍去;当k >0时.令f x =0,解得x =1k,则f x 在0,1k 上单调递减,在1k ,+∞ 上单调递增,所以f x min =f 1k =-ln 1k=ln k ,要使kx -1≥ln x 恒成立,只要ln k ≥0即可,解得k ≥1,所以k 的最小值为1;(2)g (x )=ax +(1-x )b -a x ⋅b 1-x ,x ∈[0,1],a >0,b >0,易知g 0 =g 1 =0,当a =b 时,g x =ax +a -ax -a =0,此时函数无极值;当0<x <1,a ≠b 时,g (x )=ax +(1-x )b -b ⋅a b x =b a b x +1-x -a b x,取ab=t ,t >0,t ≠1,L x =tx +1-x -t x ,t >0,t ≠1,x ∈0,1 ,则L x =t -1-t x ln t ,当t >1时,由L x ≥0得x ≤ln t -1ln tln t,由(1)知t -1≥ln t ,当t >1时,t -1ln t>1,因为x -1≥ln x ,所以1x -1≥ln 1x ,所以ln x ≥1-1x ,即x >0,当t >1时,ln t >1-1t,所以t >t -1ln t ,则ln t >ln t -1ln t >0,所以ln t -1ln tln t<1,即L x 在0,ln t -1ln t ln t 上单调递增,在ln t -1ln tln t,1单调递减.所以函数g x 极大=gln t -1lntln t,t =ab,a ≠b ,当0<t <1时,同理有ln t -1lntln t∈0,1 ,由Lx ≥0得x ≤ln t -1lntln t,即(x )在0,ln t -1lntln t上单调递增,在ln t -1lntln t,1上单调递减.所以函数g x 极大=gln t -1lntln t,t =a b,a ≠b ,综上可知,当a =b 时,函数g x 没有极值;当a ≠b 时,函数g x 有唯一的极大值g ln t -1lntln t,其中t =ab,没有极小值.【点睛】关键点点睛:取ab=t ,将两个参数的问题转化为一个参数的问题,进而求导解答问题.8(2024·湖北武汉·模拟预测)函数f (x )=tan x +sin x -92x ,-π2<x <π2,g (x )=sin n x -x n cos x ,x ∈0,π2,n ∈N +.(1)求函数f (x )的极值;(2)若g (x )>0恒成立,求n 的最大值.【答案】(1)极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2;(2)3.【分析】(1)判断函数f (x )为奇函数,利用导数求出f (x )在区间0,π2上的极值,利用奇偶性即可求得定义域上的极值.(2)利用导数证明当n =1时,g (x )>0恒成立,当n >1时,等价变形不等式并构造函数F (x )=x -sin x cos 1nx,0<x <π2,利用导数并按导数为负为正确定n 的取值范围,进而确定不等式恒成立与否得解.【详解】(1)函数f (x )=tan x +sin x -92x ,-π2<x <π2,f (-x )=tan (-x )+sin (-x )-92(-x )=-f (x ),即函数f (x )为奇函数,其图象关于原点对称,当0<x <π2时,f (x )=sin x cos x +sin x -92x ,求导得:f(x )=1cos 2x +cos x -92=2cos 3x -9cos 2x +22cos 2x =(2cos x -1)(cos x -2-6)(cos x -2+6)2cos 2x,由于cos x ∈(0,1),由f (x )>0,得0<cos x <12,解得π3<x <π2,由f (x )<0,得12<cos x <1,解得0<x <π3,即f (x )在0,π3 上单调递减,在π3,π2上单调递增,因此函数f (x )在0,π2 上有极小值f π3 =3(3-π)2,从而f (x )在-π2,π2 上的极小值为f π3 =3(3-π)2,极大值为f -π3 =3(π-3)2.(2)当n =1时,g (x )>0恒成立,即sin x -x cos x >0恒成立,亦即tan x >x 恒成立,令h (x )=tan x -x ,x ∈0,π2 ,求导得h (x )=1cos 2x -1=1-cos 2x cos 2x=tan 2x >0,则函数h (x )在0,π2上为增函数,有h (x )>h (0)=0,因此tan x -x >0恒成立;当n >1时,g (x )>0恒成立,即不等式sin xn cos x>x 恒成立,令F (x )=x -sin x cos 1n x ,0<x <π2,求导得:F (x )=1-cos x ⋅cos 1nx -1n⋅cos1n-1x ⋅(-sin x )⋅sin xcos 2nx=1-cos1+n nx +1n⋅sin 2x ⋅cos1-n nxcos 2nx=1-cos 2x +1n ⋅sin 2xcos n +1nx =cosn +1nx -cos 2x -1n (1-cos 2x )cos n +1nx =cosn +1nx -1n -n -1ncos 2x cosn +1nx令G (x )=cos n +1nx -1n -n -1n cos 2x ,求导得则G (x )=n +1n cos 1nx ⋅(-sin x )-n -1n⋅2cos x ⋅(-sin x )=sin x n (2n -2)cos x -(n +1)cos 1n x =2n -2n ⋅sin x cos x -n +12n -2cos 1n x=2n -2n ⋅sin x ⋅cos 1n x cos n -1n x -n +12n -2,由n >1,x ∈0,π2 ,得2n -2n⋅sin x ⋅cos 1nx >0,当n +12n -2≥1时,即n ≤3时,G (x )<0,则函数G (x )在0,π2上单调递减,则有G (x )<G (0)=0,即F (x )<0,因此函数F (x )在0,π2 上单调递减,有F (x )<F (0)=0,即g (x )>0,当n +12n -2<1时,即n >3时,存在一个x 0∈0,π2 ,使得cos n -1n x 0=n +12n -2,且当x ∈(0,x 0)时,G (x )>0,即G (x )在(0,x 0)上单调递增,且G (x )>G (0)=0,则F (x )>0,于是F (x )在(0,x 0)上单调递增,因此F (x )>F (0)=0,即sin xn cos x<x ,与g (x )>0矛盾,所以n 的最大值为3.【点睛】方法点睛:对于利用导数研究不等式的恒成立与有解问题的求解策略:①通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;②利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.③根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.9(2024·湖北·模拟预测)已知函数f x =ax 2-x +ln x +1 ,a ∈R ,(1)若对定义域内任意非零实数x 1,x 2,均有f x 1 f x 2x 1x 2>0,求a ;(2)记t n =1+12+⋅⋅⋅+1n ,证明:t n -56<ln n +1 <t n .【答案】(1)a =12(2)证明见解析【分析】(1)求导可得f 0 =0,再分a ≤0与a >0两种情况分析原函数的单调性,当a >0时分析极值点的正负与原函数的正负区间,从而确定a 的值;(2)由(1)问的结论可知,1n -12n2<ln 1n +1 <1n ,再累加结合放缩方法证明即可.【详解】(1)f x 的定义域为-1,+∞ ,且f 0 =0;f x =2ax -1+1x +1=2ax -x x +1=x 2a -1x +1,因此f 0 =0;i.a ≤0时,2a -1x +1<0,则此时令f x >0有x ∈-1,0 ,令f x <0有x ∈0,+∞ ,则f x 在-1,0 上单调递增,0,+∞ 上单调递减,又f 0 =0,于是f x ≤0,此时令x 1x 2<0,有f x 1 f x 2x 1x 2<0,不符合题意;ii .a >0时,f x 有零点0和x 0=12a-1,若x 0<0,即a >12,此时令f x <0有x ∈x 0,0 ,f x 在x 0,0 上单调递减,又f 0 =0,则f x 0 >0,令x 1>0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0>0,即0<a <12,此时令f x <0有x ∈0,x 0 ,f x 在0,x 0 上单调递减,又f 0 =0,则f x 0 <0,令-1<x 1<0,x 2=x 0,有f x 1 f x 2x 1x 2<0,不符合题意;若x 0=0,即a =12,此时fx =x 2x +1>0,f x 在-1,+∞ 上单调递增,又f 0 =0,则x >0时f x >0,x <0时f x <0;则x ≠0时f x x >0,也即对x 1x 2≠0,f x 1 f x 2x 1x 2>0,综上,a =12(2)证:由(1)问的结论可知,a =0时,f x =-x +ln x +1 ≤0;且a =12时x >0,f x =12x 2-x +ln x +1 >0;则x>0时,x-12x2<ln x+1<x,令x=1n,有1n-12n2<ln1n+1<1n,即1n-12n2<ln n+1-ln n<1n,于是1n-1-12n-12<ln n-ln n-1<1n-11-12<ln2<1将上述n个式子相加,t n-121+122+⋅⋅⋅+1n2<ln n+1<t n;欲证t n-56<ln n+1<t n,只需证t n-56<t n-121+122+⋅⋅⋅+1n2,只需证1+122+⋅⋅⋅+1n2<53;因为1n2=44n2<44n2-1=212n-1-12n+1,所以1+122+⋅⋅⋅+1n2<1+213-15+15-17+⋅⋅⋅+12n-1-12n+1=53-22n+1<53,得证:于是得证t n-56<ln n+1<t n.【点睛】方法点睛:(1)此题考导数与函数的综合应用,找到合适的分类标准,设极值点,并确定函数正负区间是解此题的关键;(2)对累加结构的不等式证明,一般需要应用前问的结论,取特定参数值,得出不等式累加证明,遇到不能累加的数列结构,需要进行放缩证明.10(2024·湖南·一模)已知函数f x =sin x-ax⋅cos x,a∈R.(1)当a=1时,求函数f x 在x=π2处的切线方程;(2)x∈0,π2时;(ⅰ)若f x +sin2x>0,求a的取值范围;(ⅱ)证明:sin2x⋅tan x>x3.【答案】(1)πx-2y+2-π22=0.(2)(ⅰ)a≤3(ⅱ)证明见解析【分析】(1)令a=1时,利用导数的几何意义求出斜率,进行计算求出切线方程即可.(2)(ⅰ)设g(x)=2sin x+tan x-ax,x∈0,π2,由g x >0得a≤3,再证明此时满足g x >0.(ⅱ)根据(ⅰ)结论判断出F x =sin2x⋅tan x-x3在0,π2上单调递增,∴F(x)>F(0)=0,即sin2x tan x >x3.【详解】(1)当a=1时,f(x)=sin x-x⋅cos x,f (x)=cos x-(cos x-x⋅sin x)=x⋅sin x,fπ2=π2,fπ2=1.所以切线方程为:y-1=π2x-π2,即πx-2y+2-π22=0.(2)(ⅰ)f(x)+sin2x=sin x-ax⋅cos x+sin2x>0,即tan x-ax+2sin x>0,x∈0,π2,设g(x)=2sin x+tan x-ax,x∈0,π2,g (x )=2cos x +1cos 2x -a =1cos 2x(2cos 3x -a cos 2x +1).又∵g (0)=0,g (0)=3-a ,∴g (0)=3-a ≥0是g (x )>0的一个必要条件,即a ≤3.下证a ≤3时,满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,又g (x )≥1cos 2x(2cos 3x -3cos 2x +1),设(t )=2t 3-3t 2+1,t ∈(0,1),h (t )=6t 2-6t =6t (t -1)<0,h (t )在(0,1)上单调递减,所以h (t )>h (1)=0,又x ∈0,π2 ,cos x ∈(0,1),∴g (x )>0,即g (x )在0,π2 单调递增.∴x ∈0,π2时,g (x )>g (0)=0;下面证明a >3时不满足g (x )=2sin x +tan x -ax >0,x ∈0,π2,,g (x )=2cos x +1cos 2x-a ,令h (x )=g (x )=2cos x +1cos 2x -a ,则h (x )=-2sin x +2sin x cos 3x =2sin x 1cos 3x-1,∵x ∈0,π2 ,∴sin x >0,1cos 3x-1>0,∴h (x )>0,∴h (x )=g (x )在0,π2为增函数,令x 0满足x 0∈0,π2,cos x 0=1a ,则g x 0 =2cos x 0+1cos 2x 0-a =2cos x 0+a -a >0,又g (0)=3-a <0,∴∃x 1∈0,x 0 ,使得g x 1 =0,当x ∈0,x 1 时,g (x )<g x 1 =0,∴此时g (x )在0,x 1 为减函数,∴当x ∈0,x 1 时,g (x )<g (0)=0,∴a >3时,不满足g (x )≥0恒成立.综上a ≤3.(ⅱ)设F (x )=sin 2x ⋅tan x -x 3,x ∈0,π2 ,F (x )=2sin x ⋅cos x ⋅tan x +sin 2x ⋅1cos 2x-3x 2=2sin 2x +tan 2x -3x 2=2(sin x -x )2+(tan x -x )2+2(2sin x +tan x )x -2x 2-x 2-3x 2.由(ⅰ)知2sin x +tan x >3x ,∴F (x )>0+0+2x ⋅3x -6x 2=0,,F x 在0,π2上单调递增,∴F (x )>F (0)=0,即sin 2x tan x >x 3.【点睛】关键点点睛:本题考查导数,解题关键是进行必要性探路,然后证明充分性,得到所要求的参数范围即可.11(2024·全国·模拟预测)已知函数f (x )=ln (1+x )-11+x.(1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)若x ∈(-1,π),讨论曲线y =f (x )与曲线y =-2cos x 的交点个数.【答案】(1)y =32x -1;(2)2.【分析】(1)求导,即可根据点斜式求解方程,(2)求导,分类讨论求解函数的单调性,结合零点存在性定理,即可根据函数的单调性,结合最值求解.【详解】(1)依题意,f x =11+x +121+x 32,故f 0 =32,而f 0 =-1,故所求切线方程为y +1=32x ,即y =32x -1.(2)令ln 1+x -11+x =-2cos x ,故ln 1+x +2cos x -11+x=0,令g x =ln 1+x +2cos x -11+x ,g x =11+x -2sin x +121+x -32,令h x =g x =11+x -2sin x +121+x -32,hx =-11+x2-2cos x -341+x -52.①当x ∈-1,π2时,cos x ≥0,1+x 2>0,1+x-52>0,∴h x <0,∴h x 在-1,π2上为减函数,即gx 在-1,π2 上为减函数,又g 0 =1+12>0,g1 =12-2sin1+12⋅2-32<12-2⋅sin1+12<1-2×12=0,∴g x 在0,1 上有唯一的零点,设为x 0,即g x 0 =00<x 0<1 .∴g x 在-1,x 0 上为增函数,在x 0,π2上为减函数.又g 0 =2-1>0,g -π4 =ln 1-π4 +2cos -π4 -11-π4=ln 1-π4+2-11-π4<0,g π2=ln 1+π2 -11+π2>0,∴g x 在-1,x 0 上有且只有一个零点,在x 0,π2上无零点;②当x ∈π2,5π6 时,g x <11+x -1+121+x-32<0,g x 单调递减,又g π2 >0,g 5π6 =ln 1+5π6 -3-1+5π6-12<ln4-3<0,∴g x 在π2,5π6内恰有一零点;③当x ∈5π6,π 时,hx =-11+x2-2cos x -341+x -52为增函数,∴hx =h 5π6 =-11+5π62+1-34⋅1+5π6-52>0,∴g x 单调递增,又g π >0,g 5π6 <0,所以存在唯一x 0∈5π6,π ,g x 0 =0,当x ∈5π6,x 0 时,g x <0,g x 递减;当x ∈x 0,π 时,g x >0,g x 递增,g x ≤max g 5π6 ,g π <0,∴g x 在5π6,π内无零点.综上所述,曲线y =f x 与曲线y =-2cos x 的交点个数为2.【点睛】方法点睛:本题考查了导数的综合运用,求某点处的切线方程较为简单,利用导数求单调性时,如果求导后的正负不容易辨别,往往可以将导函数的一部分抽离出来,构造新的函数,利用导数研究其单调性,进而可判断原函数的单调性.在证明不等式时,常采用两种思路:求直接求最值和等价转化.无论是那种方式,都要敢于构造函数,构造有效的函数往往是解题的关键.12(2024·广东佛山·二模)已知f x =-12e 2x +4e x -ax -5.(1)当a =3时,求f x 的单调区间;(2)若f x 有两个极值点x 1,x 2,证明:f x 1 +f x 2 +x 1+x 2<0.【答案】(1)答案见解析(2)证明见解析【分析】(1)求导后,借助导数的正负即可得原函数的单调性;(2)借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,可得t 1、t 2是方程t 2-4t +a =0的两个正根,借助韦达定理可得t 1+t 2=4,t 1t 2=a ,即可用t 1、t 2表示f x 1 +f x 2 +x 1+x 2,进而用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.【详解】(1)当a =3时,f x =-12e 2x +4e x -3x -5,f x =-e 2x +4e x -3=-e x -1 e x -3 ,则当e x ∈0,1 ∪3,+∞ ,即x ∈-∞,0 ∪ln3,+∞ 时,f x <0,当e x ∈1,3 ,即x ∈0,ln3 时,f x >0,故f x 的单调递减区间为-∞,0 、ln3,+∞ ,单调递增区间为0,ln3 ;(2)f x =-e 2x +4e x -a ,令t =e x ,即f x =-t 2+4t -a ,令t 1=e x 1,t 2=e x 2,则t 1、t 2是方程t 2-4t +a =0的两个正根,则Δ=-4 2-4a =16-4a >0,即a <4,有t 1+t 2=4,t 1t 2=a >0,即0<a <4,则f x 1 +f x 2 +x 1+x 2=-12e 2x 1+4e x 1-ax 1-5-12e 2x2+4e x 2-ax 2-5+x 1+x 2=-12t 21+t 22 +4t 1+t 2 -a -1 ln t 1+ln t 2 -10=-12t 1+t 2 2-2t 1t 2 +4t 1+t 2 -a -1 ln t 1t 2-10=-1216-2a +16-a -1 ln a -10=a -a -1 ln a -2,要证f x 1 +f x 2 +x 1+x 2<0,即证a -a -1 ln a -2<00<a <4 ,令g x =x -x -1 ln x -20<x <4 ,则g x =1-ln x +x -1x =1x-ln x ,令h x =1x -ln x 0<x <4 ,则h x =-1x 2-1x <0,则g x 在0,4 上单调递减,又g 1 =11-ln1=1,g 2 =12-ln2<0,故存在x 0∈1,2 ,使g x 0 =1x 0-ln x 0=0,即1x 0=ln x 0,则当x ∈0,x 0 时,g x >0,当x ∈x 0,4 时,g x <0,故g x 在0,x 0 上单调递增,g x 在x 0,4 上单调递减,则g x ≤g x 0 =x 0-x 0-1 ln x 0-2=x 0-x 0-1 ×1x 0-2=x 0+1x 0-3,又x 0∈1,2 ,则x 0+1x 0∈2,52 ,故g x 0 =x 0+1x 0-3<0,即g x <0,即f x 1 +f x 2 +x 1+x 2<0.【点睛】关键点点睛:本题关键点在于借助换元法,令t =e x ,t 1=e x 1,t 2=e x 2,从而可结合韦达定理得t 1、t 2的关系,即可用a 表示f x 1 +f x 2 +x 1+x 2,构造相关函数后借助导数研究其最大值即可得.13(2024·广东广州·模拟预测)已知函数f x =x e x -kx ,k ∈R .(1)当k =0时,求函数f x 的极值;(2)若函数f x 在0,+∞ 上仅有两个零点,求实数k 的取值范围.【答案】(1)极小值为-1e,无极大值(2)e ,+∞【分析】(1)求出导函数,然后列表求出函数的单调区间,根据极值定义即可求解;(2)把原函数有两个零点转化为g x =e x -kx 在0,+∞ 上仅有两个零点,分类讨论,利用导数研究函数的单调性,列不等式求解即可.【详解】(1)当k =0时,f x =xe x (x ∈R ),所以f x =1+x e x ,令f x =0,则x =-1,x -∞,-1-1-1,+∞f x -0+f x单调递减极小值单调递增所以f (x )min =f -1 =-e -1=-1e,所以f x 的极小值为-1e,无极大值.(2)函数f x =x e x -kx 在0,+∞ 上仅有两个零点,令g x =e x -kx ,则问题等价于g x 在0,+∞ 上仅有两个零点,易知g x =e x -k ,因为x ∈0,+∞ ,所以e x >1.①当k ∈-∞,1 时,g x >0在0,+∞ 上恒成立,所以g x 在0,+∞ 上单调递增,所以g x >g 0 =1,所以g x 在0,+∞ 上没有零点,不符合题意;②当k ∈1,+∞ 时,令g x =0,得x =ln k ,所以在0,ln k 上,g x <0,在ln k ,+∞ 上,g x >0,所以g x 在0,ln k 上单调递减,在(ln k ,+∞)上单调递增,所以g x 的最小值为g ln k =k -k ⋅ln k .因为g x 在0,+∞ 上有两个零点,所以g ln k =k -k ⋅ln k <0,所以k >e.因为g 0 =1>0,g ln k 2 =k 2-k ⋅ln k 2=k k -2ln k ,令h x =x -2ln x ,则h x =1-2x =x -2x,所以在0,2 上,h x <0,在2,+∞ 上,h x >0,所以h x 在0,2 上单调递减,在2,+∞ 上单调递增,所以h x ≥2-2ln2=ln e 2-ln4>0,所以g ln k 2 =k k -2ln k >0,所以当k >e 时,g x 在0,ln k 和(ln k ,+∞)内各有一个零点,即当k >e 时,g x 在0,+∞ 上仅有两个零点.综上,实数k 的取值范围是e ,+∞ .【点睛】方法点睛:求解函数单调区间的步骤:(1)确定f x 的定义域.(2)计算导数f x .(3)求出f x =0的根.(4)用f x =0的根将f x 的定义域分成若干个区间,判断这若干个区间内f x 的符号,进而确定f x 的单调区间.f x >0,则f x 在对应区间上单调递增,对应区间为增区间;f x <0,则f x 在对应区间上单调递减,对应区间为减区间.如果导函数含有参数,那么需要对参数进行分类讨论,分类讨论要做到不重不漏.14(2024·江苏南通·二模)已知函数f x =ln x -ax ,g x =2ax,a ≠0.(1)求函数f x 的单调区间;(2)若a >0且f x ≤g x 恒成立,求a 的最小值.【答案】(1)答案见解析(2)2e 3.【分析】(1)求导后,利用导数与函数单调性的关系,对a >0与a <0分类讨论即可得;(2)结合函数的单调性求出函数的最值,即可得解.【详解】(1)f x =1x -a =1-axx(a ≠0),当a <0时,由于x >0,所以f x >0恒成立,从而f x 在0,+∞ 上递增;当a >0时,0<x <1a ,f x >0;x >1a ,fx <0,从而f x 在0,1a 上递增,在1a,+∞ 递减;综上,当a <0时,f x 的单调递增区间为0,+∞ ,没有单调递减区间;当a >0时,f x 的单调递增区间为0,1a ,单调递减区间为1a ,+∞ .(2)令h x =f x -g x =ln x -ax -2ax,要使f x ≤g x 恒成立,只要使h x ≤0恒成立,也只要使h x max ≤0.h x =1x -a +2ax 2=-ax +1 ax -2 ax 2,由于a >0,x >0,所以ax +1>0恒成立,当0<x <2a 时,h x >0,当2a<x <+∞时,h x <0,所以h x max =h 2a =ln 2a -3≤0,解得:a ≥2e 3,所以a 的最小值为2e3.15(2024·山东济南·二模)已知函数f x =ax 2-ln x -1,g x =xe x -ax 2a ∈R .(1)讨论f x 的单调性;(2)证明:f x +g x ≥x .【答案】(1)答案见详解(2)证明见详解【分析】(1)求导可得fx =2ax 2-1x,分a ≤0和a >0两种情况,结合导函数的符号判断原函数单调性;(2)构建F x =f x +g x -x ,x >0,h x =e x -1x,x >0,根据单调性以及零点存在性定理分析h x 的零点和符号,进而可得F x 的单调性和最值,结合零点代换分析证明.【详解】(1)由题意可得:f x 的定义域为0,+∞ ,fx =2ax -1x =2ax 2-1x,当a ≤0时,则2ax 2-1<0在0,+∞ 上恒成立,可知f x 在0,+∞ 上单调递减;当a >0时,令f x >0,解得x >12a;令f x <0,解得0<x <12a;可知f x 在0,12a 上单调递减,在12a,+∞ 上单调递增;综上所述:当a ≤0时,f x 在0,+∞ 上单调递减;当a >0时,f x 在0,12a 上单调递减,在12a,+∞ 上单调递增.(2)构建F x =f x +g x -x =xe x -ln x -x -1,x >0,则F x =x +1 e x -1x -1=x +1 e x -1x,由x >0可知x +1>0,构建h x =e x -1x ,x >0,因为y =e x ,y =-1x在0,+∞ 上单调递增,则h x 在0,+∞ 上单调递增,且h 12=e -20,h 1 =e -1 0,可知h x 在0,+∞ 上存在唯一零点x 0∈12,1 ,当0<x <x 0,则h x <0,即Fx <0;当x >x 0,则h x >0,即F x >0;可知F x 在0,x 0 上单调递减,在x 0,+∞ 上单调递增,则F x ≥F x 0 =x 0e x 0-ln x 0-x 0-1,又因为e x 0-1x 0=0,则e x 0=1x 0,x 0=e -x 0,x 0∈12,1 ,可得F x 0 =x 0×1x 0-ln e -x-x 0-1=0,即F x ≥0,所以f x +g x ≥x .16(2024·福建·模拟预测)已知函数f (x )=a ln x -bx 在1,f 1 处的切线在y 轴上的截距为-2.(1)求a 的值;(2)若f x 有且仅有两个零点,求b 的取值范围.【答案】(1)2(2)b ∈0,2e 【分析】(1)借助导数的几何意义计算即可得;(2)借助函数与方程的关系,可将f x 有且仅有两个零点转化为方程b =2ln xx有两个根,构造对应函数并借助导数研究单调性及值域即可得.【详解】(1)f (x )=ax-b ,f 1 =a -b ,f (1)=a ×0-b =-b ,则函数f (x )=a ln x -bx 在1,f 1 处的切线为:y +b =a -b x -1 ,即y =a -b x -a ,令x =0,则有y =-a =-2,即a =2;(2)由a =2,即f (x )=2ln x -bx ,若f x 有且仅有两个零点,则方程2ln x-bx=0有两个根,即方程b=2ln xx有两个根,令g x =2ln xx,则gx =21-ln xx2,则当x∈0,e时,g x >0,则当x∈e,+∞时,g x <0,故g x 在0,e上单调递增,在e,+∞上单调递减,故g x ≤g e =2ln ee=2e,又x→0时,g x →-∞,x→+∞时,g x →0,故当b∈0,2 e时,方程b=2ln x x有两个根,即f x 有且仅有两个零点.17(2024·浙江杭州·二模)已知函数f x =a ln x+2-12x2a∈R.(1)讨论函数f x 的单调性;(2)若函数f x 有两个极值点,(ⅰ)求实数a的取值范围;(ⅱ)证明:函数f x 有且只有一个零点.【答案】(1)答案见解析;(2)(ⅰ)-1<a<0;(ⅱ)证明见解析【分析】(1)求出函数的导函数,再分a≤-1、-1<a<0、a≥0三种情况,分别求出函数的单调区间;(2)(ⅰ)由(1)直接解得;(ⅱ)结合函数的最值与零点存在性定理证明即可.【详解】(1)函数f x =a ln x+2-12x2a∈R的定义域为-2,+∞,且f x =ax+2-x=-x+12+a+1x+2,当a≤-1时,f x ≤0恒成立,所以f x 在-2,+∞单调递减;当-1<a<0时,令f x =0,即-x+12+a+1=0,解得x1=-a+1-1,x2=a+1-1,因为-1<a<0,所以0<a+1<1,则-2<-a+1-1<-1,所以当x∈-2,-a+1-1时f x <0,当x∈-a+1-1,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时,此时-a+1-1≤-2,所以x∈-2,a+1-1时f x >0,当x∈a+1-1,+∞时f x <0,所以f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.综上可得:当a≤-1时f x 在-2,+∞单调递减;当-1<a<0时f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减;当a≥0时f x 在-2,a+1-1上单调递增,在a+1-1,+∞上单调递减.(2)(ⅰ)由(1)可知-1<a<0.(ⅱ)由(1)f x 在-2,-a+1-1上单调递减,在-a+1-1,a+1-1上单调递增,在a+1-1,+∞上单调递减,所以f x 在x=a+1-1处取得极大值,在x=-a+1-1处取得极小值,又-1<a<0,所以0<a+1<1,则1<a+1+1<2,又f x极大值=f a+1-1=a ln a+1+1-12a+1-12<0,又f-a+1-1<f a+1-1<0,所以f x 在-a+1-1,+∞上没有零点,又-1<a<0,则4a<-4,则0<e4a<e-4,-2<e4a-2<e-4-2,则0<e 4a-22<4,所以f e 4a-2=4-12e4a-22>0,所以f x 在-2,-a+1-1上存在一个零点,综上可得函数f x 有且只有一个零点.18(2024·河北沧州·模拟预测)已知函数f(x)=ln x-ax+1,a∈R.(1)讨论f x 的单调性;(2)若∀x>0,f x ≤xe2x-2ax恒成立,求实数a的取值范围.【答案】(1)答案见解析(2)-∞,2.【分析】(1)利用导数分类讨论判断函数f x 的单调性,即可求解;(2)先利用导数证明不等式e x≥x+1,分离变量可得a≤e2x-ln x+1x恒成立,进而e 2x-ln x+1x≥2x+ln x+1-(ln x+1)x=2,即可求解.【详解】(1)函数f x =ln x-ax+1,a∈R的定义域为0,+∞,且f (x)=1x-a.当a≤0时,∀x∈0,+∞,f (x)=1x-a≥0恒成立,此时f x 在区间0,+∞上单调递增;当a>0时,令f (x)=1x-a=1-axx=0,解得x=1a,当x∈0,1 a时,f x >0,f x 在区间0,1a上单调递增,当x∈1a,+∞时,f x <0,f x 在区间1a,+∞上单调递减.综上所述,当a≤0时,f x 在区间0,+∞上单调递增;当a>0时,f x 在区间0,1 a上单调递增,在区间1a,+∞上单调递减.(2)设g x =e x-x-1,则g x =e x-1,在区间(-∞,0)上,g x <0,g x 单调递减,在区间0,+∞上,g x >0,g x 单调递增,所以g x ≥g0 =e0-0-1=0,所以e x≥x+1(当且仅当x=0时等号成立).依题意,∀x>0,f x ≤xe2x-2ax恒成立,即a≤e2x-ln x+1x恒成立,而e2x-ln x+1x=xe2x-(ln x+1)x=e2x+ln x-(ln x+1)x≥2x+ln x+1-(ln x+1)x=2,当且仅当2x+ln x=0时等号成立.因为函数h x =2x+ln x在0,+∞上单调递增,h1e=2e-1<0,h(1)=2>0,所以存在x0∈1e,1,使得2x0+ln x0=0成立.所以a ≤e 2x -ln x +1xmin =2,即a 的取值范围是-∞,2 .【点睛】方法点睛:利用导数证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.19(2024·广东·二模)已知f x =12ax 2+1-2a x -2ln x ,a >0.(1)求f x 的单调区间;(2)函数f x 的图象上是否存在两点A x 1,y 1 ,B x 2,y 2 (其中x 1≠x 2),使得直线AB 与函数f x 的图象在x 0=x 1+x22处的切线平行?若存在,请求出直线AB ;若不存在,请说明理由.【答案】(1)f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)不存在,理由见解析【分析】(1)求出导函数,根据导函数的正负来确定函数的单调区间;(2)求出直线AB 的斜率,再求出f (x 0),从而得到x 1,x 2的等式,再进行换元和求导,即可解出答案.【详解】(1)由题可得f(x )=ax +1-2a -2x =ax 2+(1-2a )x -2x =(ax +1)(x -2)x(x >0)因为a >0,所以ax +1>0,所以当x ∈(0,2)时,f (x )<0,f (x )在(0,2)上单调递减,当x ∈(2,+∞)时,f (x )>0,f (x )在(2,+∞)上单调递增.综上,f (x )在(0,2)上单调递减,在(2,+∞)上单调递增.(2)由题意得,斜率k =y 2-y 1x 2-x 1=12ax 22+(1-2a )x 2-2ln x 2 -12ax 21+(1-2a )x 1-2ln x 1 x 2-x 1=12a (x 22-x 21)+(1-2a )(x 2-x 1)-2ln x 2x 1x 2-x 1=a 2(x 1+x 2)+1-2a -2ln x2x 1x 2-x 1,f x 1+x 22 =a (x 1+x 2)2+1-2a -4x 1+x 2,由k =f x 1+x22 得,ln x2x 1x 2-x 1=2x 1+x 2,即ln x 2x 1=2(x 2-x 1)x 1+x 2,即ln x 2x 1-2x2x 1-1 x 2x1+1=0令t =x 2x 1,不妨设x 2>x 1,则t >1,记g (t )=ln t -2(t -1)t +1=ln t +4t +1-2(t >1)所以g(t )=1t -4t +1 2=t -1 2t t +1 2>0,所以g (t )在(1,+∞)上是增函数,所以g (t )>g (1)=0,所以方程g (t )=0无解,则满足条件的两点A ,B 不存在.20(2024·广东深圳·二模)已知函数f x =ax +1 e x ,f x 是f x 的导函数,且f x -f x =2e x .(1)若曲线y =f x 在x =0处的切线为y =kx +b ,求k ,b 的值;(2)在(1)的条件下,证明:f x ≥kx +b .【答案】(1)k =3,b =1;(2)证明见解析.【分析】(1)根据题意,求导可得a 的值,再由导数意义可求切线,得到答案;(2)设函数g x =2x +1 e x -3x -1,利用导数研究函数g (x )的单调性从而求出最小值大于0,可得证.【详解】(1)因为f x =ax +1 e x ,所以f x =ax +a +1 e x ,因为f x -f x =2e x ,所以a =2.则曲线y =f (x )在点x =0处的切线斜率为f 0 =3.又因为f 0 =1,所以曲线y =f (x )在点x =0处的切线方程为y =3x +1,即得k =3,b =1.(2)设函数g x =2x +1 e x -3x -1,x ∈R ,则g x =2x +3 e x -3,设h x =g x ,则h x =e x 2x +5 ,所以,当x >-52时,h x >0,g x 单调递增.又因为g0 =0,所以,x >0时,g x >0,g x 单调递增;-52<x <0时,g x <0,g x 单调递减.又当x ≤-52时,g x =2x +3 e x -3<0,综上g x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以当x =0时,g x 取得最小值g 0 =0,即2x +1 e x -3x -1≥0,所以,当x ∈R 时,f x ≥3x +1.21(2024·辽宁·二模)已知函数f x =ax 2-ax -ln x .(1)若曲线y =f x 在x =1处的切线方程为y =mx +2,求实数a ,m 的值;(2)若对于任意x ≥1,f x +ax ≥a 恒成立,求实数a 的取值范围.【答案】(1)a =-1,m =-2(2)12,+∞ 【分析】(1)根据导数几何意义和切线方程,可直接构造方程组求得结果;(2)构造函数g x =ax 2-ln x -a x ≥1 ,将问题转化为g x ≥0恒成立;求导后,分别在a ≤0、a ≥12和0<a <12的情况下,结合单调性和最值求得符合题意的范围.【详解】(1)∵f x =2ax -a -1x,∴f 1 =2a -a -1=a -1,∵y =f x 在x =1处的切线为y =mx +2,∴f 1 =a -1=mf 1 =0=m +2 ,解得:a =-1,m =-2.(2)由f x +ax ≥a 得:ax 2-ln x -a ≥0,令g x =ax 2-ln x -a x ≥1 ,则当x ≥1时,g x ≥0恒成立;。
全国通用2020_2022三年高考数学真题分项汇编:04 导数及其应用(解答题)(理科专用)1.【2022年全国甲卷】已知函数f(x)=e xx−lnx+x−a.(1)若f(x)≥0,求a的取值范围;(2)证明:若f(x)有两个零点x1,x2,则环x1x2<1.【答案】(1)(−∞,e+1](2)证明见的解析【解析】【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为e xx −xe1x−2[lnx−12(x−1x)]>0,再利用导数即可得证.(1)f(x)的定义域为(0,+∞),f′(x)=(1x −1x2)e x−1x+1=1x(1−1x)e x+(1−1x)=x−1x(e xx+1)令f(x)=0,得x=1当x∈(0,1),f′(x)<0,f(x)单调递减当x∈(1,+∞),f′(x)>0,f(x)单调递增f(x)≥f(1)=e+1−a,若f(x)≥0,则e+1−a≥0,即a≤e+1所以a的取值范围为(−∞,e+1](2)由题知,f(x)一个零点小于1,一个零点大于1不妨设x1<1<x2要证x1x2<1,即证x1<1x2因为x1,1x2∈(0,1),即证f(x1)>f(1x2)因为f(x1)=f(x2),即证f(x2)>f(1x2)即证e xx −lnx+x−xe1x−lnx−1x>0,x∈(1,+∞)即证e xx −xe1x−2[lnx−12(x−1x)]>0下面证明x>1时,e xx −xe1x>0,lnx−12(x−1x)<0设g(x)=e xx−xe1x,x>1,则g′(x)=(1x −1x2)e x−(e1x+xe1x⋅(−1x2))=1x(1−1x)e x−e1x(1−1x) =(1−1x)(e xx−e1x)=x−1x(e xx−e1x)设φ(x)=e xx (x>1),φ′(x)=(1x−1x2)e x=x−1x2e x>0所以φ(x)>φ(1)=e,而e1x<e所以e xx−e1x>0,所以g′(x)>0所以g(x)在(1,+∞)单调递增即g(x)>g(1)=0,所以e xx−xe1x>0令ℎ(x)=lnx−12(x−1x),x>1ℎ′(x)=1x−12(1+1x2)=2x−x2−12x2=−(x−1)22x2<0所以ℎ(x)在(1,+∞)单调递减即ℎ(x)<ℎ(1)=0,所以lnx−12(x−1x)<0;综上, e xx −xe1x−2[lnx−12(x−1x)]>0,所以x1x2<1.【点睛】关键点点睛:本题是极值点偏移问题,关键点是通过分析法,构造函数证明不等式ℎ(x)=lnx−12(x−1x)这个函数经常出现,需要掌握2.【2022年全国乙卷】已知函数f(x)=ln(1+x)+axe−x(1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围.【答案】(1)y=2x(2)(−∞,−1)【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a分类讨论,对x分(−1,0),(0,+∞)两部分研究(1)f(x)的定义域为(−1,+∞)当a=1时,f(x)=ln(1+x)+xe x ,f(0)=0,所以切点为(0,0)f′(x)=11+x+1−xe x,f′(0)=2,所以切线斜率为2所以曲线y=f(x)在点(0,f(0))处的切线方程为y=2x (2)f(x)=ln(1+x)+ax e xf′(x)=11+x+a(1−x)e x=e x+a(1−x2)(1+x)e x设g(x)=e x+a(1−x2)1°若a>0,当x∈(−1,0),g(x)=e x+a(1−x2)>0,即f′(x)>0所以f(x)在(−1,0)上单调递增,f(x)<f(0)=0故f(x)在(−1,0)上没有零点,不合题意2°若−1⩽a⩽0,当x∈(0,+∞),则g′(x)=e x−2ax>0所以g(x)在(0,+∞)上单调递增所以g(x)>g(0)=1+a⩾0,即f′(x)>0所以f(x)在(0,+∞)上单调递增,f(x)>f(0)=0故f(x)在(0,+∞)上没有零点,不合题意3°若a<−1(1)当x∈(0,+∞),则g′(x)=e x−2ax>0,所以g(x)在(0,+∞)上单调递增g(0)=1+a<0,g(1)=e>0所以存在m∈(0,1),使得g(m)=0,即f′(m)=0当x∈(0,m),f′(x)<0,f(x)单调递减当x∈(m,+∞),f′(x)>0,f(x)单调递增所以当x∈(0,m),f(x)<f(0)=0当x→+∞,f(x)→+∞所以f(x)在(m,+∞)上有唯一零点又(0,m)没有零点,即f(x)在(0,+∞)上有唯一零点(2)当x∈(−1,0),g(x)=e x+a(1−x2)设ℎ(x)=g′(x)=e x−2axℎ′(x)=e x−2a>0所以g′(x)在(−1,0)单调递增g′(−1)=1e+2a<0,g′(0)=1>0所以存在n∈(−1,0),使得g′(n)=0当x∈(−1,n),g′(x)<0,g(x)单调递减当x∈(n,0),g′(x)>0,g(x)单调递增,g(x)<g(0)=1+a<0又g(−1)=1e>0所以存在t∈(−1,n),使得g(t)=0,即f′(t)=0当x∈(−1,t),f(x)单调递增,当x∈(t,0),f(x)单调递减有x→−1,f(x)→−∞而f(0)=0,所以当x∈(t,0),f(x)>0所以f(x)在(−1,t)上有唯一零点,(t,0)上无零点即f(x)在(−1,0)上有唯一零点所以a<−1,符合题意所以若f(x)在区间(−1,0),(0,+∞)各恰有一个零点,求a的取值范围为(−∞,−1)【点睛】方法点睛:本题的关键是对a的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.3.【2022年新高考1卷】已知函数f(x)=e x−ax和g(x)=ax−lnx有相同的最小值.(1)求a;(2)证明:存在直线y=b,其与两条曲线y=f(x)和y=g(x)共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.【答案】(1)a=1(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当b>1时,e x−x=b的解的个数、x−lnx=b的解的个数均为2,构建新函数ℎ(x)=e x+lnx−2x,利用导数可得该函数只有一个零点且可得f(x),g(x)的大小关系,根据存在直线y=b与曲线y=f(x)、y=g(x)有三个不同的交点可得b的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)f(x)=e x−ax的定义域为R,而f′(x)=e x−a,若a≤0,则f′(x)>0,此时f(x)无最小值,故a>0.g(x)=ax−lnx的定义域为(0,+∞),而g′(x)=a−1x =ax−1x.当x<lna时,f′(x)<0,故f(x)在(−∞,lna)上为减函数,当x>lna时,f′(x)>0,故f(x)在(lna,+∞)上为增函数,故f(x)min=f(lna)=a−alna.当0<x<1a 时,g′(x)<0,故g(x)在(0,1a)上为减函数,当x>1a 时,g′(x)>0,故g(x)在(1a,+∞)上为增函数,故g(x)min=g(1a )=1−ln1a.因为f(x)=e x−ax和g(x)=ax−lnx有相同的最小值,故1−ln1a =a−alna,整理得到a−11+a=lna,其中a>0,设g(a)=a−11+a −lna,a>0,则g′(a)=2(1+a)2−1a=−a2−1a(1+a)2≤0,故g(a)为(0,+∞)上的减函数,而g(1)=0,故g(a)=0的唯一解为a=1,故1−a1+a=lna的解为a=1.综上,a=1.(2)由(1)可得f(x)=e x−x和g(x)=x−lnx的最小值为1−ln1=1−ln11=1.当b>1时,考虑e x−x=b的解的个数、x−lnx=b的解的个数.设S(x)=e x−x−b,S′(x)=e x−1,当x<0时,S′(x)<0,当x>0时,S′(x)>0,故S(x)在(−∞,0)上为减函数,在(0,+∞)上为增函数,所以S(x)min=S(0)=1−b<0,而S(−b)=e−b>0,S(b)=e b−2b,设u(b)=e b−2b,其中b>1,则u′(b)=e b−2>0,故u(b)在(1,+∞)上为增函数,故u(b)>u(1)=e−2>0,故S(b)>0,故S(x)=e x−x−b有两个不同的零点,即e x−x=b的解的个数为2.设T(x)=x−lnx−b,T′(x)=x−1x,当0<x<1时,T′(x)<0,当x>1时,T′(x)>0,故T(x)在(0,1)上为减函数,在(1,+∞)上为增函数,所以T(x)min=T(1)=1−b<0,而T(e−b)=e−b>0,T(e b)=e b−2b>0,T(x)=x −lnx −b 有两个不同的零点即x −lnx =b 的解的个数为2. 当b =1,由(1)讨论可得x −lnx =b 、e x −x =b 仅有一个零点, 当b <1时,由(1)讨论可得x −lnx =b 、e x −x =b 均无零点, 故若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 则b >1.设ℎ(x)=e x +lnx −2x ,其中x >0,故ℎ′(x)=e x +1x −2,设s(x)=e x −x −1,x >0,则s ′(x)=e x −1>0,故s(x)在(0,+∞)上为增函数,故s(x)>s(0)=0即e x >x +1, 所以ℎ′(x)>x +1x−1≥2−1>0,所以ℎ(x)在(0,+∞)上为增函数,而ℎ(1)=e −2>0,ℎ(1e 3)=e 1e 3−3−2e 3<e −3−2e 3<0,故ℎ(x)在(0,+∞)上有且只有一个零点x 0,1e 3<x 0<1且: 当0<x <x 0时,ℎ(x)<0即e x −x <x −lnx 即f(x)<g(x), 当x >x 0时,ℎ(x)>0即e x −x >x −lnx 即f(x)>g(x),因此若存在直线y =b 与曲线y =f(x)、y =g(x)有三个不同的交点, 故b =f(x 0)=g(x 0)>1,此时e x −x =b 有两个不同的零点x 1,x 0(x 1<0<x 0), 此时x −lnx =b 有两个不同的零点x 0,x 4(0<x 0<1<x 4), 故e x 1−x 1=b ,e x 0−x 0=b ,x 4−lnx 4−b =0,x 0−lnx 0−b =0 所以x 4−b =lnx 4即e x 4−b =x 4即e x 4−b −(x 4−b)−b =0, 故x 4−b 为方程e x −x =b 的解,同理x 0−b 也为方程e x −x =b 的解又e x 1−x 1=b 可化为e x 1=x 1+b 即x 1−ln(x 1+b)=0即(x 1+b)−ln(x 1+b)−b =0, 故x 1+b 为方程x −lnx =b 的解,同理x 0+b 也为方程x −lnx =b 的解, 所以{x 1,x 0}={x 0−b,x 4−b},而b >1, 故{x 0=x 4−bx 1=x 0−b 即x 1+x 4=2x 0. 【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系. 4.【2022年新高考2卷】已知函数f(x)=xe ax −e x . (1)当a =1时,讨论f(x)的单调性;(2)当x >0时,f(x)<−1,求a 的取值范围;(3)设n ∈N ∗,证明:√12+1√22+2+⋯√n 2+n >ln(n +1).【答案】(1)f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)a ≤12 (3)见解析 【解析】 【分析】(1)求出f ′(x),讨论其符号后可得f(x)的单调性.(2)设ℎ(x)=xe ax −e x +1,求出ℎ″(x),先讨论a >12时题设中的不等式不成立,再就0<a ≤12结合放缩法讨论ℎ′(x)符号,最后就a ≤0结合放缩法讨论ℎ(x)的范围后可得参数的取值范围.(3)由(2)可得2lnt <t −1t 对任意的t >1恒成立,从而可得ln(n +1)−lnn <√n 2+n 对任意的n ∈N ∗恒成立,结合裂项相消法可证题设中的不等式. (1)当a =1时,f(x)=(x −1)e x ,则f ′(x)=xe x , 当x <0时,f ′(x)<0,当x >0时,f ′(x)>0, 故f(x)的减区间为(−∞,0),增区间为(0,+∞). (2)设ℎ(x)=xe ax −e x +1,则ℎ(0)=0,又ℎ′(x)=(1+ax)e ax −e x ,设g(x)=(1+ax)e ax −e x , 则g ′(x)=(2a +a 2x)e ax −e x , 若a >12,则g ′(0)=2a −1>0, 因为g ′(x)为连续不间断函数,故存在x 0∈(0,+∞),使得∀x ∈(0,x 0),总有g ′(x)>0, 故g(x)在(0,x 0)为增函数,故g(x)>g(0)=0,故ℎ(x)在(0,x 0)为增函数,故ℎ(x)>ℎ(0)=−1,与题设矛盾. 若0<a ≤12,则ℎ′(x)=(1+ax)e ax −e x =e ax+ln(1+ax)−e x , 下证:对任意x >0,总有ln(1+x)<x 成立,证明:设S(x)=ln(1+x)−x ,故S ′(x)=11+x −1=−x1+x <0, 故S(x)在(0,+∞)上为减函数,故S(x)<S(0)=0即ln(1+x)<x 成立. 由上述不等式有e ax+ln(1+ax)−e x <e ax+ax −e x =e 2ax −e x ≤0, 故ℎ′(x)≤0总成立,即ℎ(x)在(0,+∞)上为减函数, 所以ℎ(x)<ℎ(0)=−1.当a ≤0时,有ℎ′(x)=e ax −e x +axe ax <1−1+0=0, 所以ℎ(x)在(0,+∞)上为减函数,所以ℎ(x)<ℎ(0)=−1. 综上,a ≤12. (3)取a =12,则∀x >0,总有xe 12x −e x +1<0成立, 令t =e 12x ,则t >1,t 2=e x ,x =2lnt ,故2tlnt <t 2−1即2lnt <t −1t 对任意的t >1恒成立. 所以对任意的n ∈N ∗,有2ln√n+1n <√n+1n−√nn+1,整理得到:ln(n +1)−lnn <√n 2+n ,故√12+1√22+2⋯√n 2+n >ln2−ln1+ln3−ln2+⋯+ln(n +1)−lnn =ln(n +1), 故不等式成立. 【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.5.【2021年甲卷理科】已知0a >且1a ≠,函数()(0)a x x f x x a =>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围. 【答案】(1)20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减;(2)()()1,,+∞e e .【解析】 【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性; (2)方法一:利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x ax a =有两个不同的实数根,即曲线()y g x =与直线ln a y a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【详解】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x ⋅-⋅-⋅===', 令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x '>,当2ln 2x >时,()0f x '<, ∴函数()f x 在20,ln2⎛⎤⎥⎝⎦上单调递增;2,ln2⎡⎫+∞⎪⎢⎣⎭上单调递减; (2)[方法一]【最优解】:分离参数()ln ln 1ln ln a x a x x x af x a x x a a x a x a==⇔=⇔=⇔=,设函数()ln x g x x =, 则()21ln xg x x-'=,令()0g x '=,得x e =, 在()0,e 内()0g x '>,()g x 单调递增; 在(),e +∞上()0g x '<,()g x 单调递减;()()1max g x g e e∴==,又()10g =,当x 趋近于+∞时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln ay a=有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<, 所以a 的取值范围是()()1,,+∞e e .[方法二]:构造差函数由()y f x =与直线1y =有且仅有两个交点知()1f x =,即a x x a =在区间(0,)+∞内有两个解,取对数得方程ln ln a x x a =在区间(0,)+∞内有两个解.构造函数()ln ln ,(0,)g x a x x a x =-∈+∞,求导数得ln ()ln a a x a g x a x x'-=-=. 当01a <<时,ln 0,(0,),ln 0,()0,()a x a x a gx g x '<∈+∞->>在区间(0,)+∞内单调递增,所以,()g x 在(0,)+∞内最多只有一个零点,不符合题意;当1a >时,ln 0a >,令()0g x '=得ln a x a =,当0,ln a x a ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当,ln a x a ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<;所以,函数()g x 的递增区间为0,ln a a ⎛⎫ ⎪⎝⎭,递减区间为,ln a a ⎛⎫+∞ ⎪⎝⎭.由于1110e1,e 1e ln 0ln aaa a g a a ---⎛⎫<<<=--< ⎪⎝⎭,当x →+∞时,有ln ln a x x a <,即()0g x <,由函数()ln ln g x a x x a =-在(0,)+∞内有两个零点知ln 10ln ln a a g a a a ⎛⎫⎛⎫=->⎪ ⎪⎝⎭⎝⎭,所以e ln aa >,即eln 0a a ->.构造函数()eln h a a a =-,则e e()1a h a a a'-=-=,所以()h a 的递减区间为(1,e),递增区间为(e,)+∞,所以()(e)0h a h ≥=,当且仅当e a =时取等号,故()0>h a 的解为1a >且e a ≠.所以,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法三]分离法:一曲一直曲线()y f x =与1y =有且仅有两个交点等价为1ax xa=在区间(0,)+∞内有两个不相同的解.因为a x x a =,所以两边取对数得ln ln a x x a =,即ln ln x ax a=,问题等价为()ln g x x =与ln ()x ap x a=有且仅有两个交点. ①当01a <<时,ln 0,()ap x a<与()g x 只有一个交点,不符合题意. ②当1a >时,取()ln g x x =上一点()()000011,ln ,(),,()x x g x g x g x xx ''==在点()00,ln x x 的切线方程为()0001ln y x x x x -=-,即0011ln y x x x =-+. 当0011ln y x x x =-+与ln ()x a p x a =为同一直线时有0ln 1,ln 10,a a x x ⎧=⎪⎨⎪-=⎩得0ln 1,e e.a a x ⎧=⎪⎨⎪=⎩ 直线ln ()x a p x a =的斜率满足:ln 1e0a a <<时,()ln g x x =与ln ()x ap x a =有且仅有两个交点.记2ln 1ln (),()a a h a h a a a'-==,令()0h a '=,有e a =.(1,e),()0,()a h a h a '∈>在区间(1,e)内单调递增;(e,),()0,()a h a h a '∈+∞<在区间(,)e +∞内单调递减;e a =时,()h a 最大值为1(e)eg =,所当1a >且e a ≠时有ln 1e0a a <<. 综上所述,实数a 的取值范围为(1,e)(e,)⋃+∞. [方法四]:直接法()112ln (ln )()(0),()a a x x a a x x x x ax a a a x x a x a f x x f x a a a --'⋅-⋅-=>==. 因为0x >,由()0f x '=得ln ax a=. 当01a <<时,()f x 在区间(0,)+∞内单调递减,不满足题意;当1a >时,0ln aa >,由()0f x '>得0,()ln a x f x a <<在区间0,ln a a ⎛⎫ ⎪⎝⎭内单调递增,由()0f x '<得,()ln ax f x a >在区间,ln a a ⎛⎫+∞⎪⎝⎭内单调递减. 因为lim ()0x f x →+∞=,且0lim ()0x f x +→=,所以1ln a f a ⎛⎫> ⎪⎝⎭,即ln ln ln 1(ln )aaa aa a aa a a a a -⎛⎫ ⎪⎝⎭=>,即11ln ln (ln ),ln a a aaaaa aa -->>,两边取对数,得11ln ln(ln )ln a a a ⎛⎫-> ⎪⎝⎭,即ln 1ln(ln )a a ->. 令ln a t =,则1ln t t ->,令()ln 1h x x x =-+,则1()1h x x'=-,所以()h x 在区间(0,1)内单调递增,在区间(1,)+∞内单调递减,所以()(1)0h x h ≤=,所以1ln t t -≥,则1ln t t ->的解为1t ≠,所以ln 1a ≠,即e a ≠.故实数a 的范围为(1,e)(e,)⋃+∞.] 【整体点评】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,方法一:将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.方法二:将问题取对,构造差函数,利用导数研究函数的单调性和最值. 方法三:将问题取对,分成()ln g x x =与ln ()x ap x a=两个函数,研究对数函数过原点的切线问题,将切线斜率与一次函数的斜率比较得到结论. 方法四:直接求导研究极值,单调性,最值,得到结论.6.【2021年乙卷理科】设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.【答案】(1)1a =;(2)证明见详解 【解析】 【分析】(1)由题意求出'y ,由极值点处导数为0即可求解出参数a ; (2)由(1)得()()ln 1()ln 1x x g x x x +-=-,1x <且0x ≠,分类讨论()0,1x ∈和(),0x ∈-∞,可等价转化为要证()1g x <,即证()()ln 1ln 1x x x x +->-在()0,1x ∈和(),0x ∈-∞上恒成立,结合导数和换元法即可求解 【详解】(1)由()()()n 1'l a f x a x f x x ⇒==--,()()'ln xy a x x ay xf x ⇒=-=+-, 又0x =是函数()y xf x =的极值点,所以()'0ln 0y a ==,解得1a =; (2)[方法一]:转化为有分母的函数 由(Ⅰ)知,ln(1)11()ln(1)ln(1)+-==+--x x g x x x x x,其定义域为(,0)(0,1)-∞.要证()1g x <,即证111ln(1)+<-x x ,即证1111ln(1)-<-=-x x x x.(ⅰ)当(0,1)x ∈时,10ln(1)<-x ,10x x -<,即证ln(1)1->-x x x .令()ln(1)1=---xF x x x ,因为2211()01(1)(1)--=-=>--'-x F x x x x ,所以()F x 在区间(0,1)内为增函数,所以()(0)0F x F >=.(ⅱ)当(,0)x ∈-∞时,10ln(1)>-x ,10x x ->,即证ln(1)1->-x x x ,由(ⅰ)分析知()F x 在区间(,0)-∞内为减函数,所以()(0)0F x F >=. 综合(ⅰ)(ⅱ)有()1g x <.[方法二] 【最优解】:转化为无分母函数 由(1)得()()ln 1f x x =-,()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-,1x <且0x ≠,当 ()0,1x ∈时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x >-<, ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->;同理,当(),0x ∈-∞时,要证()()ln 1()1ln 1x x g x x x +-=<-,()0,ln 10x x <->, ()ln 10x x ∴-<,即证()()ln 1ln 1x x x x +->-,化简得()()1ln 10x x x +-->; 令()()()1ln 1h x x x x =+--,再令1t x =-,则()()0,11,t ∈+∞,1x t =-,令()1ln t t t t ϕ=-+,()1ln 1ln t t t ϕ'=-++=,当()0,1t ∈时,()0t ϕ'<,()t ϕ单减,故()()10t ϕϕ>=; 当()1,t ∈+∞时,()0t ϕ'>,()t ϕ单增,故()()10t ϕϕ>=; 综上所述,()()ln 1()1ln 1x x g x x x +-=<-在()(),00,1x ∈-∞恒成立.[方法三] :利用导数不等式中的常见结论证明令()ln (1)ϕ=--x x x ,因为11()1x x x xϕ-'=-=,所以()ϕx 在区间(0,1)内是增函数,在区间(1,)+∞内是减函数,所以()(1)0x ϕϕ≤=,即ln 1≤-x x (当且仅当1x =时取等号).故当1x <且0x ≠时,101x >-且111x ≠-,11ln 111<---x x ,即ln(1)1--<-x x x ,所以ln(1)1->-x x x . (ⅰ)当(0,1)x ∈时,0ln(1)1>->-xx x ,所以1111ln(1)-<=--x x x x ,即111ln(1)+<-x x ,所以()1g x <.(ⅱ)当(,0)x ∈-∞时,ln(1)01->>-xx x ,同理可证得()1g x <. 综合(ⅰ)(ⅱ)得,当1x <且0x ≠时,ln(1)1ln(1)+-<-x x x x ,即()1g x <.【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当(0,1)x ∈时,转化为证明ln(1)1->-x x x ,当(,0)x ∈-∞时,转化为证明ln(1)1->-xx x ,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当()0,1x ∈时,()()1ln 10x x x +-->成立和当(),0x ∈-∞时,()()1ln 10x x x +-->成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数()ln (1)ϕ=--x x x ,利用导数分析单调性,证得常见常用结论ln 1≤-x x (当且仅当1x =时取等号).然后换元得到ln(1)1->-xx x ,分类讨论,利用不等式的基本性质证得要证得不等式,有一定的巧合性.7.【2021年新高考1卷】已知函数()()1ln f x x x =-. (1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<. 【答案】(1)()f x 的递增区间为()0,1,递减区间为()1,+∞;(2)证明见解析. 【解析】 【分析】(1) 首先确定函数的定义域,然后求得导函数的解析式,由导函数的符号即可确定原函数的单调性.(2)方法二:将题中的等式进行恒等变换,令11,m n a b==,命题转换为证明:2m n e <+<,然后构造对称差函数,结合函数零点的特征和函数的单调性即可证得题中的结论. 【详解】(1)()f x 的定义域为()0,∞+. 由()()1ln f x x x =-得,()ln f x x '=-,当1x =时,()0f x '=;当()0,1x ∈时()0f x >′;当()1,x ∈+∞时,()'0f x <. 故()f x 在区间(]0,1内为增函数,在区间[)1,+∞内为减函数, (2)[方法一]:等价转化由ln ln b a a b a b -=-得1111(1ln )(1ln )a a b b -=-,即11()()f f a b=.由a b ,得11a b≠. 由(1)不妨设11(0,1),(1,)b a ∈∈+∞,则1()0f a >,从而1()0f b >,得1(1,)e b∈,①令()()()2g x f x f x =--,则22()(2)()ln(2)ln ln(2)ln[1(1)]g x f x f x x x x x x ''=---'=-+=-=--, 当()0,1x ∈时,()0g x '<,()g x 在区间()0,1内为减函数,()()10g x g >=, 从而()()2f x f x ->,所以111(2)()()f f f a a b->=,由(1)得112a b -<即112a b<+.① 令()()h x x f x =+,则()()'11ln h x f x x '=+=-,当()1,x e ∈时,()0h x '>,()h x 在区间()1,e 内为增函数,()()h x h e e <=, 从而()x f x e +<,所以11()f e b b+<.又由1(0,1)a∈,可得11111(1ln )()()f f a a a a b<-==, 所以1111()f e a b b b+<+=.②由①②得112e a b<+<. [方法二]【最优解】:ln ln b a a b a b -=-变形为ln ln 11a b a b b a-=-,所以ln 1ln 1a b a b ++=. 令11,m n a b==.则上式变为()()1ln 1ln m m n n -=-, 于是命题转换为证明:2m n e <+<.令()()1ln f x x x =-,则有()()f m f n =,不妨设m n <. 由(1)知01,1m n e <<<<,先证2m n +>.要证:()()()222)2(m n n m f n f m f m f m +>⇔>-⇔<-⇔<-()()20f m f m ⇔--<.令()()()()2,0,1g x f x f x x =--∈,则()()()()()2ln ln 2ln 2ln10g x f x f x x x x x '='+'-=---=⎡⎤⎣≥-⎦--=, ()g x ∴在区间()0,1内单调递增,所以()()10g x g <=,即2m n +>. 再证m n e +<.因为()()1ln 1ln m n n m m -=⋅->,所以()1ln n n n e m n e -+<⇒+<. 令()()()1ln ,1,h x x x x x e =-+∈,所以()'1ln 0h x x =->,故()h x 在区间()1,e 内单调递增. 所以()()h x h e e <=.故()h n e <,即m n e +<. 综合可知112e a b<+<. [方法三]:比值代换证明112a b+>同证法2.以下证明12x x e +<.不妨设21x tx =,则211x t x =>, 由1122(1ln )(1ln )x x x x -=-得1111(1ln )[1ln()]x x tx tx -=-,1ln 1n 1l t x t t=--, 要证12x x e +<,只需证()11t x e +<,两边取对数得1ln(1)ln 1t x ++<, 即ln(1)1ln 11t t t t++-<-, 即证ln(1)1ln t t t t+<-. 记ln(1)(),(0,)s g s s s ∈=+∞+,则2ln(1)1()s s s g s s '-++=. 记()ln(1)1sh s s s=-++,则211()0(1)1h s s s '=-<++, 所以,()h s 在区间()0,∞+内单调递减.()()00h s h <=,则()'0g s <, 所以()g s 在区间()0,∞+内单调递减.由()1,t ∈+∞得()10,t -∈+∞,所以()()1g t g t <-, 即ln(1)1ln t t t t+<-. [方法四]:构造函数法由已知得ln ln 11a b a b b a-=-,令1211,x x a b ==,不妨设12x x <,所以()()12f x f x =.由(Ⅰ)知,1201x x e <<<<,只需证122x x e <+<. 证明122x x +>同证法2.再证明12x x e +<.令2ln 21()(0)()(ln ,)ex h x x e h x x e x xe x '-++-=<<=--. 令()ln 2(0)e x x x e x ϕ=+-<<,则221()0e x ex x x xϕ-'=-=<. 所以()()()0,0x e h x ϕϕ>='>,()h x 在区间()0,e 内单调递增. 因为120x x e <<<,所以122111ln ln x e x e x x --<--,即112211ln ln x x x ex e -->-- 又因为()()12f x f x =,所以12212112ln ln 1,1x x x ex x x ex x --=>--,即()()2222111212,0x ex x ex x x x x e -<--+->.因为12x x <,所以12x x e +<,即11e a b+<.综上,有112e a b<+<结论得证. 【整体点评】(2)方法一:等价转化是处理导数问题的常见方法,其中利用的对称差函数,构造函数的思想,这些都是导数问题必备的知识和技能.方法二:等价转化是常见的数学思想,构造对称差函数是最基本的极值点偏移问题的处理策略.方法三:比值代换是一种将双变量问题化为单变量问题的有效途径,然后构造函数利用函数的单调性证明题中的不等式即可.方法四:构造函数之后想办法出现关于120e x x +-<的式子,这是本方法证明不等式的关键思想所在.8.【2021年新高考2卷】已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>; ②10,22a b a <<≤.【答案】(1)答案见解析;(2)证明见解析. 【解析】 【分析】(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可; (2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论. 【详解】(1)由函数的解析式可得:()()'2xf x x e a =-,当0a ≤时,若(),0x ∈-∞,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增;当102a <<时,若()(),ln 2x a ∈-∞,则()()'0,f x f x >单调递增, 若()()ln 2,0x a ∈,则()()'0,f x f x <单调递减, 若()0,x ∈+∞,则()()'0,f x f x >单调递增; 当12a =时,()()'0,f x f x ≥在R 上单调递增; 当12a >时,若(),0x ∈-∞,则()()'0,f x f x >单调递增, 若()()0,ln 2x a ∈,则()()'0,f x f x <单调递减, 若()()ln 2,x a ∈+∞,则()()'0,f x f x >单调递增; (2)若选择条件①:由于2122e a <,故212a e <≤,则()21,010b af b >>=->,而10f e b b ⎛⎛=--+< ⎝⎝,而函数在区间(),0-∞上单调递增,故函数在区间(),0-∞上有一个零点. ()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a >--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于2122e a <,212a e <≤,故()()ln 22ln 20a a a -≥⎡⎤⎣⎦,结合函数的单调性可知函数在区间()0,∞+上没有零点.综上可得,题中的结论成立. 若选择条件②:由于102a <<,故21a <,则()01210fb a =-≤-<, 当0b ≥时,24,42ea ><,()2240f e ab =-+>,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点.当0b <时,构造函数()1xH x e x =--,则()1x H x e '=-,当(),0x ∈-∞时,()()0,H x H x '<单调递减, 当()0,x ∈+∞时,()()0,H x H x '>单调递增,注意到()00H =,故()0H x ≥恒成立,从而有:1x e x ≥+,此时:()()()()22111x f x x e ax b x x ax b =---≥-+-+()()211a x b =-+-,当x >()()2110a x b -+->,取01x ,则()00f x >,即:()00,10f f ⎫<>⎪⎪⎭,而函数在区间()0,∞+上单调递增,故函数在区间()0,∞+上有一个零点. ()()()()2ln 22ln 21ln 2f a a a a a b =--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 21ln 22a a a a a ≤--+⎡⎤⎡⎤⎣⎦⎣⎦ ()()22ln 2ln 2a a a a =-⎡⎤⎣⎦()()ln 22ln 2a a a =-⎡⎤⎣⎦,由于102a <<,021a <<,故()()ln 22ln 20a a a -<⎡⎤⎣⎦, 结合函数的单调性可知函数在区间(),0-∞上没有零点. 综上可得,题中的结论成立. 【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.9.【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当a =1时,讨论f (x )的单调性;(2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.【答案】(1)当(),0x ∈-∞时,()()'0,f x f x <单调递减,当()0,x ∈+∞时,()()'0,f x f x >单调递增.(2)27e ,4∞⎡⎫-+⎪⎢⎣⎭【解析】 【分析】(1)由题意首先对函数二次求导,然后确定导函数的符号,最后确定原函数的单调性即可. (2)方法一:首先讨论x =0的情况,然后分离参数,构造新函数,结合导函数研究构造所得的函数的最大值即可确定实数a 的取值范围. 【详解】(1)当1a =时,()2e x f x x x =+-,()e 21xf x x ='+-,由于()''e 20xf x =+>,故()'f x 单调递增,注意到()00f '=,故:当(),0x ∈-∞时,()()0,f x f x '<单调递减, 当()0,x ∈+∞时,()()0,f x f x '>单调递增. (2) [方法一]【最优解】:分离参数 由()3112f x x ≥+得,231e 12x ax x x +-+,其中0x ≥, ①.当x =0时,不等式为:11≥,显然成立,符合题意;②.当0x >时,分离参数a 得,321e 12x x x a x----, 记()321e 12x x x g x x ---=-,()()2312e 12x x x x g x x⎛⎫---- ⎪⎝⎭'=-, 令()()21e 102xh x x x x =---≥,则()e 1x h x x ='--,()''e 10xh x =-≥,故()'h x 单调递增,()()00h x h ''≥=, 故函数()h x 单调递增,()()00h x h ≥=,由()0h x ≥可得:21e 102xx x ---恒成立, 故当()0,2x ∈时,()0g x '>,()g x 单调递增;当()2,x ∈+∞时,()0g x '<,()g x 单调递减; 因此,()()2max7e 24g x g -⎡⎤==⎣⎦, 综上可得,实数a 的取值范围是27e ,4∞⎡⎫-+⎪⎢⎣⎭. [方法二]:特值探路当0x ≥时,31()12f x x ≥+恒成立27e (2)54-⇒⇒f a. 只需证当274e a -≥时,31()12f x x ≥+恒成立.当274e a -≥时,227e ()e e 4-=+-≥+x xf x ax x 2⋅-x x .只需证明2237e 1e 1(0)42-+-≥+≥xx x x x ⑤式成立.⑤式()223e74244e -+++⇔≤xx x x , 令()223e7424()(0)e-+++=≥xx x x h x x ,则()()222313e 2e 92()e -+--=='x xx x h x ()()222213e 2e 9e ⎡⎤-----⎣⎦=xx x x ()2(2)2e 9e⎡⎤--+-⎣⎦xx x x ,所以当29e 0,2⎡⎤-∈⎢⎥⎣⎦x 时,()0,()h x h x '<单调递减; 当29e ,2,()0,()2⎛⎫-∈> ⎪⎝⎭'x h x h x 单调递增; 当(2,),()0,()∈+∞<'x h x h x 单调递减.从而max [()]max{(0),(2)}4==h x h h ,即()4h x ≤,⑤式成立.所以当274e a -≥时,31()12f x x ≥+恒成立.综上274e a -≥.[方法三]:指数集中当0x ≥时,31()12f x x ≥+恒成立323211e1(1)e 122xx x ax x x ax x -⇒+-+⇒-++≤,记()32(1(1)e 0)2xg x x ax x x -=-++≥,()2231(1)e 22123xg x x ax x x ax -'=--+++--2(23)42]121)2)1[e ((22x x x x x x a x a a -=--+++=----,①.当210a +≤即12a ≤-时,()02g x x '=⇒=,则当(0,2)x ∈时,()0g x '>,()g x 单调递增,又()01g =,所以当(0,2)x ∈时,()1g x >,不合题意;②.若0212a <+<即1122a -<<时,则当(0,21)(2,)x a ∈+⋃+∞时,()0g x '<,()g x 单调递减,当(21,2)x a ∈+时,()0g x '>,()g x 单调递增,又()01g =,所以若满足()1g x ≤,只需()21g ≤,即()22(7e 14)g a --≤=27e 4a -⇒,所以当27e 142a -⇒≤<时,()1g x ≤成立;③当212a +≥即12a ≥时,()32311(1)e (1)e 22x xg x x ax x x x --=++≤-++,又由②可知27e 142a -≤<时,()1g x ≤成立,所以0a =时,31()(1)e 21xg x x x -=+≤+恒成立, 所以12a ≥时,满足题意. 综上,27e 4a -.【整体点评】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,本题主要考查利用导数解决恒成立问题,常用方法技巧有: 方法一,分离参数,优势在于分离后的函数是具体函数,容易研究;方法二,特值探路属于小题方法,可以快速缩小范围甚至得到结果,但是解答题需要证明,具有风险性;方法三,利用指数集中,可以在求导后省去研究指数函数,有利于进行分类讨论,具有一定的技巧性!10.【2020年新课标2卷理科】已知函数f (x )=sin 2x sin2x . (1)讨论f (x )在区间(0,π)的单调性;(2)证明:()f x ≤(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22nx ≤34nn .【答案】(1)当0,3x π⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当2,33x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减,当2,3x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增. (2)证明见解析; (3)证明见解析. 【解析】 【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)[方法一]由题意将所给的式子进行变形,利用四元基本不等式即可证得题中的不等式; (3)[方法一]将所给的式子进行恒等变形,构造出(2)的形式,利用(2)的结论即可证得题中的不等式. 【详解】(1)由函数的解析式可得:()32sin cos f x x x =,则:()()224'23sin cos sin f x x x x =-()2222sin 3cos sin x x x =- ()222sin 4cos 1x x =-()()22sin 2cos 12cos 1x x x =+-,()'0f x =在()0,x π∈上的根为:122,33x x ππ==, 当0,3x π⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增,当2,33x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x <单调递减, 当2,3x ππ⎛⎫∈ ⎪⎝⎭时,()()'0,f x f x >单调递增. (2)[方法一]【最优解】:基本不等式法 由四元均值不等式可得24262[()]sin sin 24sin cos =⋅=⋅=f x x x x x 222244sin sin sin 3cos 33⋅⋅⋅≤⋅x x x x 42222sin sin sin 3cos 27464⎛⎫+++= ⎪⎝⎭x x x x ,当且仅当22sin 3cos =x x , 即3x k ππ=-或()3x k k ππ=+∈Z 时等号成立.所以|()|f x . [方法二]:构造新函数+齐次化方法因为()()333222222sin cos 2tan ()2sin cos sin cos tan 1===++x xxf x x x x x x ,令tan (0)=≥x t t ,则问题转化为求()3222()(0)1=≥+t g t t t的最大值.求导得()()()22222213()1+'-=+t t t g t t,令()0g t '=,得t =当∈t 时,()0g t '>,函数()g t 单调递增;当)∈+∞t 时,()0g t '<,函数()g t 单调递减. 所以函数()g t的最大值为==g|()|f x ≤. [方法三]:结合函数的周期性进行证明注意到()()()()22sin sin 2sin sin 2f x x x x x f x πππ+=++==⎡⎤⎣⎦,故函数()f x 是周期为π的函数,结合(1)的结论,计算可得:()()00f f π==,23f π⎛⎫== ⎪⎝⎭⎝⎭223f π⎛⎛⎫=⨯= ⎪ ⎝⎭⎝⎭⎝⎭, 据此可得:()max f x =⎡⎤⎣⎦()minf x =⎡⎤⎣⎦ 即()f x (3)[方法一]【最优解】:利用(2)的结论 由于()32223332sin sin 2sin 2sin sin 2sin 2==nn x xx x xx 23312|sin |sin sin 2sin 2sin2sin 2-=n n n x x xx x x ()12|sin |()(2)2sin 2-≤n n x f x f x f x x ()1()(2)2-n f x f x f x ,所以232223sin sin 2sin 24⎫≤=⎝⎭n n nn x xx . [方法二]:数学归纳法+放缩当1n =时,222sin sin 2sin sin 2sin 2⋅=≤x x x x x 33244≤≤x ,显然成立; 假设当n k =时原式成立,即22223sin sin 2sin 4sin 24≤kkk x x x x .那么,当1n k =+时,有222221sin sin 2sin 4sin 2sin 2+≤kk x x x x x 2234sin 2cos 24⎛⎫⋅⋅⋅≤⎪⎝⎭kk kx x332cos22sin 2cos24sin 2⎛⎫⋅⋅≤ ⎪⎝⎭k kk kk x x x x 32cos248sin 2⎛⎫⋅≤ ⎪⎝⎭k k k x x 11334tan 24++⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭k k kx , 即当1n k =+时不等式也成立.综上所述,不等式对所有的n *∈N 都成立. 【整体点评】(2)方法一:基本不等式是证明不等式的重要工具,利用基本不等式解题时一定要注意等号成立的条件;方法二:齐次化之后切化弦是一种常用的方法,它将原问题转化为一元函数的问题,然后构造函数即可证得题中的不等式;方法三:周期性是三角函数的重要特征,结合函数的周期性和函数的最值证明不等式充分体现了三角函数有界限的应用.(3)方法一:利用(2)的结论体现了解答题的出题思路,逐问递进是解答题常见的设问方式; 方法二:数学归纳法是处理与自然数有关的命题的常见策略,放缩法是不等式证明中常见的方法.11.【2020年新课标3卷理科】设函数3()f x x bx c =++,曲线()y f x =在点(12,f (12))处的切线与y 轴垂直. (1)求b .(2)若()f x 有一个绝对值不大于1的零点,证明:()f x 所有零点的绝对值都不大于1. 【答案】(1)34b =-;(2)证明见解析【解析】 【分析】(1)利用导数的几何意义得到1()02f '=,解方程即可;(2)方法一:由(1)可得2311()32()()422f x x x x '=-=+-,易知()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,采用反证法,推出矛盾即可. 【详解】(1)因为2()3f x x b '=+,由题意,1()02f '=,即:21302b ⎛⎫⨯+= ⎪⎝⎭,则34b =-.(2)[方法一]:通性通法由(1)可得33()4f x x x c =-+,2311()33()()422f x x x x '=-=+-, 令()0f x '>,得12x >或12x <-;令()0f x '<,得1122x -<<, 所以()f x 在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c -=--=+=-=+,若()f x 所有零点中存在一个绝对值大于1的零点0x ,则(1)0f ->或(1)0f <, 即14c >或14c <-. 当14c >时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c -=-++=-<,由零点存在性定理知()f x 在(4,1)c --上存在唯一一个零点0x , 即()f x 在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾;当14c <-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c -=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c -=++=->,由零点存在性定理知()f x 在(1,4)c -上存在唯一一个零点0'x , 即()f x 在(1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点, 此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1. [方法二]【最优解】:设0x 是()f x 的一个零点,且01x ≤,则30034c x x =-+. 从而()332200000333()444f x x x x x x x x x x x ⎛⎫=--+=-++- ⎪⎝⎭. 令22003()4h x x x x x =++-,由判别式2220003Δ43304x x x ⎛⎫=--=-≥ ⎪⎝⎭,可知()0h x =在R 上有解,()h x 的对称轴是011,222x x ⎡⎤=-∈-⎢⎥⎣⎦220002200031(1)104231(1)1042h x x x h x x x ⎧⎛⎫=++-=+≥⎪ ⎪⎪⎝⎭⎨⎛⎫⎪-=-+-=-≥ ⎪⎪⎝⎭⎩,所以()h x 在区间01,2x ⎡⎤--⎢⎥⎣⎦上有一根为1x ,在区间0,12x ⎡⎤-⎢⎥⎣⎦上有一根为2x ,进而有121,1x x ≤≤,所以()f x。
高考构造函数十三种题型精讲精练目录一、十三种题型精讲【题型一】利用x n f(x)构造型【题型二】利用f(x)/x n构造型【题型三】利用e nx f(x)构造型【题型四】用f(x)/e nx构造型【题型五】利用sin x与f(x)构造型【题型六】利用cos x与f(x)构造型【题型七】复杂型:e n与af(x)+bg(x)等构造型【题型八】复杂型:(kx+b)与f(x)型【题型九】复杂型:与ln(kx+b)结合型【题型十】复杂型:基础型添加因式型【题型十一】复杂型:二次构造【题型十二】综合构造【题型十三】技巧计算型构造二、最新模拟试题精练【题型一】利用x n f (x )构造型【典例分析】函数()f x 是定义在区间上的可导函数,其导函数为,且满足,则不等式的解集为A. B.C.D.【详解】设,则,由已知当时,,是增函数,不等式等价于,所以020165x <+<,解得.方法技巧:本题考查导数的综合应用,解题关键是构造新函数,从而可以利用已知的不等式关系判断其导数的正负,以确定新函数的单调性,在构造新函数时,下列构造经常用:,,()()x g x e f x =,,构造新函数时可结合所要求的问题确定新函数的形式.【提分秘籍】基本规律1.x ()+()0 0g x =x f x f x f x '>< 对于(),构造()(),2.k x ()k ()0 0g x =x f x f x f x '+>< 对于(),构造()()【变式演练】1.已知定义域为的奇函数的导函数为,当时,,若,则的大小关系正确的是A.B.C.D.【分析】构造函数,利用已知条件确定的正负,从而得其单调性.【详解】设,则,∵,即,∴当时,,当时,,递增.又()f x 是奇函数,∴是偶函数,∴,,∵,∴,即.故选C.2.已知()f x的定义域为,为()f x 的导函数,且满足,则不等式的解集是()A. B. C.D.【分析】根据题意,构造函数,结合函数的单调性解不等式,即可求解.【详解】根据题意,构造函数,,则,所以函数的图象在上单调递减.又因为,所以,所以,解得或(舍).所以不等式的解集是.故选:B.3.设函数()f x在R 上可导,其导函数为,且.则下列不等式在R 上恒成立的是()A.()0f x ≥ B.()0f x ≤ C.D.【分析】根据给定不等式构造函数,利用导数探讨的性质即可判断作答.【详解】依题意,令函数,则,因,于是得时,时,从而有在上单调递减,在上单调递增,因此得:,而,即f (x )不恒为0,所以()0f x ≥恒成立.故选:A【题型二】利用f (x )/x n 构造型【典例分析】函数在定义域内恒满足:①,②,其中为的导函数,则A.B.C.D.【详解】令,,,∵,,∴,,∴函数在上单调递增,∴,即,,令,,,∵,,,∴函数在上单调递减,∴,即,,故选D.【提分秘籍】基本规律1.()-()0 0f x x f x f x g x x '><= ()对于(),构造(),2.()-()0 0k f x x f x kf x g x x '><= ()对于(),构造()【变式演练】1.已知定义在上的偶函数,其导函数为,若,,则不等式的解集是()A. B.C.D.【分析】根据题目中信息其导函数为,若可知,需构造函数,利用导函数判断函数的单调性,利用函数的单调性、奇偶性来解题,当时,即,,当时,即,.【详解】构造函数,,当时,,故,在上单调递增,又为偶函数,21y x =为偶函数,所以为偶函数,在单调递减.,则(3)1f =,;,当时,即,,所以;当时,即,,所以.综上所述,.故选:A2.已知定义在上的函数的导函数为,若,,则不等式的解集为()A. B. C. D.【分析】由,可得,令,对其求导可得,可得函数在上单调递增,可得,可得原不等式的解集.【详解】因为,所以,即.令,则,所以函数在上单调递增.又因为,不等式,可变形为,即,所以,即不等式的解集为.故选:C.【题型三】利用e nx f (x )构造型【典例分析】已知函数在上可导,其导函数为,若满足:当时,>0,,则下列判断一定正确的是A.B.C.D.【分析】构造函数,结合导函数,判定的单调性,得对称轴,对选项判断即可.【详解】构造函数,计算导函数得到=,由>0,得当,>0当时,<0.所以在单调递增,在单调递减,而,所以关于对称,故,得到,故选:D.【提分秘籍】基本规律1.()()0 0x f x f x g x e f x '+><= 对于(),构造()(),2.()()0 0kx f x kf x g x e f x '+><= 对于(),构造()()【变式演练】1.已知是上可导的图象不间断的偶函数,导函数为,且当时,满足,则不等式的解集为()A.B.C.D.【分析】构造函数,根据,结合题意可知函数是偶函数,且在上是增函数,由此根据结论,构造出的不等式即可.【详解】由题意:不等式可化为:,两边同乘以得:,令,易知该函数为偶函数,因为,,所以所以在上是单调增函数,又因为为偶函数,故,解得:.故选:B.2.设函数()f x的定义域为,是其导函数,若,,则不等式的解集是()A.B.C.D.【分析】构造函数,通过求导判断函数的单调性,利用函数的单调性解不等式即可.【详解】令,则,因为,所以,化简可得,即,所以函数在上单调递增,因为,化简得,因为,,所以,解得,所以不等式的解集是.故选:A3.已知定义在上的函数的导函数为,若,,则不等式的解集为()A. B. C. D.【分析】由,可得,令,对其求导可得,可得函数在上单调递增,可得,可得原不等式的解集.【详解】因为,所以,即.令,则,所以函数在上单调递增.又因为,不等式,可变形为,即,所以,即不等式的解集为.故选:C.【题型四】用f(x)/e nx构造型【典例分析】已知函数是定义在上的可导函数,且对于,均有,则有A.B.C.D.【分析】通过构造函数,研究函数的单调性进而判断出大小关系.【详解】因为.所以<0,即构造函数,所以,即在R 上为单调递减函数所以,化简得.同理,化简得所以选D【提分秘籍】基本规律1.()-()0 0x f x f x f x g x e '><=()对于(),构造(),2.()-()0 0kx f x f x kf x g x e '><=()对于(),构造()【变式演练】1.已知是定义在上的偶函数,当时,(其中为的导函数),若,则的解集为()A.B.C.D.【分析】由,结合已知条件有偶函数在上单调减,上单调增,再由即可求解集.【详解】由,而知:在上单调减,而,即,又知:,∴在上有,又是定义在上的偶函数,则在上为偶函数,∴在上单调增,即,可得,综上,有,故选:A2.已知函数是定义在上的可导函数,且对于,均有,则有A.B.C.D.【分析】通过构造函数,研究函数的单调性进而判断出大小关系.【详解】因为.所以<0,即构造函数,所以,即在R 上为单调递减函数所以,化简得.同理,化简得所以选D3.已知定义在上的可导函数()f x满足:,则与的大小关系是A.B.C.D.不确定【详解】令()()x g x e f x =,则,所以函数在上单调递减.因为,所以,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造()()x g x e f x =,构造,构造等【分析】构造函数,由已知可得出在上为增函数,再根据函数的奇偶性的定义得出为偶函数,由此逐一判断选项可得答案.【详解】构造函数,由在上恒有,,在上为增函数,又由,为偶函数,,,,,故A 错误.偶函数在上为增函数,在上为减函数,,,,,故B 正确;,,,,故C 错误;,,,,故D 错误.故选:B.2.已知偶函数()f x是定义在上的可导函数,当时,,若,则实数的取值范围为()A.B.C.D.【分析】构造函数,可得是偶函数,求导可得出在上单调递增,在(0,1]上单调递减,由可得,列出不等式即可求解.【详解】令,,则当时,,所以函数是定义在上的偶函数.当时,,所以函数在上单调递增,在(0,1]上单调递减.又,,所以由,可得,即,所以,所以,解得,所以实数的取值范围为,故选:C.3.设是定义在上的奇函数,其导函数为,当时,,则不等式的解集为()A. B.C. D.【分析】令,易得是定义在上的偶函数,因为,可知在上单调递减,在上单调递增,从而可以根据函数的单调性,确定不等式的解.【详解】令,∵是定义在上的奇函数,∴是定义在上的偶函数.当时,,由,得,∴,则在上单调递减.将化为,即,则.又是定义在上的偶函数.∴在上单调递增,且.当时,,将化为,即,则.综上,所求不等式的解集为.故选:B【题型六】利用cos x与f(x)构造型【典例分析】已知函数的定义域为,其导函数是.有,则关于x的不等式的解集为()A. B. C. D.【分析】令,根据题设条件,求得,得到函数在内的单调递减函数,再把不等式化为,结合单调性和定义域,即可求解.【详解】由题意,函数满足,令,则函数是定义域内的单调递减函数,由于,关于的不等式可化为,即,所以且,解得,不等式的解集为.故选:B【提分秘籍】基本规律1.cos ()-sin ()0 0cos x f x x f x g x f x x '><= 对于(),构造()(),2.cos ()sin ()0 0cos f x x f x x f x g x x'+><= ()对于(),构造()3.对于正切型,可以通分(或者去分母)构造正弦或者余弦积商型【变式演练】1.已知偶函数()f x 的定义域为,其导函数为,当时,有成立,则关于x 的不等式的解集为()A. B.C.D.【分析】由题意,设,利用导数求得在上单调递减,且为偶函数,再把不等式,转化为,结合单调性,即可求解.【详解】由题意,设,则,当时,因为,则有,所以在上单调递减,又因为()f x 在上是偶函数,可得,所以是偶函数,由,可得,即,即又由为偶函数,且在上为减函数,且定义域为,则有,解得或,即不等式的解集为,故选:B.2.已知函数()f x的定义域为,其导函数为.若,且,则下列结论正确的是A.()f x 是增函数B.()f x 是减函数C.()f x 有极大值D.()f x 有极小值【分析】对化简可得,即为,设函数,研究函数的性质,从而得到的单调性与极值,从而得到答案.【详解】设函数因为化简可得,即为,故,因为所以恒成立,所以在上单调递增,又因为,所以,所以当时,,当时,,,当时,,,,,故恒成立;当时,,,,,故恒成立;所以在上恒成立,故在上单调递增,故函数没有极值,不可能单调递减.所以选A.【题型七】复杂型:e n与af(x)+bg(x)等构造型【典例分析】设定义在上的函数的导函数为,若,,则不等式(其中为自然对数的底数)的解集为()A. B.-∞, D.C.()0【分析】根据条件构造函数,分析的单调性并计算的值,将转化为,由此求解出不等式的解集.【详解】设,所以,因为,所以,所以在上单调递减,且,又因为等价于,所以解集为,故选:C.【提分秘籍】基本规律()()()-() 0x g x e f x k f x f x k =-⎡⎤⎣⎦'><对于(),构造【变式演练】1.函数()f x是定义在上的可导函数,为其导函数,若且,则不等式的解集为__________.【分析】构造函数,由题知得到在的最小值为0,得到在单增,在上,等价于,利用单调性可解.【详解】构造函数,在上,等价于,,,得,在上单增,在上单减,在上,恒成立,又,则又在上,等价于,即,则不等式的解集为故答案为:2.函数()f x是定义在上的可导函数,为其导函数,若,且,则的解集为()A.B.C.D.【分析】设,则,,故,即,解不等式得到答案.【详解】设,则,,故,故,即,,即,,故.故选:.3.设定义在上的函数的导函数为,若,,则不等式(其中为自然对数的底数)的解集为A. B.C. D.【分析】构造函数,则可判断,故是上的增函数,结合即可得出答案.【详解】设,则,∵,,∴,∴是上的增函数,又,∴的解集为,即不等式的解集为.故选A.【题型八】复杂型:(kx+b)与f(x)型【典例分析】已知函数的定义域为,其图象关于点中心对称,其导函数,当时,,则不等式的解集为A. B. C. D.【详解】由题意设,则,当时,,当时,,则在上递增,函数的定义域为,其图象关于点中心对称,函数的图象关于点中心对称,则函数是奇函数,令是上的偶函数,且在递增,由偶函数的性质得:函数在上递减,不等式化为:,即,解得,不等式解集是,故选C.【提分秘籍】基本规律授课时,可以让学生写出y=kx+b与y=f(x)的加、减、乘、除各种【变式演练】1.设函数在上存在导函数,对任意实数,都有,当时,,若,则实数的最小值是()A. B. C. D.【分析】构造函数,根据等式可得出函数为偶函数,利用导数得知函数在上单调递减,由偶函数的性质得出该函数在上单调递增,由,得出,利用函数的单调性和偶函数的性质解出该不等式即可.【详解】构造函数,对任意实数,都有,则,所以,函数为偶函数,.当时,,则函数在上单调递减,由偶函数的性质得出函数在上单调递增,,即,即,则有,由于函数在上单调递增,,即,解得,因此,实数的最小值为,故选A.2.已知定义域为的函数满足,其中为的导函数,则当时,不等式的解集为()A. B.C. D.【分析】构造函数,由已知,所以在上单调递增,利用二倍角余弦公式化简变形,有,即,利用单调性即可求解.【详解】令,因为,所以,所以在上单调递增,因为,所以,不等式,即,所以,即,所以,又,所以,故选:D.3.已知是奇函数的导函数,当时,,则不等式的解集为A. B. C. D.【分析】构造函数,可得为奇函数且在上单调递增,根据奇偶性可得在上单调递增,原不等式化为,从而可得结果.【详解】令,当时,,在上单调递增,为奇函数,也是奇函数,且在上单调递增,由化为.得,,的解集为,故选B.【题型九】复杂型:与ln (kx +b )结合型【典例分析】设函数()f x 是定义在上的连续函数,且在处存在导数,若函数()f x 及其导函数满足,则函数()f xA.既有极大值又有极小值B.有极大值,无极小值C.有极小值,无极大值D.既无极大值也无极小值【分析】本题首先可以根据构造函数,然后利用函数()f x 在处存在导数即可求出的值并求出函数()f x 的解析式,然后通过求导即可判断出函数()f x 的极值.【详解】由题意可知,,即,所以,令,则,因为函数()f x 在处存在导数,所以为定值,,,所以,令,当时,,构建函数,则有,所以函数在上单调递增,当,,令,解得,所以在上单调递减,在上单调递增,因为,,所以当时函数必有一解,令这一解为,,则当时,当时,综上所述,在上单调递减,在上单调递增,在上单调递增,所以有极小值,无极大值.【提分秘籍】基本规律1.()()l ()ln x 0 xn x f 0x f f g x x x '+><= ()对于(),构造2.授课时,可以让学生写出y =ln (kx +b )与y =f (x )的加、减、乘、除各种结果【变式演练】1..已知()f x是定义在上的奇函数,是()f x 的导函数,且满足:则不等式(1)()0x f x -⋅<的解集为()A.B.C.D.【分析】根据给定含导数的不等式构造函数,由此探求出()f x 在上恒负,在上恒正,再解给定不等式即可.【详解】令,,则,在上单调递减,而,因此,由得,而,则,由得,而,则,又(1)0f <,于是得在上,,而()f x 是上的奇函数,则在上,,由(1)()0x f x -⋅<得:或,即或,解得或,所以不等式(1)()0x f x -⋅<的解集为.故选:D2.设定义在上的函数恒成立,其导函数为,若,则()A. B.C.D.【分析】由题设构造,易知上,即单调递减,进而可比较、的大小.【详解】由题意,在上的函数恒成立,若,则,∵上,即,∴在上单调递减,而,故∴,可得.故选:B3.已知定义在上的连续奇函数的导函数为,已知,且当时有成立,则使成立的的取值范围是()A. B.C.D.【分析】根据题意,设,对求导,利用导数与函数单调性的关系分析可得在上单调递减,分析的特殊值,结合函数单调性分析可得在区间和上,都有,结合函数的奇偶性可得在区间和上,都有,进而将不等式变形转化,解得的取值范围,即可得到答案.【详解】令,则,因为当时有成立,所以当时,恒成立,所以在上单调递减,所以当时,,所以,又,所以,当时,()(1)0g x g <=,所以,又,所以,在是连续的函数,且,所以(1)0f <,时,,又由()f x 为奇函数,时,,所以或,解得或,则的取值范围是.故选:B.【题型十】复杂型:基础型添加因式型【典例分析】已知函数()f x 的导函数为,对任意的实数都有,,则不等式的解集是()A.B.C.D.【分析】由已知条件构造函数,再根据,求,不等式转化为,结合函数的单调性和奇偶性,解抽象不等式.【详解】由题意得,则,由,解得:,故,(2),当时,,,,在上恒成立,即()f x 在上单调递增,又,故()f x 为上的偶函数,其图象关于轴对称,()f x 在上单调递减,故,故,故选:C.【提分秘籍】基本规律在本专题一、二、三、四等基础上,变形或者添加因式,增加复杂度【变式演练】1.定义在上的函数的导函数满足,则下列不等式中,一定成立的是A. B.C.D.【详解】设,则,故函数在上递减,所以,所以,即,故选择A.2.已知定义在上的函数的导函数为,且满足,则关于不等式的解集为()A.B.C. D.【分析】构造新函数,利用已知不等式可得的单调性,从而可解不等式.【详解】涉及函数定义域为,设,则,∵,∴,∴在上单调递增,不等式可化为,即,所以,,又,得,∴原不等式的解为.故选:A.3.已知函数()f x为上的可导函数,其导函数为,且满足恒成立,,则不等式的解集为A. B. C. D.【分析】由,构造函数,求导,可得在R上单调递减,结合单调性,可求出不等式的解集.【详解】由题意知,,则构造函数,则,所以在R是单调递减.又因为,则.所求不等式可变形为,即,又在R是单调递减,所以,故选A【题型十一】复杂型:二次构造【典例分析】已知是函数()f x的导函数,且对于任意实数都有,,则不等式的解集为()A. B.C. D.【分析】本题解题关键在于根据已知构造出合适的函数,,再通过逆用求导公式得到,根据已知条件求得m 的值,从而将抽象不等式转化为一元二次不等式,进而得解.【详解】因为,所以,即,亦即,又,所以,即有.原不等式可等价于,即,解得的取值范围是.故选:A.【提分秘籍】基本规律二次构造:n f x r(x)g x r(x)=x e ,sin ,cos nx x x ⨯÷±()(),其中,等授课时,可以适当的借助例题,分析这类题的结构特征.【变式演练】1.已知定义域为的函数()f x满足(为函数()f x 的导函数),则不等式的解集为()A. B.(0,1]C.D.【分析】构造函数,由题意可知在上单调递增,再对分情况讨论,利用函数的单调性即可求出不等式的解集.【详解】由,当时,可得,即,即,构造函数,所以函数递增,则,此时,即满足;当时,可得,由函数递增,则,此时或,即满足;当时,,即满足.综上,.故选:C.2.已知函数的导函数为,且对任意的实数都有(是自然对数的底数),且,若关于的不等式的解集中恰有两个整数,则实数的取值范围是()A. B. C. D.【分析】由题意得即求出解析式,利用导数研究其单调性和极值与最值,结合图象即可求解.【详解】即,所以,则,所以,因为,所以,所以,,由得,此时单调递增,由得或,此时单调递减,所以时,取得极大值为,当时,取得极小值,又因为,,,且时,,的解集中恰有两个整数等价于在下方的图象只有2个横坐标为整数的点,结合函数图象可得:则,解得,所以时,的解集中恰有两个整数,故实数的取值范围是故选:C3.已知定义域为的函数的导函数为,且,若,则函数的零点个数为()A.1B.2C.3D.4【分析】采用构造函数法,同乘得,变形得,即,由此可得表达式,将求出具体解析式,再结合导数研究增减性,画出大致图象,即可求解.【详解】依题意,,故,则,即,故,令,则,解得,故,故;令,则,当时,,当,,故,故当时,,当时,;作出函数的大致图象如图所示;观察可知,与有2个交点,即函数有2个零点,故选:B.【题型十二】综合构造【典例分析】f x的导函数为,且成立,则下列各式一定义在上的连续函数()定成立的是()A. B.C.()0f π> D.【分析】设,由条件可得,即在上单调递减,且,由此卡判断选项A ,B ,C ,将2x π=代入条件可得,可判断选项D.【详解】由题可得,所以,设则,所以在上单调递减,且由可得,所以,()0f π>,所以选项A 、B 错误,选项C 正确.把2x π=代入,可得,所以选项D 错误,故选:C.【提分秘籍】基本规律结合式子,寻找各种综合构造规律,如,或者f (x )+r (x )(r (x )为常见函数)可以借助本小节授课,培养这类观察和构造的思维【变式演练】1.已知函数的导函数为,对任意的实数都有,,则不等式的解集是()A.B.C.D.【分析】先求出的解析式,然后再探究其奇偶性和单调性,最后将原不等式转化,进而求出结果.【详解】由可得,即,所以(其中为常数),因此,,由可得,故.显然,是上的偶函数.当时,,所以,在上是增函数.故故选:C.2.定义在上的函数的导函数为,当时,且,.则下列说法一定正确的是()A. B.C. D.【分析】构造函数,分析出函数为奇函数,利用导数分析出函数在上为增函数,由此可得出该函数在上为增函数,再利用函数的单调性可判断各选项的正误.【详解】令,,,所以,,,所以,函数为上的奇函数,,当时,,即,,所以,在上单调递增,由奇函数的性质可知,函数在上单调递增,所以,函数在上单调递增.对于A 选项,,则,即,A 选项错误;对于B 选项,,,即,B 选项正确;对于C 选项,,,即,C 选项错误;对于D 选项,,,即,D 选项错误.故选:B.3.已知函数()f x 的定义域为R ,且是偶函数,(为()f x 的导函数).若对任意的,不等式恒成立,则实数的取值范围是()A. B.C.D.【分析】设函数,求得时,()0p x '>,得到当时,()0f x '>,得到函数()f x的单调性,把任意的,恒成立,转化为,即可求解.【详解】由为偶函数,得函数的图象关于直线对称.设函数,则,当时,()0p x '>,函数在上单调递增,可得当时,,所以当时,()0f x '>,f x在上单调递增,在上单调递减.所以函数()设函数,则当时,因为,所以由对任意的,恒成立,可得,即,解得或,即实数的取值范围是.【题型十三】技巧计算型构造【典例分析】f x的导函数为,若,且,则定义在上的函数()A. B.C. D.【分析】由得,构造函数:,求导判单调性得,进而得则可求【详解】因为,所以.构造函数:,所以.所以函数在上单调递增,所以,即,即.故选C【提分秘籍】基本规律授课时,可以让学生写出y =kx +b 与y =f (x )的加、减、乘、除各种【变式演练】1.已知()f x是定义在上的奇函数,记()f x 的导函数为,当时,满足.若使不等式成立,则实数的最小值为A.B.C.D.【分析】由题意构造函数,借助单调性问题转化为e x (x 3﹣3x +3)﹣ae x ﹣x ≤0在上有解,变量分离求最值即可.【详解】由是定义在上的奇函数,当时,满足.可设故为上的增函数,又∴e x (x 3﹣3x +3)﹣ae x ﹣x ≤0在上有解,∴a ≥x 3﹣3x +3﹣,令g (x )=x 3﹣3x +3﹣,g ′(x )=3x 2﹣3+=(x ﹣1)(3x +3+),故当x ∈(﹣2,1)时,g ′(x )<0,当x ∈(1,+∞)时,g ′(x )>0,故g (x )在(﹣2,1)上是减函数,在(1,+∞)上是增函数;故g min (x )=g (1)=1﹣3+3﹣=1﹣;故选D.2.定义在上的函数()f x 满足:是()f x 的导函数,则不等式的解集为A. B. C. D.【分析】设,得到函数,即函数为单调递增函数,不等式转化为,即可不等式的解集.【详解】设,则,又由,则,所以,所以函数为单调递增函数,又由,所以,由不等式,即,即,所以不等式的解集为,故选A.3.已知函数()f x 在0,2π⎛⎫⎪⎝⎭上处处可导,若[op −′(p]tan −op <0,则()A.oln 32)sin(l 32)一定小于0.6oln 52)sin(l 52)B.oln 32)sin(l 32)一定大于0.6oln 52)sin(l 52)C.oln 32)sin(l 32)可能大于0.6oln 52)sin(l 52)D.oln 32)sin(l 32)可能等于0.6oln 52)sin(l 52)【解析】∵[op −′(p]tan −op <0∴[op −′(p]sincos −op <0,即opsin −′(psin <opcos ⇒opsin <′opsin ′即opsin ′−opsin >0,设op =opsin,则′(p=opsin=−,即函数op =opsin在0,2π⎛⎫ ⎪⎝⎭上单调递增,而0<ln 32<ln 52<2,所以)sin ln32<)sin ln 52⇒)sin 32<)sin 52⇒oln 32)sin ln<35oln 52)sin A二、最新模拟试题精练1.已知定义在R 上的函数()f x 的导函数为()f x ',且()()0f x f x <'<,则()A.()()()()e 21,2e 1f f f f >>B.()()()()e 21,2e 1f f f f ><C.()()()()e 21,2e 1f f f f <>D.()()()()e 21,2e 1f f f f <<【分析】根据题意以及选项对比可知,本题需要构造()e ()x h x f x =和()()e xf xg x =,求导后判断其单调性得出(2)(1)h h <和(2)(1)g g >的结论代入化简即可.【详解】由题意可知,函数()f x 在R 上单调递减.()()0f x f x '+<,()()0f x f x '->.构造()e ()x h x f x =,定义域为R ,则()()()e ()e e [()]0x x xh x f x f x f x f x '''=+=+<,所以()h x 在R上单调递减,所以(2)(1)h h <,即2e (2)e (1),e (2)(1)f f f f <<,故A,B 错误.构造()()e x f x g x =,定义域为R ,则()()()()2e e ()0(e )e x x x xf x f x f x f xg x ''⋅-⋅-'==>,所以()g x 在R 上单调递增,所以(2)(1)g g >,即2(2)(1),(2)e (1)e ef f f f >>,故B,D 错误.故选:C【方法点评】函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.2.定义在()0,∞+上的函数()y f x =有不等式()()()23f x xf x f x '<<恒成立,其中()y f x '=为函数()y f x =的导函数,则()A.()()24161f f << B.()()2481f f << C.()()2341f f << D.()()2241f f <<【分析】根据已知条件可以得到()()2f xg x x=,()()3f x h x x=在(0,+∞)上的单调性,从而分别得到()()()()21,21g g h h ><,进而得到结论.【详解】()()2f x xf x '<,即()()20f x x f x '⋅->,因为()y f x =定义在()0,∞+上,∴()()220f x x xf x '⋅->,令()()2f xg x x =则()()241f f >,()()()242g 0f x x xf x x x '⋅-'=>,则函数()g x 在()0,∞+上单调递增.由()()21g g >得,()()222121f f >即,()24(1)f f >;同理令()()3f x h x x =,()()()()()3264330f x x x f x f x x f x h x xx''⋅-⋅-'==<,则函数()h x 在()0,∞+上单调递减.由()()21h g <得,()()332121f f <,即()()281f f <.综上,()()2481f f <<.故选:B.【方法点评】本题考查导数的运算,利用导数研究函数的单调性和单调性在比较大小中的应用,涉及根据已知导函数满足的关系构造可判定导数正负的函数,是难题.()()20f x x f x '⋅->,从中间是减号,联想到除法的求导法则,从系数2,联想到要有2x 的导数产。
第4讲导数中构造函数比大小问题题型总结【典型例题】题型一:构造()xxx f ln =比较大小此函数定义域为()+∞,0,求导()2ln 1x xx f -=',当()e x ,0∈时,()0>'x f ,故()x f 为增函数,当()+∞∈,e x 时,()0<'x f ,故()x f 为减函数,当e x =时,()x f 取得极大值为()ee f 1=,且()()222ln 42ln 244ln 4f f ====,此结论经常用来把函数转化到同一边进行比较【例1】(2022·广东·佛山市南海区九江中学高二阶段练习)若1ln 2ln 3,,e 23a b c ===,则,,a b c 的大小关系为()A .a c b >>B .b c a>>C .c b a>>D .a b c>>【答案】A 【解析】【分析】通过对三个数的变形及观察,可以构造出函数()ln xf x x=,通过求导分析其单调性即可得到答案【详解】解:1ln e ln 2ln 4ln 3,,e e 243a b c =====,设()()2ln 1ln ,x x f x f x x x -'==,则e x >时,()0f x '<,故()f x 在()e,∞+上单调递减,则()()()3e 4f f f >>,即ln e ln 3ln 4e34>>,所以a c b >>.故选:A.【例2】(2023·全国·高三专题练习)设24ln 4a e -=,ln 22b =,1c e =,则()A .a c b <<B .a b c<<C .b a c<<D .b c a<<【答案】C【解析】【分析】结合已知要比较函数值的结构特点,可考虑构造函数()ln xf x x=,然后结合导数与单调性关系分析出e x =时,函数取得最大值()1e ef =,可得c 最大,然后结合函数单调性即可比较大小.【详解】设()ln x f x x =,则()21ln xf x x -'=,当e x >时,()0f x '<,函数单调递减,当0e x <<时,()0f x '>,函数单调递增,故当e x =时,函数取得最大值()1e ef =,因为()2222e ln 22ln22e e e 22a f -⎛⎫=== ⎪⎝⎭,()()4ln2l e n 4e 1,24b f c f =====,2e 42e << ,当e x >时,()0f x '<,函数单调递减,可得()()2e 4e 2f f f ⎛⎫<< ⎪⎝⎭,即b a c <<.故选:C【例3】(2022·吉林·高二期末)下列命题为真命题的个数是()①ln 32<;②ln π<;③15<;④3e ln 2>.A .1B .2C .3D .4【答案】B 【解析】【分析】本题首先可以构造函数()ln x f x x =,然后通过导数计算出函数()ln xf x x=的单调性以及最值,然后通过对①②③④四组数字进行适当的变形,通过函数()ln xf x x=的单调性即可比较出大小.【详解】解:构造函数()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,e x >时,()0f x '<,所以函数()ln xf x x=在()0,e 上递增,在()e,+∞上递减,所以当e x =时()f x 取得最大值1e,ln 322ln 2ln 22<⇔⇔,2e <<可得()2ff <,故①正确;lnπ<⇔e <<,可得f f <,故②错误;ln 2ln 4152ln1524<⇔<⇔<<,因为函数()ln xf x x=在()e,+∞上递减,所以()4f f<,故③正确;因为e >,所以(()e f f <,ln ee <1e <,则3e <即3e ln 2<④错误,综上所述,有2个正确.故选:B .【点睛】本题考查如何比较数的大小,当两个数无法直接通过运算进行大小比较时,如果两个数都可以转化为某个函数上的两个函数值,那么可以构造函数,然后通过函数的单调性来判断两个数的大小,考查函数思想,是难题.【例4】(2021·陕西汉中·高二期末(理))已知a ,b ,c 均为区间()0,e 内的实数,且ln 55ln a a =,ln 66ln b b =,ln 77ln c c =,则a ,b ,c 的大小关系为()A .a c b >>B .a b c>>C .c a b>>D .c b a>>【答案】B 【解析】【分析】构造函数()ln xf x x=,由导数判断函数单调性,进而利用单调性即可求解.【详解】解:令()ln x f x x =,则()21ln xf x x -'=,当0e x <<时,()0f x '>,函数()F x 在()0,e 上单调递增,当e x >时,()0f x '<,函数()f x 在()e,+∞上单调递减,因为765e >>>,所以()()()765f f f <<,因为a ,b ,c 均为区间()0,e 内的实数,且ln 5ln 5a a =,ln 6ln 6b b =,ln 7ln 7c c=,所以()()()f a f b f c >>,所以a b c >>,故选:B.【例5】(2022·江西·高三阶段练习(理))设ln 28a =,21e b =,ln 612c =,则()A .a c b <<B .a b c <<C .b a c <<D .c a b<<【答案】B 【解析】【分析】根据a 、b 、c 算式特征构建函数()2ln xf x x =,通过求导确定函数单调性即可比较a 、b 、c 的大小关系.【详解】令()2ln x f x x =,则()42ln 0x x xx x f x '-==⇒=因此()2ln xf x x =在)∞+上单调递减,又因为ln 2ln 4(4)816a f ===,22ln e1=(e)e e b f ==,ln 612c f ===,因为4e >>>a b c <<.故选:B .【题型专练】1.(2022·四川省资阳中学高二期末(理))若ln212ln3,,29e a b c ===,则()A .b a c>>B .b c a>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】令()ln xf x x=,利用导数说明函数的单调性,即可得到函数的最大值,再利用作差法判断a 、c ,即可得解;【详解】解:令()ln x f x x =,则()21ln xf x x-'=,所以当0e x <<时()0f x '>,当e x >时()0f x '<,所以()f x 在()0,e 上单调递增,在()e,+∞上单调递减,所以()()max ln e 1e e e f x f ===,所以1e ln22>又94ln22ln39ln 24ln 3ln 2ln 3ln 512ln 91029181818----===>所以ln22ln329>,即b a c >>.故选:A2.(2022·浙江台州·高二期末)设24ln 4e a -=,ln 22b =,c =,则()A .a b c <<B .b a c <<C .a c b<<D .b c a<<【答案】B 【解析】【分析】由题设22e ln2e 2a =,ln 44b =,ln 33c =,构造ln ()xf x x =并利用导数研究单调性,进而比较它们的大小.【详解】由题设,222e ln4ln 42e e 2a -==,ln 2ln 424b ==,ln 33c ==,令ln ()xf x x=且0x >,可得21ln ()x f x x -'=,所以()0f x '>有0e x <<,则(0,e)上()f x 递增;()0f x '<有e x >,则(e,)+∞上()f x 递减;又2e 43e 2>>>,故c a b >>.故选:B3.(2022·四川广安·模拟预测(理))在给出的(1ln 32)43ln 34<e (3)ee ππ>.三个不等式中,正确的个数为()A .0个B .1个C .2个D .3个【答案】C 【解析】【分析】根据题目特点,构造函数()ln x f x x =,则可根据函数()ln xf x x=的单调性解决问题.【详解】首先,我们来考察一下函数()ln xf x x=,则()21ln xf x x -'=,令()0,f x '>解得0e x <<,令()0,f x '<解得e x >,故()ln xf x x=在区间()0,e 上单调递增,在区间()e,+∞单调递减,所以,(1)ff <ln 3>,则正确;(2)()43e 3f f ⎛⎫< ⎪⎝⎭,即4343lne ln33e <,即43e ln 34⋅>,则错误;(3)()()πf e f >,即e e e e e e ππππππln ln ln ln ln ln >⇒>⇒>,所以,e e ππ>,则正确故选:C.4.(2022·四川资阳·高二期末(文))若ln 33a =,1eb =,3ln 28c =,则()A .b a c >>B .b c a >>C .c b a >>D .c a b>>【答案】A 【解析】【分析】设函数ln (),(0)xf x x x=>,求出其导数,判断函数的单调性,由此可判断出答案.【详解】设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当0e x <<时,()0f x '>,()f x 递增,当e x >时,()0f x '<,()f x 递减,当e x =时,函数取得最小值,由于e 38<<,故lne ln 3ln 8e 38>>,即b a c >>,故选:A5.(2022·山东日照·高二期末)π是圆周率,e 是自然对数的底数,在e 3,3e ,33,e e ,πe ,3π,π3,e π八个数中,最小的数是___________,最大的数是___________.【答案】e e π3【解析】【分析】分别利用指数函数的单调性,判断出底数同为3,e 以及π的数的大小关系,再由幂函数的单调性,找出最小的数,最后利用函数()ln xf x x=的单调性,判断出最大的数.【详解】显然八个数中最小的数是e e .函数3x y =是增函数,且e 3π<<,∴e 3π333<<;函数e x y =是增函数,且e 3π<<,e 3πe e e <<;函数πx y =是增函数,且e 3π<<,e 3ππ<;函数e y x =在()0,∞+是增函数,且e 3π<<,e e e e 3π<<,则八个数中最小的数是e e 函数πy x =在()0,∞+是增函数,且e 3<,ππe 3<,八个数中最大的数为3π或π3,构造函数()ln xf x x=,求导得()21ln xf x x -'=,当()e,x ∈+∞时()0f x '<,函数()f x 在()e,+∞是减函数,()()3πf f >,即ln 3ln π3π>,即πln 33ln π>,即π3ln 3ln π>,π33π∴>,则八个数中最大的数是π3.故答案为:e e ;π3.6.(2022·安徽省宣城中学高二期末)设24ln41,,e ea b c -===,,a b c 的大小关系为()A .a b c <<B .b a c<<C .a c b<<D .c a b<<【答案】D 【解析】【分析】设ln ()(0)xf x x x =>,利用导数求得()f x 的单调性和最值,化简可得2e 2a f ⎛⎫= ⎪⎝⎭,(e)b f =,(2)c f =,根据函数解析式,可得ln 4(4)(2)4f f ==且2e e 42<<,根据函数的单调性,分析比较,即可得答案.【详解】设ln ()(0)xf x x x=>,则221ln 1ln ()x xx x f x x x ⋅--'==,当(0,e)x ∈时,()0f x '>,则()f x 为单调递增函数,当(e,)x ∈+∞时,()0f x '<,则()f x 为单调递减函数,所以max 1()(e)ef x f ==,又222222e ln 4ln42(ln e e 2e e e 22ln 2)a f ⎛⎫-==-== ⎪⎝⎭,1(e)e b f ==,1ln 2(2)2c f ===,又2ln 4ln 2ln 2(4)(2)442f f ====,2e e 42<<,且()f x 在(e,)+∞上单调递减,所以2e (2)(4)2f f f ⎛⎫=< ⎪⎝⎭,所以b a c >>.故选:D7.(2022·黑龙江·大庆实验中学高二期末)已知实数a ,b ,c 满足ln ln ln 0e a a b cb c==-<,则a ,b ,c 的大小关系为()A .b c a <<B .c b a<<C .a b c<<D .b a c<<【答案】C 【解析】【分析】判断出01,01,1a b c <<<<>,构造函数ln (),(0)xf x x x=>,判断01x <<时的单调性,利用其单调性即可比较出a,b 的大小,即可得答案.【详解】由ln ln ln 0e a a b cb c==-<,得01,01,1a b c <<<<>,设ln (),(0)x f x x x =>,则21ln ()xf x x -'=,当01x <<时,()0f x '>,()f x 单调递增,因为01a <<,所以e 1>>a a ,所以ln ln e a aa a>,故()()ln ln ln e =>∴>a a b a f b f a b a ,则b a >,即有01a b c <<<<,故a b c <<.故选:C.题型二:利用常见不等式关系比较大小1、常见的指数放缩:)1();0(1=≥=+≥x ex e x x e xx证明:设()1--=x e x f x,所以()1-='xe xf ,所以当()0,∞-∈x 时,()0<'x f ,所以()x f 为减函数,当当()+∞∈,0x 时,()0>'x f ,所以()x f 为增函数,所以当0=x 时,()x f 取得最小值为()00=f ,所以()0≥x f ,即1+≥x e x2.常见的对数放缩:)(ln );1(1ln 11e x exx x x x x =≤=-≤≤-3.常见三角函数的放缩:x x x x tan sin ,2,0<<⎪⎭⎫⎝⎛∈π【例1】(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x=+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.【点睛】关键点点睛:本题解题关键是能够通过构造函数的方式,将问题转化为函数值的大小关系的比较问题,通过导数求得函数的单调性后,即可得到函数值的大小.【例2】(2022·山东菏泽·高二期末)已知910a =,19eb -=,101ln 11c =+,则a ,b ,c 的大小关系为()A .a b c <<B .b a c<<C .c b a <<D .c a b<<【答案】B【解析】【分析】首先设()e 1x f x x =--,利用导数得到()e 10xx x >+≠,从而得到11b a>,设()ln 1g x x x =-+,利用导数得到()ln 11x x x <-≠,从而得到111ln 1010<和c a >,即可得到答案.【详解】解:设()e 1x f x x =--,()e 1xf x '=-,令()0f x ¢=,解得0x =.(),0x ∈-∞,()0f x ¢<,()f x 单调递减,()0,x ∞∈+,()0f x ¢>,()f x 单调递增.所以()()00f x f ≥=,即e 10x x --≥,当且仅当0x =时取等号.所以()e 10xx x >+≠.又1911101e 199b a=>+==,0,0a b >>,故11b a >,所以b a <;设()ln 1g x x x =-+,()111xg x x x-'=-=,令()0g x ¢=,解得1x =.()0,1∈x ,()0g x ¢>,()g x 单调递增,()1,x ∈+∞,()0g x ¢<,()g x 单调递减.所以()()10g x g ≤=,即ln 10x x -+≤,当且仅当1x =时取等号.所以()ln 11x x x <-≠,故11111ln 1101010<-=,又1011011lnln ln ln1011101110c a -=+>+==,所以c a >,故b a c <<.故选:B.【例3】(2022·四川凉山·高二期末(文))已知0.01e a =, 1.01b =,1001ln 101c =-,则().A .c a b >>B .a c b>>C .a b c>>D .b a c>>【答案】C 【解析】【分析】构造函数()e 1x f x x =--,由导数确定单调性,进而即得.【详解】设()e 1x f x x =--,则e ()10x f x '=->,在0x >时恒成立,所以()f x 在(0,)+∞上是增函数,所以e 1(0)0x x f -->=,即e 1x x >+,0x >,∴0.01e 1.01>,又ln1.010>,∴ln1.01e 1ln1.01>+,即1001.011ln 101>-,所以a b c >>.故选:C .【例4】(2022·四川绵阳·高二期末(理))若8ln 7a =,18=b ,7ln 6c =,则()A .a c b <<B .c a b<<C .c b a <<D .b a c<<【答案】D 【解析】【分析】构造函数()1ln 1f x x x=+-,其中1x >,利用导数分析函数()f x 的单调性,可比较得出a 、b 的大小关系,利用对数函数的单调性可得出c 、a 的大小关系,即可得出结论.【详解】构造函数()1ln 1f x x x=+-,其中1x >,则()221110x f x x x x -'=-=>,所以,函数()f x 在()1,+∞上为增函数,故()()10f x f >=,则88781ln 1ln 077878f ⎛⎫=+-=-> ⎪⎝⎭,即a b >,78lnln 67> ,因此,b a c <<.故选:D.【例5】(2022·全国·高考真题(理))已知3111,cos ,4sin 3244a b c ===,则()A .c b a >>B .b a c>>C .a b c >>D .a c b>>【答案】A 【解析】【分析】由14tan 4c b =结合三角函数的性质可得c b >;构造函数21()cos 1,(0,)2f x x x x =+-∈+∞,利用导数可得b a >,即可得解.【详解】因为14tan 4c b =,因为当π0,,sin tan 2x x x x ⎛⎫∈<< ⎪⎝⎭所以11tan44>,即1cb >,所以c b >;设21()cos 1,(0,)2f x x x x =+-∈+∞,()sin 0f x x x '=-+>,所以()f x 在(0,)+∞单调递增,则1(0)=04f f ⎛⎫> ⎪⎝⎭,所以131cos 0432->,所以b a >,所以c b a >>,故选:A 【题型专练】1.(2022·福建·莆田一中高二期末)设ln1.01a =, 1.0130e b =,1101c =,则()A .a b c <<B .a c b <<C .c b a <<D .c a b<<【答案】D 【解析】【分析】构造函数()ln 1f x x x =-+(0x >),证明ln 1≤-x x ,令 1.01x =,排除选项A,B,再比较,a b 大小,即得解.【详解】解:构造函数()ln 1f x x x =-+(0x >),()10f =,()111xf x x x-'=-=,所以()f x 在()0,1上()0f x '>,()f x 单调递增,()f x 在()1,+∞上()0f x '<,()f x 单调递减,所以max ()(1)0,ln 10,ln 1f x f x x x x ==∴-+≤∴≤-,令 1.01x =,则 ln a x =,30e x b =,11c x=-,考虑到ln 1≤-x x ,可得11ln 1x x ≤-,1ln 1x x -≥-等号当且仅当 1x =时取到,故 1.01x =时a c >,排除选项A ,B.下面比较,a b 大小,由ln 1≤-x x 得 1.01ln1.01 1.0130e<<,故b a >,所以c a b <<.故选:D.2.(2022·吉林·长春市第二中学高二期末)已知1cos 5a =,4950b =,15sin 5=c ,则()A .b a c >>B .c b a >>C .b c a >>D .c a b>>【答案】D 【解析】【分析】构造函数21()cos 12f x x x =+-,利用导数求解函数()f x 的单调性,利用单调性进行求解.【详解】解:设21()cos 1,(01)2f x x x x =+-<<,则()sin f x x x '=-,设()sin ,(01)g x x x x =-<<,则()1cos 0g x x '=->,故()g x 在区间(0,1)上单调递增,即()(0)0g x g >=,即()0f x '>,故()f x 在区间(0,1)上单调递增,所以1(0)05f f ⎛⎫>= ⎪⎝⎭,可得149cos 550>,故a b >,利用三角函数线可得0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >,所以11tan 55>,即1sin1515cos 5>,所以115sincos 55>,故c a >综上,c a b >>故选:D.3(2022·湖北武汉·高二期末)设4104a =,ln1.04b =,0.04e 1c =-,则下列关系正确的是()A .a b c >>B .b a c >>C .c a b >>D .c b a>>【答案】D 【解析】【分析】分别令()()e 10xf x x x =-->、()()()ln 10g x x x x =+->、()()()ln 101xh x x x x=+->+,利用导数可求得()0f x >,()0g x <,()0h x >,由此可得大小关系.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,()f x ∴在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x ->,则0.04e 10.04->;令()()()ln 10g x x x x =+->,则()11011x g x x x'=-=-<++,()g x ∴在()0,∞+上单调递减,()()00g x g ∴<=,即()ln 1x x +<,则ln1.040.04<;0.04e 1ln1.04∴->,即c b >;令()()()ln 101x h x x x x =+->+,则()()()22110111x h x x x x '=-=>+++,()h x ∴在()0,∞+上的单调递增,()()00h x h ∴>=,即()ln 11xx x+>+,则0.044ln1.04 1.04104>=,即b a >;综上所述:c b a >>.故选:D.题型三:构造其它函数比大小(研究给出数据结构,合理构造函数)【例1】(2022·河南河南·高二期末(理))已知1ln 22a a -=,1ln 33b b -=,e ln e cc -=,其中12a ≠,13b ≠,e c ≠,则a ,b ,c 的大小关系为().A .c a b <<B .c b a<<C .a b c<<D .a c b<<【答案】A 【解析】【分析】构造函数()()ln 0f x x x x =->,并求()f x ',利用函数()f x 的图象去比较a b c 、、三者之间的大小顺序即可解决.【详解】将题目中等式整理,得11ln ln 22a a -=-,11ln ln 33b b -=-,ln e ln e c c -=-,构造函数()()ln 0f x x x x =->,()111x f x x x-'=-=,令()0f x '=,得1x =,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,函数()f x 的大致图象如图所示.因为()12f a f ⎛⎫= ⎪⎝⎭,()13f b f ⎛⎫= ⎪⎝⎭,()()e f c f =,且12a ≠,13b ≠,e c ≠,则由图可知1b a >>,01c <<,所以c a b <<.故选:A .【例2】(2022·重庆市万州第二高级中学高二阶段练习)设 1.01e a =,3eb =,ln 3c =,其中e 为自然对数的底数,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b>>D .a b c>>【答案】D 【解析】【分析】可判断 1.012e a =>,e32b =<,ln 32c =<,再令()ln exf x x =-,[e x ∈,)∞+,求导判断函数的单调性,从而比较大小.【详解】解: 1.012e a =>,e 32b =<,ln 32c =<,令()ln exf x x =-,[e x ∈,)∞+,11()0e e e x f x x x-'=-=<,故()f x 在[e ,)∞+上是减函数,故()()e 3f f <,即3ln 30e-<,故 1.013l e e n 3<<,即c b a <<,故选:D .【例3】(2022·全国·高三专题练习)已知ln 32a =,1e 1b =-,ln 43c =,则a ,b ,c 的大小关系是()A .b a c >>B .b c a >>C .c a b >>D .c b a>>【答案】A 【解析】【分析】根据给定条件构造函数ln ()e)1xf x x x =≥-,再探讨其单调性并借助单调性判断作答.【详解】令函数ln ()(e)1x f x x x =≥-,求导得()211ln ()1x x f x x --'=-,令()11ln g x x x =--,则()210,(e)xg x x x -'=<≥,故()11ln g x x x =--,(e)x ≥单调递减,又()111ln101g =--=,故()0,(e)g x x <≥,即()0,(e)f x x '<≥,而e 34<<,则(e)(3)(4)f f f >>,即1ln 3ln 4e 123>>-,所以b a c >>,故选:A【例4】(山东省淄博市2021-2022学年高二下学期期末数学试题)设110a =,ln1.1b =,910ec -=,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<【答案】D 【解析】【分析】利用指数函数的性质可比较,a c 的大小,再构造函数()ln(1)f x x x =-+,利用导数判断函数的单调性,再利用其单调性可比较出,a b ,从而可比较出三个数的大小【详解】因为e x y =在R 上为增函数,且9110-<-,所以9110e e --<,因为11e 10-<,所以9101e 10-<,即a c <,令()ln(1)f x x x =-+(0x >),得1()1011xf x x x'=-=>++,所以()f x 在(0,)+∞上递增,所以()(0)0f x f >=,所以ln(1)x x >+,令0.1x =,则0.1ln1.1>,即1ln1.110>,即a b >,所以b a c <<,故选:D【例5】(2022·四川南充·高二期末(理))设0.010.01e a =,199b =,ln 0.99c =-,则()A .c a b <<B .c b a <<C .a b c <<D .a c b<<【答案】A 【解析】【分析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数e ,,ln(1)1xxy x t u x x===---,1)x ∈,显然0,0y t >>,则ln ln ln [ln ln(1)]ln(1)y t x x x x x x -=+---=+-,令()ln(1)f x x x =+-,1)x ∈-,求导得1()1011x f x x x '=+=<--,即()f x 在1)-上单调递减,1)x ∀∈,()(0)0f x f <=,即ln ln y t y t <⇔<,因此当1)x ∈时,e 1xx x x<-,取0.01x =,则有0.010.0110.01e10.0199a b =<==-,令()e ln(1)xg x y u x x =-=+-,1)x ∈-,21(1)e 1()(1)e 11x xx g x x x x -+'=++=--,令2()(1)e 1x h x x =-+,1)x ∈,2()(21)e 0x h x x x '=+-<,()h x在1)-上单调递减,1)x ∀∈,()(0)0h x h <=,有()0g x '>,则()g x 在1)上单调递增,1)x ∀∈,()(0)0g x g >=,因此当1)x ∈时,e ln(1)x x x >--,取0.01x =,则有0.010.01e ln(10.01)ln 0.99a c =>--=-=,所以c a b <<.故选:A 【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.【例6】(2022·全国·高三专题练习)已知0.3πa =,20.9πb =,sin 0.1c =,则a ,b ,c 的大小关系正确的是()A .a b c >>B .c a b>>C .a c b>>D .b a c>>【答案】B 【解析】【分析】作差法比较出a b >,构造函数,利用函数单调性比较出c a >,从而得出c a b >>.【详解】2220.30.90.3π0.90.330.90ππππa b -⨯--=-=>=,所以0a b ->,故a b >,又()πsin 3f x x x =-,则()πcos 3f x x '=-在π0,6x ⎛⎫∈ ⎪⎝⎭上单调递减,又()0π30f '=->,π306f ⎛⎫'=-< ⎪⎝⎭,所以存在0π0,6x ⎛⎫∈ ⎪⎝⎭,使得()00f x '=,且在()00,x x ∈时,()0f x '>,在0π,6x x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,即()πsin 3f x x x =-在()00,x x ∈上单调递增,在0π,6x x ⎛⎫∈ ⎪⎝⎭单调递减,且ππ30124f ⎛⎫'=-> ⎪⎝⎭,所以0π12x >,又因为()00f =,所以当()00,x x ∈时,()πsin 30f x x x =->,其中因为1π1012<,所以()010,10x ∈,所以1πsin 0.10.3010f ⎛⎫=-> ⎪⎝⎭,故sin 0.10.3π>,即c a b >>.故选:B【例7】(2022·河南洛阳·三模(理))已知108a =,99b =,810c =,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .a c b >>D .a b c>>【答案】D 【解析】【分析】构造函数()()18ln f x x x =-,8x ≥,求其单调性,从而判断a ,b ,c 的大小关系.【详解】构造()()18ln f x x x =-,8x ≥,()18ln 1f x x x+'=--,()18ln 1f x x x+'=--在[)8,+∞时为减函数,且()295558ln 81ln 8ln e 204444f =-+-=-<-=-<',所以()18ln 10f x x x=-+-<'在[)8,+∞恒成立,故()()18ln f x x x =-在[)8,+∞上单调递减,所以()()()8910f f f >>,即10ln89ln 98ln10>>,所以10988910>>,即a b c >>.故选:D 【点睛】对于指数式,对数式比较大小问题,通常方法是结合函数单调性及中间值比较大小,稍复杂的可能需要构造函数进行比较大小,要结合题目特征,构造合适的函数,通过导函数研究其单调性,比较出大小.【例8】(2022·河南·模拟预测(理))若0.2e a =,b =ln 3.2c =,则a ,b ,c 的大小关系为()A .a b c >>B .a c b >>C .b a c >>D .c b a>>【答案】B 【解析】构造函数()()e 10xf x x x =-->,利用导数可得0.2e 1.2b a >>=,进而可得 1.2e 3.2>,可得a c >,再利用函数()()21ln 1x g x x x -=-+,可得ln 3.2 1.1>,即得.【详解】令()()e 10xf x x x =-->,则()e 10x f x '=->,∴()f x 在()0,∞+上单调递增,∴0.20.21 1.2e a b >+=>=,0.2 1.21.e ln 2e a >==,ln 3.2c =,∵()()()6551.262.7387.4,3.2335.5e e >≈≈=,∴ 1.2e 3.2>,故a c >,设()()21ln 1x g x x x -=-+,则()()()()()22221211011x xx g x x x x x +--=-=≥++',所以函数在()0,∞+上单调递增,由()10g =,所以1x >时,()0g x >,即()21ln 1x x x ->+,∴()()22121.6155ln 3.2ln 2ln1.611 1.1211.613950--=+>+=>=++,又1 1.2 1.21,1 1.1b <<<<,∴ 1.1c b >>,故a c b >>.故选:B.【点睛】本题解题关键是构造了两个不等式()e 10xx x >+>与()21ln (1)1x x x x ->>+进行放缩,需要学生对一些重要不等式的积累.【题型专练】1(2022·山东烟台·高二期末)设a =0.9,b =9ln e10c ⎛⎫= ⎪⎝⎭,则a ,b ,c 的大小关系为()A .b c a >>B .b a c >>C .c b a >>D .c a b>>【答案】B【分析】构造函数()ln 1f x x x =--,()g x x =-.【详解】令()ln 1f x x x =--,因为11()1x f x x x'-=-=所以,当01x <<时,()0f x '<,()f x 单调递减,所以(0.9)0.9ln 0.91(1)0f f =-->=,即90.9ln 0.91ln(e)10>+=,a c >;令()g x x =()1g x '=-所以,当114x <<时,()0g x '>,()g x 单调递增,所以(0.9)(1)g g <,即0.90<,0.9a b <.综上,c a b <<.故选:B2.(2022·山东青岛·高二期末)已知ln 3a π=,2b =,1sin 0.042c ⎫=-⎪⎪⎭,则a ,b ,c 的大小关系是()A .c b a >>B .a b c>>C .b a c>>D .a c b>>【答案】C 【解析】【分析】构造函数得出,a b 大小,又0c <即得出结论.【详解】构造函数()()()2ln 212ln 1f x x x x x =--=-+,则a b f -=,()1210f x x ⎛⎫'=-< ⎪⎝⎭在()1,+∞上恒成立,则()y f x =在()1,+∞上单调递减,故()10a b f f -=<=,则0b a >>,()π103x x =+>,则()π30121100433.x .-+-=>=,由对于函数()πsin 02g x x x x ⎛⎫=<< ⎪⎝⎭-,()πcos 1002g x x ,x ⎛⎫'=<<< ⎪⎝⎭-恒成立,所以,()()sin 00g x x x g =<=-即sin x x <在π0,2⎛⎫ ⎪⎝⎭上恒成立.所以,1sin0.04sin sin 02x x x ⎫<=<-<⎪⎭(注:004009020305.x .,...<<<<)所以,b a c >>故选:C3.(2022·湖北襄阳·高二期末)设253e 4a =,342e 5b =,35c =,则()A .b c a <<B .a b c <<C .c b a<<D .c a b<<【答案】C 【解析】【分析】根据式子结构,构造函数()()e ,01xf x x x=<<,利用导数判断单调性,得到2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即可判断出a b >.记()()e 2,01xg x x x =-<<,推理判断出b c >.【详解】24452533e23e 542e e 534a b ==.记()()e ,01x f x x x =<<,则()()2e 10x xf x x -'=<,所以()e xf x x =在()0,1上单调递减.所以2354f f ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以a b >.433422e e 5325354b c ⎛⎫-= ⎪⨯⎝--⎭=.记()()e 2,01x g x x x =-<<,则()e 2xg x '=-.所以在()0,ln 2x ∈上,()0g x '<,则()g x 单调递减;在()ln 2,1x ∈上,()0g x '>,则()g x 单调递增;所以()()()ln 2min ln 2e 2ln 221ln 20g x g ==-⨯=->,所以()min 304g g x ⎛⎫>> ⎪⎝⎭,即3422e 0534b c ⨯⎛⎫-> ⎪⎝⎭=-.所以b c >.综上所述:c b a <<.故选:C4.(2022·福建宁德·高二期末)已知a ,R b ∈,且221a b >>,则()A .ln ln a b a b -<-e eB .ln ln b a a b <C .e a b ba->D .sin sin 1a ba b-<-【答案】D 【解析】【分析】由题设有0a b >>,分别构造e ln x y x =-、ln xy x=、e x y x =、sin y x x =-,利用导数研究在,()0x ∈+∞上的单调性,进而判断各项的正误.【详解】由221a b >>,即0a b >>,A :若e ln x y x =-且,()0x ∈+∞,则1e xy x'=-,故12|20x y ='=-<,1|e 10x y ='=->,即y '在1(,1)2上存在零点且y '在(0,)+∞上递增,所以y 在(0,)+∞上不单调,则e ln e ln a b a b -<-不一定成立,排除;B :若ln x y x =且,()0x ∈+∞,则21ln xy x -'=,所以(0,e)上0y '>,y 递增;(e,)+∞上0y '<,y 递减;故y 在(0,)+∞上不单调,则ln ln a ba b<不一定成立,排除;C :若e x y x =且,()0x ∈+∞,则e (1)0x y x '=+>,即y 在(0,)+∞上递增,所以e e a b a b >,即e a b ba-<,排除;D :若sin y x x =-且,()0x ∈+∞,则1cos 0y x '=-≥,即y 在(0,)+∞上递增,所以sin sin a a b b ->-,即sin sin 1a ba b-<-,正确.故选:D5.(2022·贵州贵阳·高二期末(理))设 1.01e a =,3eb =,ln3c =,则a ,b ,c 的大小关系是()A .b a c >>B .c a b>>C .a c b >>D .a b c>>【答案】D 【解析】【分析】分析可得2a >,(1,2)b ∈,(1,2)c ∈,令()ln ,[e,)e xf x x x =-∈+∞,利用导数可得()f x 的单调性,根据函数单调性,可比较ln 3和3e的大小,即可得答案.【详解】由题意得 1.011e e 2a =>>,3(2e 1,)b =∈,ln 3(1,2)c =∈,令()ln ,[e,)exf x x x =-∈+∞,则11e ()0e ex f x x x -'=-=≤,所以()f x 在[e,)+∞为减函数,所以(3)(e)f f <,即3eln 3ln e 0e e-<-=,所以3ln 3e<,则 1.013e ln 3e >>,即a b c >>.故选:D6.(2022·重庆南开中学高二期末)已知6ln1.25a =,0.20.2e b =,13c =,则()A .a b c <<B .c b a <<C .c a b <<D .a c b<<【答案】A 【解析】【分析】0.20.20.20.2e e ln e b ==,令()ln f x x x =,利用导数求出函数()f x 的单调区间,令()e 1xg x x =--,利用导数求出函数()g x 的单调区间,从而可得出0.2e 和1.2的大小,从而可得出,a b 的大小关系,将,b c 两边同时取对数,然后作差,从而可得出,b c 的大小关系,即可得出结论.【详解】解:0.20.20.20.2e e ln e b ==,6ln1.2 1.2ln1.25a ==,令()ln f x x x =,则()ln 1f x x '=+,当10ex <<时,()0f x '<,当1e x >时,()0f x '>,所以函数()f x 在10,e ⎛⎫ ⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭上递增,令()e 1xg x x =--,则()e 1x g x '=-,当0x <时,()0g x '<,当0x >时,()0g x '>,所以函数()g x 在(),0∞-上递减,在()0,∞+上递增,所以()()0.200g g >=,即0.21e10.2 1.2e>+=>,所以()()0.2e 1.2f f >,即0.20.2e e 1.22ln ln1.>,所以b a >,由0.20.2e b =,得()0.211ln ln 0.2e ln 55b ==+,由13c =,得1ln ln 3c =,11151ln ln ln ln ln 35535c b -=--=-,因为55625510e 3243⨯⎛⎫=>> ⎪⎝⎭,所以155e 3>,所以51ln 35>,所以ln ln 0c b ->,即ln ln c b >,所以c b >,综上所述a b c <<.故选:A.【点睛】本题考查了比较大小的问题,考查了同构的思想,考查了利用导数求函数的单调区间,解决本题的关键在于构造函数,有一定的难度.7.(2022·湖北恩施·高二期末多选)已知212ln 204a a -=>,22122ln 0eb b --=>,221ln 303c c -=>,则()A .c b <B .b a<C .c a<D .b c<【答案】AC 【解析】【分析】根据题意可将式子变形为2211ln ln 44a a -=-,222211ln ln e e b b -=-,2211ln ln 33c c -=-,构造函数()ln f x x x =-,利用导数求解函数()f x 的单调性,即可求解.【详解】解:由题意知,211,1,23a b c >>>,对三个式子变形可得2211ln ln 44a a -=-,222211ln ln e eb b -=-,2211ln ln 33c c -=-,设函数()ln f x x x =-,则()111x f x x x-'=-=.由()0f x ¢>,得1x >;由()0f x <,得01x <<,则()f x 在()0,1上单调递减,在()1,+∞上单调递增,因为211101e 43<<<<,所以222b a c >>,所以c a b <<.故选:AC.8.(2022·安徽·歙县教研室高二期末)已知01x y z ∈、、(,),且满足2e 2e x x =,3e 3e y y =,4e 4e z z =,则()A .x y z <<B .x z y<<C .z y x<<D .z x y<<【答案】C 【解析】【分析】先对已知条件取对数后得到ln ln22x x -=-,ln ln33y y -=-,ln ln44z z -=-.根据式子结构,构造函数()ln m x x x =-,利用导数判断单调性,比较大小.【详解】由2e 2e x x =得2ln ln2,x x +=+即ln ln22x x -=-.同理得:ln ln33y y -=-,ln ln44z z -=-.令()ln ,m x x x =-则()111xm x x x-=-='.故()m x 在()0,1上单调递增,1∞+(,)上单调递减.所以z y x <<.故选:C.。
专题07 导数有关的构造函数方法一.知识点基本初等函数的导数公式 (1)常用函数的导数①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④⎝⎛⎭⎫1x ′=________; ⑤(x )′=________. (2)初等函数的导数公式①(x n )′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________;⑦(log a x )′=__________. 5.导数的运算法则(1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________;(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=____________________________. 6.复合函数的导数(1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )).(2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二.题型分析 1.构造多项式函数 2.构造三角函数型3.构造xe 形式的函数 4.构造成积的形式5.与ln x 有关的构造6.构造成商的形式7.对称问题(一)构造多项式函数例1.已知函数()()f x x R ∈满足()1f l =,且()f x 的导函数()1'2f x <,则()122x f x <+的解集为( ) A. B.{}|x 1x <- C. D.{}|1x x >【答案】D考点:函数的单调性与导数的关系.【方法点晴】本题主要考查了函数的单调性与函数的导数之间的关系,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的极值与最值等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及转化与化归思想的应用,本题的解答中根据题设条件,构造新函数()F x ,利用新函数的性质是解答问题的关键,属于中档试题.练习 1.设函数()f x 在R 上存在导函数'()f x ,对于任意的实数x ,都有,当(,0)x ∈-∞时,.若,则实数m 的取值范围是( )A .1[,)2-+∞ B .3[,)2-+∞ C .[1,)-+∞ D .[2,)-+∞ 【答案】A 【解析】∵,设,则,∴()g x 为奇函数,又,∴()g x 在(,0)-∞上是减函数,从而在R 上是减函数,又等价于,即,∴1m m +≥-,解得12m ≥-. 考点:导数在函数单调性中的应用.【思路点睛】因为,设,则,可得()g x 为奇函数,又,得()g x 在(,0)-∞上是减函数,从而在R 上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果. 练习2.设奇函数在上存在导数,且在上,若,则实数的取值范围为( ) A . B .C .D .【答案】B【方法点晴】本题主要考查了函数的奇偶性及其应用,其中解答中涉及到利用导数求函数的单调性、利用导数研究函数的极值、以及函数的奇偶性的判定等知识点的综合考查,着重考查了转化与化归的思想方法,以及学生的推理与运算能力,属于中档试题,解答中得出函数的奇函数和函数的单调性是解答的关键. 练习3.设函数()f x 在R 上存在导函数()f x ',对任意x R ∈,都有,且(0,)x ∈+∞时,()f x x '>,若,则实数a 的取值范围是( )A .[)1,+∞B .(],1-∞C .(],2-∞D .[)2,+∞【答案】B【解析】令,则,则,得()g x 为R 上的奇函数.∵0x >时,,故()g x 在(0,)+∞单调递增,再结合(0)0g =及()g x 为奇函数,知()g x 在(,)-∞+∞为增函数,又则,即(],1a ∈-∞.故选B .考点:函数的单调性及导数的应用.【方法点晴】本题考查了利用导数研究函数的单调性,然后构造函数,通过新函数的性质把已知条件转化为关于a 的不等式来求解.本题解答的关键是由已知条件()f x x '>进行联想,构造出新函数,然后结合来研究函数()g x 的奇偶性和单调性,再通过要解的不等式构造,最终得到关于a 的不等式,解得答案.(二)构造三角函数型例2.已知函数()f x 的定义域为R ,()'fx 为函数()f x 的导函数,当[)0,x ∈+∞时,且x R ∀∈,.则下列说法一定正确的是( )A. B.C. D.【答案】B 【解析】令,则.因为当[)0,x ∈+∞时,,即,所以,所以在[)0,x ∈+∞上单调递增.又x R ∀∈,,所以,所以,故为奇函数,所以在R 上单调递增,所以.即,故选B.练习1.已知函数)(x f y =对任意的满足(其中)('x f 是函数)(x f 的导函数),则下列不等式成立的是( ) A . B .C .D .【答案】A【解析】构造函数,则,即函数g (x )在单调递增,则,,即,故A 正确.,即练习2.定义在)2,0(π上的函数)(x f ,()'f x 是它的导函数,且恒有成立,则( )A.B.C . D.【答案】D【解析】在区间0,2π⎛⎫⎪⎝⎭上,有,即令,则,故()F x 在区间0,2π⎛⎫⎪⎝⎭上单调递增. 令,则有,D 选项正确.【思路点晴】本题有两个要点,第一个要点是“切化弦”,在不少题目中,如果遇到tan x ,往往转化为sin cos x x来思考;第二个要点是构造函数法,题目中,可以化简为,这样我们就可以构造一个除法的函数,而选项正好是判断单调性的问题,顺势而为.(三)构造xe 形式的函数例3.已知函数()f x 的导数为()f x ′,且对x R ∈恒成立,则下列函数在实数集内一定是增函数的为( )A.()f xB.()xf xC.()xe f x D.()xxe f x【答案】D 【解析】设,则.对R x ∈恒成立,且0x e >.在R 上递增,故选D.练习1. 设函数)(x f '是函数的导函数,1)0(=f ,且,则的解集为( ) A.),34ln (+∞ B.),32ln (+∞ C.),23(+∞ D.),3(+∞e 【答案】B【解析】依题意,构造函数,由,得,ln 23x >【思路点晴】本题考查导函数的概念,基本初等函数和复合函数的求导,对数的运算及对数函数的单调性.构造函数法是在导数题目中一个常用的解法.方程的有解问题就是判断是否存在零点的问题,可参变分离,转化为求函数的值域问题处理. 恒成立问题以及可转化为恒成立问题的问题,往往可利用参变分离的方法,转化为求函数最值处理.学科网练习2.已知()f x 定义在R 上的函数,()f x '是()f x 的导函数,若,且()02f =,则不等式(其中e 为自然对数的底数)的解集是( ) A . B .()1,-+∞ C .()0,+∞ D .【答案】C 【解析】设,则,∵,∴,∴()x g ',∴()x g y =在定义域上单调递增,∵,∴()1>x g ,又∵,∴()()0g x g >,∴0>x ,∴不等式的解集为()0,+∞故选:C.考点:利用导数研究函数的单调性.【方法点晴】本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键,属于中档题.结合已知条件中的以及所求结论可知应构造函数,利用导数研究()x g y =的单调性,结合原函数的性质和函数值,即可求解.练习3.定义在R 上的函数()f x 的导函数为()f x ',若对任意实数x ,有,且()1f x +为奇函数,则不等式的解集是( )A .(),0-∞B .()0,+∞C .1,e ⎛⎫-∞ ⎪⎝⎭D .1,e ⎛⎫+∞ ⎪⎝⎭【答案】B【解析】设.由,得,故函数()g x 在R 上单调递减.由()1f x +为奇函数()01f =-,所以.不等式等价于()1xf x e<-,即,结合函数()g x 的单调性可得0x >,从而不等式的解集为()0,+∞,故答案为B.【方法点晴】本题考查了导数的综合应用及函数的性质的应用,构造函数的思想,阅读分析问题的能力,属于中档题.常见的构造思想是使含有导数的不等式一边变为0,即得,当是形如时构造;当是时构造,在本题中令,(R x ∈),从而求导()0<'x g ,从而可判断()x g y =单调递减,从而可得到不等式的解集.练习4.已知定义在R 上的可导函数()f x 的导函数()'f x ,满足,且()2+f x 为偶函数,()41=f ,则不等式()<x f x e 的解集为( )A .()2,-+∞B .()4,+∞C .()1,+∞D .()0,+∞ 【答案】D【解析】设,则∴函数g x ()是R 上的减函数, ∵函数()2+f x 是偶函数, ∴函数∴函数关于2x =对称, ∴原不等式等价为1g x ()<, ∴不等式()<x f x e 等价1g x ()<,即∵g x ()是R 上的减函数, ∴0x >.∴不等式()<x f x e 式的解集为()0,+∞.选D 练习5.设函数()f x '是函数的导函数,1)0(=f ,且,则的解集是( )A.ln 4,3⎛⎫+∞ ⎪⎝⎭B.ln 2,3⎛⎫+∞ ⎪⎝⎭C.3,2⎛⎫+∞ ⎪ ⎪⎝⎭D.,3e ⎛⎫+∞ ⎪ ⎪⎝⎭【答案】B【解析】设,则,所以(c 为常数),则,由,2c =,所以,又由,所以即()3f x >,即3213x e ->,解得ln 23x >.故选B . (四)构造成积的形式例4.已知定义在R 上的函数()y f x =满足:函数()1y f x =+的图象关于直线1x =-对称,且当(),0x ∈-∞时,(()f x '是函数()f x 的导函数)成立.若,,,则a ,b ,c 的大小关系是( )A .a b c >>B .b a c >>C .c a b >>D .a c b >> 【答案】A【解析】易知()x f 关于y 轴对称,设,当()0,∞-∈x 时,,()x F ∴在()0,∞-上为递减函数,且()x F 为奇函数,()x F ∴在R 上是递减函数.,即c b a >>,故选A.【方法点睛】本题考查学生的是函数的性质,属于中档题目.从选项可以看出,要想比较c b a ,,的大小关系,需要构造新函数,通过已知函数()x f 的奇偶性,对称性和单调性,判断()x F 的各种性质,可得()x F 在R 上是递减函数.因此只需比较自变量的大小关系,通过分别对各个自变量与临界值1,0作比较,判断出三者的关系,即可得到函数值得大小关系.练习 1.设函数()f x 是定义在(,0)-∞上的可导函数,其导函数为'()f x ,且有,则不等式的解集为( ) A .B .C .(2018,0)-D .(2016,0)- 【答案】B考点:函数导数与不等式,构造函数.【思路点晴】本题考查函数导数与不等式,构造函数法.是一个常见的题型,题目给定一个含有导数的条件,这样我们就可以构造函数,它的导数恰好包含这个已知条件,由此可以求出()F x 的单调性,即函数()F x 为减函数.注意到原不等式可以看成,利用函数的单调性就可以解出来.练习2.设函数()f x 是定义在()0,+∞上的可导函数,其导函数为()f x ',且有,则不等式的解集为( )A .()2012,+∞B .()0,2012C .()0,2016D .()2016,+∞ 【答案】D【解析】试题分析:∵函数()f x 是定义在()0,+∞上的可导函数,,∴函数2y x f x =()在()0,+∞上是增函数,∴不等式的解集为()2016,+∞.【名师点睛】本题考查函数的单调性,解不等式,以及导数的应用,属中档题.解题时正确确定函数2y x f x =()在()0,+∞上是增函数是解题的关键练习3.函数()f x 是定义在区间()0,+∞上可导函数,其导函数为()'fx ,且满足,则不等式的解集为( )A .B .C .D .【答案】C(五)与ln x 有关的构造例5.已知定义在实数集R 的函数()f x 满足f (1)=4,且()f x 导函数()3f x '<,则不等式的解集为( )A.(1,)+∞B.(,)e +∞C.(0,1)D.(0,)e 【答案】D【解析】设t=lnx,则不等式化为13)(+>t t f ,设g(x)=f(x)-3x-1,则。
导数中函数的构造问题-高考数学三轮复习函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的具体体现.母题呈现类型一利用f(x)与x n构造函数【典例1】(1)(2022·河北衡水中学模拟预测)已知偶函数f(x)(x≠0)的导函数为f′(x),且满足f(-1)=0,当x>0时,2f(x)>xf′(x),则使得f(x)>0成立的x的取值范围是________.(2)设f(x)是定义在R上的偶函数,当x<0时,f(x)+xf′(x)<0,且f(-4)=0,则不等式xf(x)>0的解集____.【解题指导】观察条件和结论特点→构造函数→判断构造函数的单调性、奇偶性→画出相应函数的图象→再根据图象写出解集.【解析】(1)构造F(x)=f(x)x2,则F′(x)=f′(x)·x-2f(x)x3,当x>0时,xf′(x)-2f(x)<0,可以推出当x>0时,F′(x)<0,F(x)在(0,+∞)上单调递减.∵f(x)为偶函数,x2为偶函数,∴F(x)为偶函数,∴F(x)在(-∞,0)上单调递增.根据f(-1)=0可得F(-1)=0,根据函数的单调性、奇偶性可得函数图象如图所示,根据图象可知f(x)>0的解集为(-1,0)∪(0,1).(2)构造F(x)=xf(x),则F′(x)=f(x)+xf′(x),当x<0时,f(x)+xf′(x)<0,可以推出当x<0时,F′(x)<0,∴F(x)在(-∞,0)上单调递减.∵f(x)为偶函数,x为奇函数,∴F(x)为奇函数,∴F(x)在(0,+∞)上也单调递减.根据f(-4)=0可得F(-4)=0,根据函数的单调性、奇偶性可得函数图象如图所示,根据图象可知xf(x)>0的解集为(-∞,-4)∪(0,4).]【素养技法】利用f(x)与x n构造函数(1)出现nf(x)+xf′(x)形式,构造函数F(x)=x n f(x);(2)出现xf′(x)-nf(x)形式,构造函数F(x)=f(x)x n.【跟踪训练】(2022·岳阳一中一模)设f(x)是定义在R上的偶函数,且f(1)=0,当x<0时,有xf′(x)-f(x)>0恒成立,则不等式f(x)>0的解集为________.【答案】(-∞,-1)∪(1,+∞)【解析】构造F (x )=f (x )x ,则F ′(x )=f ′(x )·x -f (x )x 2,当x <0时,xf ′(x )-f (x )>0,可以推出当x <0时,F ′(x )>0,F (x )在(-∞,0)上单调递增.∵f (x )为偶函数,x 为奇函数,∴F (x )为奇函数,∴F (x )在(0,+∞)上也单调递增.根据f (1)=0可得F (1)=0,根据函数的单调性、奇偶性可得函数图象,根据图象可知f (x )>0的解集为(-∞,-1)∪(1,+∞).类型二利用f (x )与e x 构造函数【典例2】(1)(2022·山东临沂一模)已知函数f (x )在R 上可导,其导函数为f ′(x ),若f (x )满足:(x -1)[f ′(x )-f (x )]>0,f (2-x )=f (x )·e 2-2x,则下列判断一定正确的是()A .f (1)<f (0)B .f (2)>e 2f (0)C .f (3)>e 3f (0)D .f (4)<e 4f (0)(2)(2022·江苏省如皋中学模拟预测)若定义在R 上的函数f (x )满足f ′(x )-2f (x )>0,f (0)=1,则不等式f (x )>e 2x 的解集为________.与F (x )=e nx f (x )的构造条件)→判断构造函数的单调性、奇偶性→确定答案【解析】(1)构造F (x )=f (x )e x ,则F ′(x )=e xf ′(x )-e x f (x )e 2x =f ′(x )-f (x )ex ,导函数f ′(x )满足(x -1)[f ′(x )-f (x )]>0,则x >1时F ′(x )>0,F (x )在[1,+∞)上单调递增.当x <1时F ′(x )<0,F (x )在(-∞,1]上单调递减.又由f (2-x )=f (x )e 2-2x⇔F (2-x )=F (x )⇒F (x )关于x =1对称,从而F (3)>F (0)即f (3)e 3>f (0)e 0,∴f (3)>e 3f (0),故选C.(2)构造F (x )=f (x )e2x ,则F ′(x )=e 2x f ′(x )-2e 2x f (x )e 4x =f ′(x )-2f (x )e 2x ,函数f (x )满足f ′(x )-2f (x )>0,则F ′(x )>0,F (x )在R 上单调递增.又∵f (0)=1,则F (0)=1,f (x )>e 2x ⇔f (x )e 2x>1⇔F (x )>F (0),根据单调性得x >0.【素养技法】利用f (x )与e x 构造函数(1)出现f ′(x )-f (x )的形式,构造函数F (x )=f (x )e x;(2)出现f ′(x )+f (x )的形式,构造函数F (x )=f (x )e x .【跟踪训练】f (x )为定义在R 上的可导函数,且f ′(x )>f (x ),对任意正实数a ,下列式子一定成立的是()A.f (a )<e a f (0)B.f (a )>e a f (0)C.f (a )<f (0)e aD.f (a )>f (0)ea【答案】B【解析】令g (x )=f (x )e x ,则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x >0.∴g (x )在R 上为增函数,又a >0,∴g (a )>g (0),即f (a )e a >f (0)e0.故f (a )>e a f (0).类型三利用f (x )与sin x ,cos x 构造函数是常考的几种形式.F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x +f (x )cos x ;F (x )=f (x )sin x ,F ′(x )=f ′(x )sin x -f (x )cos x sin 2x ;F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x -f (x )sin x ;F (x )=f (x )cos x ,F ′(x )=f ′(x )cos x +f (x )sin x cos 2x【跟踪训练】(2022·山西朔州·高三期中)已知函数()f x 定义在(0,)2π上,'()f x 是它的导函数,且恒有()'()·tan f x f x x <成立,又知1()62f π=,若关于x 的不等式()sin f x x >解集是___________.【答案】(,)62ππ【解析】()'()tan ,'()sin ()cos 0f x f x x f x x f x x ∴-,令()()sin f x g x x=,2()sin ()cos ()0,()sin f x x f x x g x g x x-∴=>∴''在(0,)2π上为增函数,由()sin f x x >,()()61,sin 6sin 6f f x x x πππ∴>=∴>,所以不等式的解集为(,)62ππ.类型四构造具体函数关系式【典例4】(2022·南京师大附中模拟预测)若ln x -ln y <1ln x -1ln y (x >1,y >1),则()A.e y -x >1B.e y -x <1C.e y-x -1>1D.e y-x -1<1【解题指导】认真分析题目所给条件,寻找(或变形后寻找)结构相同的式子,结合所求构造函数.【解析】依题意,ln x -1ln x <ln y -1ln y ,令f (t )=t -1t (t ≠0).则f ′(t )=1+1t 20,所以f (t )在(-∞,0),(0,+∞)上单调递增;又x >1,y >1,得ln x >0,ln y >0,又ln x -1ln x <ln y -1ln y .则f (ln x )<f (ln y ).又f (t )在(0,+∞)上单调递增.则ln x <ln y ,∴1<x <y ,即y -x >0,所以e y -x >e 0=1,A 正确,B 不正确;又y -x -1无法确定与0的关系,故C 、D 不正确.【素养技法】不等式两边凑配成相同的形式,构造具体的函数利用单调性求解.【跟踪训练】(2022·长郡中学一模)已知α,β∈,且αsin α-βsin β>0,则下列结论正确的是()A .α>βB .α2>β2C .α<βD .α+β>0【答案】B【解析】构造函数f (x )=x sin x ,则f ′(x )=sin x +x cos x .当x ∈[0,]2π时,f ′(x )≥0,f (x )是增函数,当x ∈[,0)2π-时,f ′(x )<0,f (x )是减函数,又f (x )为偶函数,∴αsin α-βsin β>0⇔αsin α>βsin β⇔f (α)>f (β)⇔f (|α|)>f (|β|)⇔|α|>|β|⇔α2>β2,故选B.>20.若函数为定义在R 上的奇函数,()g x 为的导函数,当0x ≤时,<,则不等式2()g x x >的解集为_______.R上的函数,其导函数为π40.2单调性,将已知不等式转化为关于0x 时,()2g x x '<,0x ∴≤时,()0h x '<,()h x 单调递减,∴x <0时,()h x h >(0)=g (0)=0,即0x <时,()20g x x >>,当x >0时,-x <0,∴h (-x )>h (0),即g (-x )-20x >,∵g (x )是奇函数,∴()2g x x ->,即x >0时,g (x )<-2x <0,综上,x <0时,g (x )>2x >0,x >0时,g (x )<-2x <0﹒∴g (x )>2x 的解集是(),0∞-.故答案为:(),0∞-.。
高中数学构造函数解决导数问题专题复习高中数学构造函数解决导数问题专题复习【知识框架】【考点分类】考点一、直接作差构造函数证明;两个函数,一个变量,直接构造函数求最值;【例1-1】(14顺义一模理18)已知函数()(Ⅰ)当时,求曲线在处的切线方程;(Ⅱ)若在区间上函数的图象恒在直线下方,求的取值范围.【例1-2】(13海淀二模文18)已知函数.(Ⅰ)当时,若曲线在点处的切线与曲线在点处的切线平行,求实数的值;(Ⅱ)若,都有,求实数的取值范围.【练1-1】(14西城一模文18)已知函数,其中.(Ⅰ)当时,求函数的图象在点处的切线方程;(Ⅱ)如果对于任意,都有,求的取值范围.【练1-2】已知函数是常数.(Ⅰ)求函数的图象在点处的切线的方程;(Ⅱ)证明函数的图象在直线的下方;(Ⅲ)讨论函数零点的个数.【练1-3】已知曲线.(Ⅰ)若曲线C在点处的切线为,求实数和的值;(Ⅱ)对任意实数,曲线总在直线:的上方,求实数的取值范围.【练1-4】已知函数,求证:在区间上,函数的图像在函数的图像的下方;【练1-5】.已知函数;(1)当时,求在区间上的最大值和最小值;(2)若在区间上,函数的图像恒在直线下方,求的取值范围。
【练1-6】已知函数;(1)求的极小值;(2)如果直线与函数的图像无交点,求的取值范围;答案:考点二、从条件特征入手构造函数证明【例2-1】若函数在上可导且满足不等式,恒成立,且常数,满足,求证:。
【例2-2】设是上的可导函数,分别为的导函数,且满足,则当时,有()A.B.C.D.【练2-1】设是上的可导函数,,求不等式的解集。
【练2-2】已知定义在的函数满足,且,若,求关于的不等式的解集。
【练2-3】已知定义域为的奇函数的导函数为,当时,若,则下列关于的大小关系正确的是()DA.B.C.D.【练2-4】已知函数为定义在上的可导函数,且对于任意恒成立,为自然对数的底数,则()CA.B.C.D.【练2-5】设是上的可导函数,且,求的值。
近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,一下问题为例,对在处理导数问题时构造函数的方法进行归类和总结.【方法综述】以抽象函数为背景、题设条件或所求结论中具有“()()f x g x ±、()()f x g x 、()()f xg x ”等特征式、解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.方法总结: 和与积联系:()()f x xf x '+,构造()xf x ; 22()()xf x x f x '+,构造2()x f x ;3()()f x xf x '+,构造3()x f x ;…………………()()nf x xf x '+,构造()n x f x ;()()f x f x '+,构造e ()x f x .等等.减法与商联系:如()()0xf x f x ->',构造()()f x F x x=; ()2()0xf x f x ->',构造2()()f x F x x =;………………… ()()0xf x nf x ->',构造()()nf x F x x =. ()()f x f x '-,构造()()e x f x F x =,()2()f x f x '-,构造2()()e x f x F x =,……………… ()()f x nf x '-,构造()()e nxf x F x =, 奇偶性结论:奇乘除奇为偶;奇乘偶为奇。
(可通过定义得到)构造函数有时候不唯一,合理构造函数是关键。
给出导函数,构造原函数,本质上离不开积分知识。
【解答策略】类型一、巧设“()()y f x g x =±”型可导函数【例1】已知不相等的两个正实数x ,y 满足()2244log log x y y x -=-,则下列不等式中不可能成立的是导数中的构造函数( ) A .1x y <<B .1y x <<C .1x y <<D .1y x <<【来源】广东省佛山市2021届高三下学期二模数学试题 【答案】B【解析】由已知()2244log log x y y x -=-,因为2log 4x =log 2x ,所以原式可变形222log 4g 2lo x x y y =++令()222log f x x x =+,()24log g x x x =+,函数()f x 与()g x 均为()0,∞+上的增函数,且()()f x g y =,且()()11f g =, 当1x >时,由()1f x >,则()1g y >,可得1y >, 当1x <时,由()1f x <,则()1g y <,可得1y <,要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222224log 2log 2log g x g y g x f x x x x x x x x -=-=+--=-+设()()222log 0h x x x x x =-+>,则()212ln 2h x x x '=-+()2220ln 2h x x ''=--<,故()h x '在()0+∞,上单调递减, 又()2110ln 2h '=-+>,()1230ln 2h '=-+<, 则存在()01,2x ∈使得()0h x '=,所以当()00,x x ∈时,()0h x '>,当()0,x x ∈+∞时,()0h x '<, 又因为()()()()010,10,412480h h x h h =>==-+=-<, 所以当1x <时,()0h x <,当1x >时,()h x 正负不确定,故当1,1x y <<时,()0h x <,所以()()()1g x g y g <<,故1x y <<, 当1,1x y >>时,()h x 正负不定,所以()g x 与()g y 的正负不定,所以,,111x y x y y x ><<>>>均有可能,即选项A ,C ,D 均有可能,选项B 不可能. 故选:B .【点睛】本题考查了不等关系的判断,主要考查了对数的运算性质以及对数函数性质的运用,解答本题的关键是要比较x 与y 的大小,只需比较()g x 与()g y 的大小,()()()()222log g x g y g x f x x x x -=-=-+,设()()222log 0h x x x x x =-+>,求导得出其单调性,从而得出,x y 的大小可能性. 【举一反三】1.若实数a ,b 满足()221ln 2ln 1a b a b-+-≥,则a b +=( )A .2B C .2D .【来源】浙江省宁波市镇海中学2021届高三下学期5月模拟数学试题 【答案】C 【解析】()ln 1g x x x =--,1()1g x x'=-, ()0g x '>(1,)x ⇒∈+∞,()0g x '<⇒(0,1)x ∈, ∴()g x 在(0,1)x ∈单调递减,在(1,)x ∈+∞单调递增,∴()(1)1ln110g x g =--=,∴1ln 0x x x -≥>,恒成立,1x =时取等号,2211a b +-2221a b -21a b =-, 221ln ln(2)ln a a a bb b-=-, ()221ln 2ln 1a b a b-+-≥,∴2211ln(2)ln a a b b+-=-,又21ab =(不等式取等条件),解得:a b ==,2a b ∴+=, 故选:C.2.(2020·河北高考模拟(理))设奇函数()f x 在R 上存在导函数'()f x ,且在(0,)+∞上2'()f x x <,若(1)()f m f m --331[(1)]3m m ≥--,则实数m 的取值范围为( )A .11[,]22-B .11(,][,)22-∞-⋃+∞C .1(,]2-∞- D .1[,)2+∞【答案】D【解析】由()()1f m f m -- ()33113m m ⎡⎤≥--⎣⎦得:3311(1)(1)()33f m m f m m ---≥-,构造函数31()()3g x f x x =-,2()()0g x f x x '=-<'故g (x )在()0,+∞单调递减,由函数()f x 为奇函数可得g(x)为奇函数,故g(x)在R 上单调递减,故112m m m -≤⇒≥选D点睛:本题解题关键为函数的构造,由()2'f x x <要想到此条件给我们的作用,通常情况下是提示我们需要构造函数得到新函数的单调性,从而得不等式求解;3.(2020·山西高考模拟(理))定义在()0,∞+上的函数()f x 满足()()251,22x f x f ='>,则关于x 的不等式()13xxf e e <-的解集为( )A .()20,eB .()2,e +∞C .()0,ln 2D .(),2ln -∞【答案】D 【解析】【分析】构造函数()()1F x f x x=+,利用已知条件求得()'0F x >,即函数()F x 为增函数,而()23F =,由此求得e 2x <,进而求得不等式的解集.【详解】构造函数()()1F x f x x =+,依题意可知()()()222110x f x F x f x x x-=-=''>',即函数在()0,∞+上单调递增.所求不等式可化为()()1e e 3e x x x F f =+<,而()()12232F f =+=,所以e 2x <,解得ln 2x <,故不等式的解集为(),ln 2-∞.【点睛】本小题主要考查利用导数解不等式,考查构造函数法,考查导数的运算以及指数不等式的解法,属于中档题.题目的关键突破口在于条件()21x f x '>的应用.通过观察分析所求不等式,转化为()1e 3e x x f +<,可发现对于()()1F x f x x=+,它的导数恰好可以应用上已知条件()21x f x '>.从而可以得到解题的思路.4.(2020·河北衡水中学高考模拟(理))定义在R 上的可导函数()f x 满足()11f =,且()2'1f x >,当3,22x ππ⎡⎤∈-⎢⎥⎣⎦时,不等式23(2cos )2sin 22x f x +>的解集为( )A .4,33ππ⎛⎫⎪⎝⎭B .4,33ππ⎛⎫-⎪⎝⎭C .0,3π⎛⎫⎪⎝⎭D .,33ππ⎛⎫-⎪⎝⎭ 【答案】D【解析】令11()()22g x f x x =--,则1()'()0'2g x f x =->, ()g x ∴在定义域R 上是增函数,且11(1)(1)022g f =--=,1(2cos )(2cos )cos 2g x f x x ∴=--23=(2cos )2sin 22x f x +-,∴23(2cos )2sin 022x f x +->可转化成()(2cos )1g x g >,得到2cos 1x >,又3,22x ππ⎡⎤∈-⎢⎥⎣⎦,可以得到,33x ππ⎛⎫∴∈- ⎪⎝⎭,故选D5.定义在()0+,∞上的函数()f x 满足()10xf x '-<,且(1)1f =,则不等式()()21ln 211f x x ->-+的解集是__________. 【答案】()112,【解析】()()ln F x f x x =-,则()11()()xf x F x f x xx-=-=''',而()10xf x '-<,且0x >,∴()0F x '<,即()F x 在()0+,∞上单调递减,不等式()()21ln 211f x x ->-+可化为()()21ln 2111ln1f x x --->=-,即()()211F x F ->,故210211x x ->-<⎧⎨⎩,解得:112x <<,故解集为:()112,. 类型二 巧设“()()f x g x ”型可导函数【例】已知定义在R 上的图象连续的函数()f x 的导数是fx ,()()20f x f x +--=,当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,则不等式()()10xf x f ->的解集为( )A .(1,1)-B .(),1-∞-C .1,D .()(),11,-∞-⋃+∞【来源】2021年浙江省高考最后一卷数学(第七模拟) 【答案】A【解析】当1x <-时,()()()()110x f x x f x '+++<⎡⎤⎣⎦,即有()()()10f x x f x '++>.令()()()1F x x f x =+,则当1x <-时,()()()()10F x f x x f x ''=++>,故()F x 在(),1-∞-上单调递增.∵()()()()()()22121F x x f x x f x F x --=--+--=---=⎡⎤⎣⎦, ∴()F x 关于直线1x =-对称,故()F x 在()1,-+∞上单调递减,由()()10xf x f ->等价于()()()102F x F F ->=-,则210x -<-<,得11x -<<. ∴()()10xf x f ->的解集为(1,1)-. 故选:A. 【举一反三】1.(2020锦州模拟)已知函数()f x 是定义在R 上的偶函数,当0x <时,()()0f x xf x '+<,若(2)0f =,则不等式()0xf x >的解集为()A .{20 x x -<<或}02x <<B .{ 2 x x <-或}2x >C .{20 x x -<<或}2x >D .{ 2 x x <-或}02x <<【答案】D .【解析】令()()F x xf x =,则()F x 为奇函数,且当0x <时,()()()0F x f x xf x '+'=<恒成立,即函数()F x 在()0-,∞,()0+,∞上单调递减,又(2)0f =,则(2)(2)0F F -==,则()0xf x >可化为()(2)F x F >-或()(2)F x F >,则2x <-或02x <<.故选D .2.(2020·陕西高考模拟)已知定义在R 上的函数()f x 的导函数为'()f x ,对任意x ∈R 满足'()()0f x f x +<,则下列结论正确的是( )A .23(2)(3)e f e f >B .23(2)(3)e f e f <C .23(2)(3)e f e f ≥D .23(2)(3)e f e f ≤【答案】A【解析】令()()xg x e f x = ,则()(()())0xg x e f x f x '+'=<, 所以(2)(3),g g > 即()()2323e f e f >,选A.点睛:利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如()()f x f x <'构造()()xf xg x e=,()()0f x f x '+<构造()()xg x e f x =,()()xf x f x '<构造()()f x g x x=,()()0xf x f x '+<构造()()g x xf x =等 3.(2020·海南高考模拟)已知函数()f x 的导函数'()f x 满足()(1)'()0f x x f x ++>对x ∈R 恒成立,则下列判断一定正确的是( ) A .(0)02(1)f f << B .0(0)2(1)f f << C .02(1)(0)f f << D .2(1)0(0)f f <<【答案】B【解析】由题意设()()()1g x x f x =+,则()()()()'1'0g x f x x f x =++>,所以函数()g x 在R 上单调递增,所以()()()101g g g -<<,即()()0021f f <<.故选B . 4.(2020·青海高考模拟(理))已知定义在上的函数满足函数的图象关于直线对称,且当 成立(是函数的导数),若,则的大小关系是( )A .B .C .D .【答案】A 【解析】令,则当,因为函数的图象关于直线对称,所以函数的图象关于直线对称,即为偶函数,为奇函数,因此当,即为上单调递减函数,因为,而,所以,选A.5.(2020南充质检)()f x 是定义在R 上的奇函数,当0x >时,()21()2()0x f x xf x '++<,且(2)0f =,则不等式()0f x <的解集是()A .()()22--+,,∞∞ B .()()2002-,,C .()()202-+,,∞D .()()202--,,∞ 【答案】C .【解析】构造函数()2()1()g x x f x =+,则()2()1()g x x f x ''=+.又()f x 是定义在R 上的奇函数,所以()2()1()g x x f x =+为奇函数,且当0x >时,()2()1()2()0g x x f x xf x ''=++<,()g x 在()0+,∞上函数单减, ()0()0f x g x <⇒<.又(2)0g =,所以有()0f x <的解集()()202-+,,∞.故选C . 点睛:本题主要考察抽象函数的单调性以及函数的求导法则及构造函数解不等式,属于难题.求解这类问题一定要耐心读题、读懂题,通过对问题的条件和结论进行类比、联想、抽象、概括,准确构造出符合题意的函数是解题的关键;解这类不等式的关键点也是难点就是构造合适的函数,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”以构造恰当的函数;②若是选择题,可根据选项的共性归纳构造合适的函数.6.(2020荆州模拟)设函数()f x '是奇函数()f x (x ∈R )的导函数,当0x >时,1ln ()()x f x f x x '<-,则使得()21()0x f x ->成立的x 的取值范围是()A .()()1001-,,B .()()11--+,,∞∞C .()()101-+,,∞D .()()101--,,∞ 【答案】D.【解析】设()ln ()g x x f x =,当0x >时,1()()ln ()0g x f x xf x x'=+<',()g x 在()0+,∞上为减函数,且(1)0g =,当()01x ∈,时,()0g x >,ln 0x <∵,()0f x <∴,2(1)()0x f x ->; 当()1x ∈+,∞时,()0g x <,ln 0x >∵,()0f x <∴,()21()0x f x -<, ∵()f x 为奇函数,∴当()10x ∈-,时,()0f x >,()21()0x f x -<;当()1x ∈--,∞时,()0f x >,()21()0x f x ->. 综上所述:使得()21()0x f x -<成立的x 的取值范围是()()101--,,∞ 【点睛】构造函数,借助导数研究函数单调性,利用函数图像解不等式问题,是近年高考热点,怎样构造函数,主要看题目所提供的导数关系,常见的有x 与()f x 的积或商,2x 与()f x 的积或商,e x 与()f x 的积或商,ln x 与()f x 的积或商等,主要看题目给的已知条件,借助导数关系说明导数的正负,进而判断函数的单调性,再借助函数的奇偶性和特殊点,模拟函数图象,解不等式.7.(2020·河北高考模拟)已知()f x 是定义在R 上的可导函数,且满足(1)()'()0x f x xf x ++>,则( ) A .()0f x > B .()0f x < C .()f x 为减函数 D .()f x 为增函数【答案】A【解析】令()e [()]x g x xf x =,则由题意,得()e [(1)()()]0xg x x f x xf x '+'=+>,所以函数()g x 在(,)-∞+∞上单调递增,又因为(0)0g =,所以当0x >时,()0>g x ,则()0f x >,当0x <时,()0<g x ,则()0f x >,而()()()1'0x f x xf x ++>恒成立,则(0)0f >;所以()0f x >;故选A.点睛:本题的难点在于如何利用()()()1'0x f x xf x ++>构造函数()e [()]xg x xf x =。
历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编 考点01 利用导数求函数单调性,求参数(2)若不等式()1f x ≥恒成立,求a 的取值范围.考点02 恒成立问题1.(2023年全国新高考Ⅱ卷(文))(1)证明:当01x <<时,sin x x x x 2-<<; (2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.2.(2020年全国高考Ⅱ卷(文)数学试题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2019∙全国Ⅰ卷数学试题)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x [0∈,π]时,f (x )≥ax ,求a 的取值范围.4.(2019年全国高考Ⅱ卷(文))已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.考点03 三角函数相关导数问题a=时,求b的取值范围;(i)当0(ii)求证:22e+>.a b4.(2021年全国高考Ⅰ卷数学试题)已知函数f(x)=2sin x-x cos x-x,f′(x)为f(x)的导数. (1)证明:f′(x)在区间(0,π)存在唯一零点;∈,π]时,f(x)≥ax,求a的取值范围.(2)若x[0考点04 导数类综合问题参考答案考点01 利用导数求函数单调性,求参数考点02 恒成立问题 1考点03 三角函数相关导数问题2022年8月11日高中数学作业学校:___________姓名:___________班级:___________考号:___________考点04 导数类综合问题 一、解答题)(【点睛】思路点睛:函数的最值问题,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系4.(2022∙全国新高考Ⅱ卷(文))已知函数(2) 和首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;当时,的解为:当113,ax⎛⎫--∈-∞⎪时,单调递增;时,单调递减;时,单调递增;综上可得:当时,在当时,在解得:,则,()1+,a x与联立得化简得3210--+=,由于切点的横坐标x x x综上,曲线过坐标原点的切线与曲线的公共点的坐标为和【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注。
专题03导数及其应用(选择题、填空题)1.【2021·全国高考真题】若过点(),a b 可以作曲线e x y =的两条切线,则()A .e b a <B .e a b <C .0e b a <<D .0e ab <<【答案】D【分析】解法一:根据导数几何意义求得切线方程,再构造函数,利用导数研究函数图象,结合图形确定结果;解法二:画出曲线x y e =的图象,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.【解析】在曲线x y e =上任取一点(),tP t e,对函数xy e=求导得e x y '=,所以,曲线x y e =在点P 处的切线方程为()tty e e x t -=-,即()1tty e x t e =+-,由题意可知,点(),a b 在直线()1tty e x t e =+-上,可得()()11tttb ae t e a t e =+-=+-,令()()1tf t a t e =+-,则()()tf t a t e '=-.当t a <时,()0f t '>,此时函数()f t 单调递增,当t a >时,()0f t '<,此时函数()f t 单调递减,所以,()()max af t f a e ==,由题意可知,直线y b =与曲线()y f t =的图象有两个交点,则()max ab f t e <=,当1t a <+时,()0f t >,当1t a >+时,()0f t <,作出函数()f t 的图象如下图所示:由图可知,当0a b e <<时,直线y b =与曲线()y f t =的图象有两个交点.故选:D.解法二:画出函数曲线x y e =的图象如图所示,根据直观即可判定点(),a b 在曲线下方和x 轴上方时才可以作出两条切线.由此可知0a b e <<.故选:D.【点睛】解法一是严格的证明求解方法,其中的极限处理在中学知识范围内需要用到指数函数的增长特性进行估计,解法二是根据基于对指数函数的图象的清晰的理解与认识的基础上,直观解决问题的有效方法.2.【2021·浙江高考真题】已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是()A .1()()4y f x g x =+-B .1()()4y f x g x =--C .()()y f x g x =D .()()g x y f x =【答案】D【分析】由函数的奇偶性可排除A 、B ,结合导数判断函数的单调性可判断C ,即可得解.【解析】对于A ,()()21sin 4y f x g x x x =+-=+,该函数为非奇非偶函数,与函数图象不符,排除A ;对于B ,()()21sin 4y f x g x x x =--=-,该函数为非奇非偶函数,与函数图象不符,排除B ;对于C ,()()21sin 4y f x g x x x ⎛⎫==+⎪⎝⎭,则212sin cos 4y x x x x ⎛⎫'=++ ⎪⎝⎭,当4x π=时,210221642y ππ⎛⎫'=⨯++⨯> ⎪⎝⎭,与图象不符,排除C.故选:D.3.【2021·全国高考真题(理)】设2ln1.01a =,ln1.02b =,1c =-.则()A .a b c <<B .b c a<<C .b a c<<D .c a b<<【答案】B【分析】利用对数的运算和对数函数的单调性不难对a ,b 的大小作出判定,对于a 与c ,b 与c 的大小关系,将0.01换成x ,分别构造函数()()2ln 11f x x =+-,()()ln 121g x x =+-,利用导数分析其在0的右侧包括0.01的较小范围内的单调性,结合f (0)=0,g (0)=0即可得出a 与c ,b 与c 的大小关系.【解析】()()2222ln1.01ln1.01ln 10.01ln 120.010.01ln1.02a b ===+=+⨯+>=,所以b a <;下面比较c 与,a b 的大小关系.记()()2ln 11f x x =+-,则()00f =,()2121xf x x --='=+由于()()2214122x x x x x x +-+=-=-所以当0<x <2时,()21410x x+-+>,()1x >+,()0f x '>,所以()f x 在[]0,2上单调递增,所以()()0.0100ff >=,即2ln1.011>,即a c >;令()()ln 121g x x =+-,则()00g =,()212212x g x x --==+',由于()2214124x x x +-+=-,在x >0时,()214120x x +-+<,所以()0g x '<,即函数()g x 在[0,+∞)上单调递减,所以()()0.0100gg <=,即ln1.021<,即b <c ;综上,b c a <<,故选:B.【点睛】本题考查比较大小问题,难度较大,关键难点是将各个值中的共同的量用变量替换,构造函数,利用导数研究相应函数的单调性,进而比较大小,这样的问题,凭借近似估计计算往往是无法解决的.4.【2021·全国高考真题(理)】设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则()A .a b <B .a b>C .2ab a <D .2ab a >【答案】D【分析】结合对a 进行分类讨论,画出()f x 图象,由此确定正确选项.【解析】若a b =,则()()3f x a x a =-为单调函数,无极值点,不符合题意,故a b ¹.依题意,x a =为函数()()()2f x a x a x b =--的极大值点,当0a <时,由x b >,()0f x ≤,画出()f x 的图象如下图所示:由图可知b a <,0a <,故2ab a >.当0a >时,由x b >时,()0f x >,画出()f x 的图象如下图所示:由图可知b a >,0a >,故2ab a >.综上所述,2ab a >成立.故选:D【点睛】本小题主要考查三次函数的图象与性质,利用数形结合的数学思想方法可以快速解答.5.【2021·全国高考真题(理)】曲线212x y x -=+在点()1,3--处的切线方程为__________.【答案】520x y -+=【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【解析】由题,当1x =-时,3y =-,故点在曲线上.求导得:()()()()222221522x x y x x +--==++',所以1|5x y =-='.故切线方程为520x y -+=.故答案为:520x y -+=.6.【2021·全国高考真题】函数()212ln f x x x =--的最小值为______.【答案】1【分析】由解析式知()f x 定义域为(0,)+∞,讨论102x <≤、112x <≤、1x >,并结合导数研究的单调性,即可求()f x 最小值.【解析】由题设知:()|21|2ln f x x x =--定义域为(0,)+∞,∴当102x <≤时,()122ln f x x x =--,此时()f x 单调递减;当112x <≤时,()212ln f x x x =--,有2()20f x x'=-≤,此时()f x 单调递减;当1x >时,()212ln f x x x =--,有2()20f x x'=->,此时()f x 单调递增;又()f x 在各分段的界点处连续,∴综上有:01x <≤时,()f x 单调递减,1x >时,()f x 单调递增;∴()(1)1f x f ≥=故答案为:1.7.【2020年高考全国Ⅰ卷理数】函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为A .21y x =--B .21y x =-+C .23y x =-D .21y x =+【答案】B【解析】()432f x x x =- ,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+.故选:B .【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题.8.【2020年高考全国III 卷理数】若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D【解析】设直线l在曲线y =上的切点为(0x ,则00x >,函数y =的导数为y '=,则直线l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.故选:D .【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.9.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-.故选D .【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a ,b 的等式,从而求解,属于常考题型.10.【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为A .[]0,1B .[]0,2C .[]0,eD .[]1,e【答案】C【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤--= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >.当1x >时,()ln 0f x x a x =-≥,即ln xa x≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减,则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e].故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成立问题.11.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x ,则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2+ax ﹣ax ﹣bx3(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增,则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增,令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点,如图:∴0且,解得b <0,1﹣a >0,b (a +1)3,则a >–1,b <0.故选C .【名师点睛】本题考查函数与方程,导数的应用.当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax﹣b =(1﹣a )x ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣bx 3(a +1)x 2﹣b ,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.12.【2020年高考北京】为满足人民对美好生活的向往,环保部门要求相关企业加强污水治理,排放未达标的企业要限期整改、设企业的污水摔放量W 与时间t 的关系为()W f t =,用()()f b f a b a---的大小评价在[,]a b 这段时间内企业污水治理能力的强弱,已知整改期内,甲、乙两企业的污水排放量与时间的关系如下图所示.给出下列四个结论:①在[]12,t t 这段时间内,甲企业的污水治理能力比乙企业强;②在2t 时刻,甲企业的污水治理能力比乙企业强;③在3t 时刻,甲、乙两企业的污水排放都已达标;④甲企业在[][][]112230,,,,,t t t t t 这三段时间中,在[]10,t 的污水治理能力最强.其中所有正确结论的序号是____________________.【答案】①②③【解析】()()f b f a b a ---表示区间端点连线斜率的负数,在[]12,t t 这段时间内,甲的斜率比乙的小,所以甲的斜率的相反数比乙的大,因此甲企业的污水治理能力比乙企业强;①正确;甲企业在[][][]112230,,,,,t t t t t 这三段时间中,甲企业在[]12,t t 这段时间内,甲的斜率最小,其相反数最大,即在[]12,t t 的污水治理能力最强.④错误;在2t 时刻,甲切线的斜率比乙的小,所以甲切线的斜率的相反数比乙的大,甲企业的污水治理能力比乙企业强;②正确;在3t 时刻,甲、乙两企业的污水排放量都在污水打标排放量以下,所以都已达标;③正确;故答案为:①②③【点睛】本题考查斜率应用、切线斜率应用、函数图象应用,考查基本分析识别能力,属中档题.13.【2019年高考全国Ⅰ卷理数】曲线23()e xy x x =+在点(0)0,处的切线方程为____________.【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=.【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.14.【2019年高考江苏】在平面直角坐标系xOy 中,P 是曲线4(0)y x x x =+>上的一个动点,则点P 到直线0x y +=的距离的最小值是▲.【答案】4【解析】由4(0)y x x x =+>,得241y x'=-,设斜率为1-的直线与曲线4(0)y x x x=+>切于0004(,)x x x +,由20411x -=-得0x =0x =舍去),∴曲线4(0)y x x x =+>上,点P 到直线0x y +=的距离最小,最小值为4=.故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.15.【2019年高考江苏】在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是▲.【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点()00,A x y ,则00ln y x =.又1y x'=,当0x x =时,01y x '=,则曲线ln y x =在点A 处的切线为0001()y y x x x -=-,即00ln 1x y x x -=-,将点()e,1--代入,得00e 1ln 1x x ---=-,即00ln e x x =,考察函数()ln H x x x =,当()0,1x ∈时,()0H x <,当()1,x ∈+∞时,()0H x >,且()ln 1H x x '=+,当1x >时,()()0,H x H x '>单调递增,注意到()e e H =,故00ln e x x =存在唯一的实数根0e x =,此时01y =,故点A 的坐标为()e,1.【名师点睛】导数运算及切线的理解应注意的问题:一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点.16.【2019年高考北京理数】设函数()e e x xf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【答案】(]1,0--∞【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e x x f x a -=+为奇函数,则()(),f x f x -=-即()e e e e x x x x a a --+=-+,即()()1e e 0x x a -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xx f x a -=+是R 上的增函数,则() e e 0x x f x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞.【名师点睛】本题考查函数的奇偶性、单调性、利用单调性确定参数的范围.解答过程中,需利用转化与化归思想,转化成恒成立问题.注重重点知识、基础知识、基本运算能力的考查.。
专题25 构造函数法解决导数问题【知识总结】若直接求导比较复杂或无从下手时,可将待证式进行变形,构造两个都便于求导的函数,从而找到可以传递的中间量,达到证明的目标。
若直接构造函数,则很难借助导数研究其单调性。
【例题讲解】【例1】已知函数f (x )=ax 2-x ln x 。
(1)若函数f (x )在(0,+∞)上单调递增,求实数a 的取值范围; (2)若a =e ,证明:当x >0时,f (x )<x e x +1e。
【思路点拨】 第(1)小题转化为当x >0时,不等式f ′(x )≥0恒成立,进而应用分离变量法求解;第(2)小题将待证不等式等价变形为e x -e x <ln x +1e x,构造函数,进而分别研究构造函数的单调性解决问题。
【解】 (1)由题意知,f ′(x )=2ax -ln x -1。
因为函数f (x )在(0,+∞)上单调递增,所以当x >0时,f ′(x )≥0,即2a ≥ln x +1x 恒成立。
令g (x )=ln x +1x (x >0),则g ′(x )=-ln xx2,易知g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,则g (x )max =g (1)=1, 所以2a ≥1,即a ≥12。
故实数a 的取值范围是⎣⎡⎭⎫12,+∞。
(2)若a =e ,要证f (x )<x e x +1e ,只需证e x -ln x <e x +1e x ,即e x -e x <ln x +1e x 。
令h (x )=ln x +1e x (x >0),则h ′(x )=e x -1e x2,易知h (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增,则h (x )min =h ⎝⎛⎭⎫1e =0, 所以ln x +1e x≥0。
再令φ(x )=e x -e x ,则φ′(x )=e -e x ,易知φ(x )在(0,1)上单调递增,在(1,+∞)上单调递减,则φ(x )max =φ(1)=0,所以e x -e x ≤0。
2025届高考数学复习:压轴好题专项(构造函数证明不等式)练习1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立; (2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e 2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x ,证明:12|()()|2f x f x a-<.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.参考答案1. (2024届云南省昆明市第一中学高三上学期第一次月考)已知函数()()2ln f x x a x =-,R a ∈. (1)若()10f '=,求a ;(2)若()1,e a ∈,()f x 的极大值大于b 2e <.【过程详解】(1)()212()ln ()f x x a x x a x'=-+-⋅,由()10f '=,即202(1)ln1(1)a a --=+,解得1a =. (2)()()(2ln 1)af x x a x x'=--+, 令()2ln 1ag x x x=-+, ()1,e a ∈ ,111(,1e ),a a a∴∈∴<,()21()2ln 11)2ln (10g a a a a a a=--+=-++-<, ()2ln 112ln 0g a a a =-+=>, 22()0ag x x x+'=>在(0,)+∞恒成立, 故()g x 在(0,)+∞递增,而1lg()0,()0g a a <>,01(,)x a a∴∃∈,使得g 0()0,x =令()0f x '=,有1201,,x a x x x =<=故0(0,)x x ∈时()0f x ¢>,0(,)x x a ∈时()0f x '<,(,)x a ∈+∞时()0f x ¢>, 故()f x 在0(0,)x 上递增,在0(,)x a 上递减,在(,)a +∞上递增,∴()f x 极大值2000()()ln ,f x x a x b =->由000()2ln 10,ag x x x =-+=得0002ln ,a x x x =+ 故23004(ln ),b x x <则230028(ln ),ab ax x <01,e 1e x a a<<<< 0e,e a x ∴<<,23233008(ln )8e e 18e ax x ∴<⋅⋅⋅=,328e ,ab ∴<2e <.2.(2024届全国名校大联考高三上学期第一联考)已知函数()2ln f x x ax =+(a ∈R ). (1)若()0f x ≤在()0,∞+上恒成立,求a 的取值范围:(2)设()()3g x x f x =-,1x ,2x 为函数()g x 的两个零点,证明:121x x <.【过程详解】(1)若()0f x ≤在()0,∞+上恒成立,即2ln xa x≤-, 令()2ln x u x x =-,所以()()222ln 122ln x x u x x x --'=-=, 所以当0e x <<时,()0u x '<,当e x >时,()0u x '>, 所以()u x 在()0,e 上单调递减,在()e,+∞上单调递增, 所以()()min 2e eu x u ==-,所以2a e ≤-,即a 的取值范围是2,e ⎛⎤-∞- ⎝⎦.(2)令()0g x =,即22ln 0xx a x--=, 令()22ln x h x x a x =--,则()()()3222ln 121ln 2x x x h x x x x +--'=-=, 令()3ln 1r x x x =+-,所以()2130r x x x'=+>,所以()r x 在()0,∞+上单调递增,又()10r =,所以当01x <<时,()0r x <,所以()0h x '<, 当1x >时,()0r x >,所以()0h x '>,所以()h x 在()0,1上单调递减,在()1,+∞上单调递增. 不妨设12x x <,则1201x x <<<,2101x <<, 因为()()120h x h x ==,所以()()22212222222212ln 2ln 1111x x h x h h x h x a a x x x x x ⎛⎫ ⎪⎛⎫⎛⎫⎛⎫ ⎪-=-=----- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ⎪⎝⎭22222112ln x x x x x ⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭. 设函数()12ln x x x x ϕ=--(1x >),则()()22211210x x x x xϕ-'=+-=>在()1,+∞上恒成立, 所以()x ϕ在()1,+∞上单调递增,所以()()222212ln 10x x x x ϕϕ=-->=, 所以()1210h x h x ⎛⎫-> ⎪⎝⎭,即()121h x h x ⎛⎫> ⎪⎝⎭.又函数()22ln xh x x a x=--在()0,1上单调递减, 所以12101x x <<<,所以121x x <. 3.(2024届山东省青岛市高三上学期期初调研检测)已知1ea ≥,函数()e ln ln xf x a x a =-+.(1)若1a =,求()f x 在点()()1,1f 处的切线方程; (2)求证:()44f x x ≥-+;(3)若β为()f x 的极值点,点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上.求a .【过程详解】(1)1a =,()e ln xf x x =-,0x >由()11e ln1e f =-=,得切点为()1,e由()1e xf x x'=-,有()1e 1f '=-,即()f x 在点()1,e 处的切线斜率为e 1-,所以()f x 在点()1,e 处的切线方程为:()e 11y x =-+. (2)证明:因为()1e xf x a x '=-(1ea ≥,0x >),设函数()()g x f x '=,则()21e 0xg x a x '=+>(1e a ≥,0x >),所以()f x '在()0,∞+上单调递增又因为()212e 02f a '=->,112e2e 1e 2e e 2e 02e a a f a a a a ⎛⎫⎛⎫'=-=-< ⎪ ⎪⎝⎭⎝⎭, 所以存在1,22e a β⎛⎫∈⎪⎝⎭,使得()0f β'=, 即1e a ββ=,1e a ββ=,所以,当()0,x ∈β时,()0f x '<,()f x 在()0,β上单调递减; 当(),x β∈+∞时,()0f x ¢>,()f x 在(),β+∞上单调递增;所以()()1e ln ln 2lnf x f a a ββββββ≥=-+=--令()12ln =--h x x x x ,()()()()14432ln 40x h x x x x x xϕ=--+=+-->, 则()()()2131x x x x ϕ-+'=,()0x ϕ'<解得01x <<,()0x ϕ'>解得1x >,所以,()x ϕ在()0,1上单调递减,在()1,+∞上单调递增; 所以,()()10x ϕϕ≥=,所以,()h x 的图像在44y x =-+的上方,且()h x 与44y x =-+唯一交点为()1,0, 所以,()44f x x ≥-+.(3)圆22117416x y ⎛⎫++= ⎪⎝⎭的圆心坐标为10,4⎛⎫- ⎪⎝⎭,半径r =圆心到直线44y x =-+的距离174d ===, 所以直线44y x =-+为圆22117416x y ⎛⎫++= ⎪⎝⎭的切线,由2211741644x y y x ⎧⎛⎫++=⎪ ⎪⎨⎝⎭⎪=-+⎩解得切点坐标为()1,0, 显然,圆22117416x y ⎛⎫++= ⎪⎝⎭在直线44y x =-+的下方又因为()44f x x ≥-+,且点()(),f ββ在圆22117416x y ⎛⎫++= ⎪⎝⎭上,则点()(),f ββ即为切点为()1,0,所以1β=,1ea =.4.(2024届湖南省株洲市第二中学教育集团2高三上学期开学联考)已知函数()21e 12xf x x x =---, (1)证明:当0x >时,()0f x >恒成立;(2)若关于x 的方程()sin 2f x xa x x +=在()0,π内有解,求实数a 的取值范围. 【过程详解】(1)函数21()e 12xf x x x =---,0x >,求导得()e 1x f x x '=--,令e 1x y x =--,0x >,求导得e 10x y '=->, 则函数()f x '在(0,)+∞上单调递增,()(0)0f x f ''>=, 因此函数()f x 在(0,)+∞上单调递增,()(0)0f x f >=, 所以当0x >时,()0f x >恒成立.(2)设sin y x x =-,()0,πx ∈,则1cos 0y x '=->, 则sin y x x =-在()0,π上递增,0y >,即sin 0x x >>, 方程()sin 2f x xa x x +=等价于e sin 10x ax x x ---=,()0,πx ∈, 令()e sin 1xg x ax x x =---,原问题等价于()g x 在()0,π内有零点,由()0,πx ∈,得2sin x x x <, 由(1)知,当12a ≤时,()21e sin 1e 102x xg x ax x x x x =--->--->, 当()0,πx ∈时,函数()y g x =没有零点,不合题意; 当12a >时,由()e sin 1x g x ax x x =---,求导得()()e cos sin 1xg x a x x x '=-+-, 令()()()e cos sin 1x t x g x a x x x '==-+-,则()()e sin 2cos xt x a x x x '=+-,当π[,π)2x ∈时,()0t x '>恒成立,当π(0,)2x ∈时,令()()()e sin 2cos x s x t x a x x x '==+-,则()()e 3sin cos xs x a x x x '=++,因为e 0x >,()3sin cos 0a x x x +>,则()0s x '>,即()t x '在π(0,2上单调递增,又()0120t a '=-<,π2ππ(e 022t a '=+>,因此()t x '在π(0,)2上存在唯一的零点0x ,当()00,x x ∈时,()0t x '<,函数()g x '单调递减,当()0,πx x ∈时,()0t x '>,函数()g x '单调递增,显然()()000g x g ''<=,()ππe π10g a '=+->,因此()g x '在()0,π上存在唯一的零点1x ,且()10,πx x ∈,当()10,x x ∈时,()0g x '<,函数()g x 单调递减,当()1,πx x ∈时,()0g x '>,()g x 单调递增, 又()00g =,()()100g x g <=,由(1)知,21e 112x x x x >++>+,则()ππe π10g =-->,所以()g x 在()10,x 上没有零点,在()1,πx 上存在唯一零点,因此()g x 在()0,π上有唯一零点, 所以a 的取值范围是1(,)2+∞.5.(2024届辽宁省十校联合体高三上学期八月调研考试)设方程()22e x x a -=有三个实数根123123,,()x x x x x x <<.(1)求a 的取值范围;(2)请在以下两个问题中任选一个进行作答,注意选的序号不同,该题得分不同.若选①则该小问满分4分,若选②则该小问满分9分.①证明:12(2)(2)4x x --<;②证明:1231231113e2x x x x x x +++++<. 【过程详解】(1)由题意设()()22e x f x x =-(x ∈R ),则()f x '=()2e xx x -,x ∈R ,令()0f x '=,得0x =或2x =,当0x <或2x >时,()0f x ¢>,所以()f x 在(),0∞-,()2,+∞上单调递增; 当02x <<时,()0f x '<,所以()f x 在()0,2上单调递减;又()20f =,()04f =,()33e 4f =>,且()()22e 0x f x x =-≥,当x 趋向于+∞时,()f x 也趋向于+∞,又方程()22e x x a -=有三个实数根123123,,()x x x x x x <<, 等价于直线y a =与()y f x =的函数图像有三个交点, 即04a <<,所以a 的取值范围为()0,4.(2)选①,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-,1k >, 则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭,设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 选②,证明如下:由(1)得:1202x x <<<,则122220x x -<-<-<, 设112t x =-,222t x =-,则1220t t <-<<, 不妨设121t k t =>,则12t kt =(1k >), 又()()1222122e 2e x x x x a -=-=,即12222212e e t t t t a ++==,故22222222e e 0e kt ta k t t ==>,即222e e kt t k =,所以22ln 1k t k=-,212ln 1k k t kt k ==-(1k >),则()()()2222121222ln 2ln 22111k x x t t k k ⎛⎫⎫ ⎪⎛⎫⎪--==⋅==⎪ ⎪ ⎪-⎝⎭⎪⎪-⎪⎝⎭⎭1>), 设()l 1n 2x g x x x=-+,1x >, 则()()222121=10x g x x x x -'--=-≤,所以()g x 在()1,+∞上单调递减,即()()10g x g <=,1>,则0<,即,0>2<,故()()212122241x x t t ⎛⎫ ⎪--==<⎪ ⎪⎪⎝⎭. 所以()()()12121222244x x x x x x --=-++<,则()12122x x x x <+, 又因为1202x x <<<,所以120x x <,从而()12121221121x x x x x x +⎛⎫=+< ⎪⎝⎭,故121112x x +<①,下证120x x +<, 有12122ln 2ln 44011k k kx x t t k k+=++=++<--(1k >), 即证1k >时,()()1ln 21k k k +>-,即()214ln 211k k k k ->=-++, 即证4ln 21k k +>+(1k >), 设()4ln 1h x x x =++(1x >),则()()()()22211411x h x x x x x -'=-=++,当1x >时,()0h x '>,所以()h x 在()1,+∞上单调递增, 则()()12h x h >=,所以120x x +<②,又()()33e 0f f =>,所以得323x <<,设()1x x xϕ=+,(23x <<),则()211x x ϕ'=-,当23x <<时,()0x ϕ'>,所以()x ϕ在()2,3上单调递增, 则331103x x +<③, 联立①②③得:123123*********e 042362x x x x x x +++++<++=<<,故1231231113e2x x x x x x +++++<. 6.(2024届安徽省江淮十校高三第一次联考)已知函数()2k f x x x=+,0k ≠.(1)讨论()f x 的单调性;(2)设函数()3ln g x x x =-n m ≤<,当13k =-时,证明:()()()()332g m g n f m f n m n -+<-. 【过程详解】(1)解:函数()f x 的定义域为{}|0x x ≠,()32222k x kf x x x x -='-=, 令()0f x '=,则x =①当0k<时,当x <()0f x '<,()f x0x <<时,()0f x ¢>,()f x 单调递增;当0x >时,()0f x ¢>,()f x 单调递增;②当0k>时,当0x <时,()0f x '<,()f x 单调递减;当0x <<()0f x '<,()f x 单调递减;当x >时,()0f x ¢>,()f x 单调递增.综上:当0k <时,单调增区间为⎫⎪⎪⎭,()0,∞+,单调递减区间为⎛-∞ ⎝; 当0k >时,单调递增区间为⎫+∞⎪⎪⎭,单调递减区间为(),0∞-,⎛ ⎝. (2)对任意的m,n ⎫∈+∞⎪⎭,且m n >,令mt n =(1t >),因为()()()()()()()32m n f m f n g m g n -+--()22333311ln 2222m m n m n m n m n n ⎛⎫⎛⎫=-+----- ⎪ ⎪⎝⎭⎝⎭33221133ln 222222n m m m n mn m n m n n=-+-+-+ 323111332ln 22m m m m n m n n n n n mn ⎡⎤⎛⎫⎛⎫⎛⎫=-+⋅----⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦()332331*********ln (1)2ln 2222n t t t t t n t t t t t ⎛⎫⎛⎫=-+----=---- ⎪ ⎪⎝⎭⎝⎭ ()33211111(1)2ln 33132ln 626t t t t t t t t t t ⎡⎤⎛⎫⎛⎫≥----=-+---- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 321336ln 16t t t t ⎛⎫=-++- ⎪⎝⎭, 记()32336ln 1h t t t t t =-++-,则()22226311113636320h t t t t t t t t t t t t t ⎛⎫⎛⎫⎛⎫⎛⎫=-+-=---'=-+-> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()h t 在()1,+∞单调递增,所以()()10h t h >=,故32336ln 10t t t t-++->,所以()()()()()()()302m n f m f n g m g n -+-->, 故()()()()332g m g n f m f n m n-+<-.7.(2024届内蒙古包头市高三上学期调研考试)设函数()()ln 1f x a x =+-,已知2x =是函数()()2y x f x =-的极值点.(1)求a ; (2)设函数()()()()22x f x g x x f x -=-+,证明:()1g x >.【过程详解】(1)由题意可知,()()()()22ln 1y x f x x a x =-=-+-,则()2ln 11xy a x a x-'=+-++-,因为2x =是函数()()2ln 1y x a x =-+-的极值点, 所以()ln 120a +-=,解得2a =, 经检验满足题意,故2a =;(2)由(1)得()()ln 3f x x =-,(),3x ∞∈-, 设()()()22ln 3h x x f x x x =-+=-+-,则()12133x h x x x -'=-=--, 当2x <时,203x x ->-,即()0h x '>,所以()h x 在区间(),2-∞单调递增; 当23x <<时,203x x -<-,即()0h x '<,所以()h x 在区间()2,3单调递减, 因此当(),3x ∞∈-时,()()20h x h ≤=,因为()g x 的定义域要求()f x 有意义,即(),3x ∞∈-,同时还要求()2ln 30x x -+-≠,即要求2x ≠,所以()g x的定义域为{|3x x < 且}2x ≠, 要证()()()()212x f x g x x f x -=>-+,因为()20x f x -+<,所以需证()()()22x f x x f x -<-+, 即需证()()23ln 30x x x -+-->,令3x t -=,则0t >且1t ≠,则只需证1ln 0t t t -+>,令()1ln m t t t t =-+,则()ln m t t '=,令()ln 0m t t '==,可得1t =, 所以()0,1t ∈,()0m t '<;()1,t ∈+∞,()0m t '>;所以()m t 在区间()0,1上单调递减,在区间()1,+∞上单调递增, 所以()()10m t m >=,即()1g x >成立.8.(2024届北京市景山学校高三上学期开学考试)已知函数())(0)f x x b a =+≠,曲线()y f x =在点(1,(1))f 处的切线方程是1y x =-.(1)求a 、b 的值; (2)求证:()f x x <;(3)若函数()2()()g x f x t x x =+-在区间(1,)+∞上无零点,求t 的取值范围.【过程详解】(1)()()f x x b '=+由切线方程知()()1110f f ⎧=⎪⎨='⎪⎩,即()()1110b b +=+=,注意到0a ≠,解得1a =,0b =.(2)由(1)可知()f x x,若要()f x x x =<且注意到0x >,所以只需ln x < 构造函数()ln h x x =()122h x x x '==,令()0h x '=得4x =,所以()h x 、()h x '随x 的变化情况如下表:()0,4 ()4,+∞()h x '+-()h x所以()h x 有极大值()244ln 42ln 0eh =-=<,综上()0h x <,结合分析可知命题得证. (3)由题意分以下三种情形讨论:情形一:注意到当0t ≥且1x >0x >,()10txx -≥,此时有()0g x >,即()g x 在区间(1,)+∞上无零点,符合题意.情形二:对()2()g x x t x x =+-求导得()()21g xt x x '=+-,所以有()11g t '=+;进一步对()()21g x t x x '=++- 求导得()32ln 24x g x t x-''=+,注意到当1t ≤-且1x >时,有20t <,32ln 04x x-< ,进而有()0g x ''<,所以()g x '单调递减,所以()()110g x g t ''<=+≤,因此()g x 单调递减,故()()10g x g <=,即()g x 在区间(1,)+∞上无零点,符合题意.情形三:由(2)可知1x >lnx <,且注意到当10t -<<时有()()()1()21211212g x t x t x t x '=-<+-<++-成立, 所以11(02a g a a -'<-<,此时()110g t '=+>, 所以存在011,a x a -⎛⎫∈ ⎪⎝⎭使得()00g x '=,且注意到此时有()32ln 204x g x t x -''=+<成立, 所以()g x 、()g x '随x 的变化情况如下表:()01,x ()0,x +∞()g x ' +-()g x故一方面当0x x =时,()g x 取极大值(或最大值)()0g x ,显然有()()010g x g >=;ln x <可得()()()22()1g x x t x x x t x x x tx t +-<+-=+-,所以有10a g a -⎛⎫< ⎪⎝⎭,由零点存在定理并结合这两方面可知函数()g x 在区间(1,)+∞上存在零点.综上所述,符合题意的t 的取值范围为(][),10,-∞-⋃+∞.9.(2024届山西省大同市高三上学期质量检测)已知函数2()ln (R)af x ax x a x=--∈. (1)讨论()f x 的单调性;(2)若()f x 的两个极值点分别为1x ,2x,证明:12|()()|f x f x -<. 【过程详解】(1)依题意,222122()(0)a ax x af x a x x x x -+'=-+=>,当0a ≤时,()0f x '<,所以()f x 在(0,)+∞上单调递减;当0a <<()0f x '>,解得102x a <<或12x a>,令()0f x '<,解得112x a <<,所以()f x在1(0,2a 上单调递增,在11(22a a上单调递减,在)+∞上单调递增;当a ≥时,()0f x '≥,所以()f x 在(0,)+∞上单调递增. (2)不妨设120x x <<,由(1)知,当04a <<时,()f x 在1(0,)x 上单调递增,在12(,)x x 上单调递减,在2(,)x +∞上单调递增,所以1x 是()f x 的极大值点,2x 是()fx的极小值点,所以12()()f x f x >,所以1212|()()|()()f x f x f xf x -=-.由(1)知,122x x =,121x x a+=,则21x xa-==.要证12|()()|f x f x -<1221()())2f x f x x x -<-.因为22121122121112()()()()()ln 222x x xx x f x f x x x a x x a x x x ---+=-+--+⋅2212212111212()2()()ln ln 2x x x x a x x x x x x x x -=-+--=+ 2122112(1)ln 1x x xx x x -=+, 设211x t x =>,2(1)()ln 1t g t t t -=++.所以222414()0(1)(1)g t t t t '==>++, 所以()g t 在(1,)+∞上单调递增,所以()(1)0g t g >=.所以2112)()()02x x f x f x --+>,即得1221()()()2f x f x x x -<-成立. 所以原不等式成立.10.(2024届黑龙江省哈尔滨市第三中学校高三上学期开学测试)已知函数()()111ln f x ax a x x=+--+.(1)讨论函数()f x 的单调性;(2)求证:n *∀∈N ,)21+⋅⋅⋅++>.【过程详解】(1)()f x 的定义域为()0,∞+,()()()221111ax x a f x a x x x --+'=+-=, 当0a ≤时,10ax -<,令()0f x ¢>,解得01x <<,令()0f x '<,解得1x >,所以()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,令()0f x ¢>,解得01x <<或1x a >,令()0f x '<,解得11x a <<,所以()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()0f x '≥恒成立,所以()f x 在()0,∞+上单调递增;当1a >时,令()0f x ¢>,解得10x a <<或1x >,令()0f x '<,解得11x a <<,所以()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫⎪⎝⎭上单调递减;综上所述,当0a ≤时,()f x 在()0,1上单调递增,()1,+∞上单调递减;当01a <<时,()f x 在()0,1,1,a ⎛⎫+∞ ⎪⎝⎭上单调递增,11,a ⎛⎫⎪⎝⎭上单调递减;当1a =时,()f x 在()0,∞+上单调递增;当1a >时,()f x 在10,a ⎛⎫⎪⎝⎭,()1,+∞上单调递增,1,1a ⎛⎫ ⎪⎝⎭上单调递减.(2)当0a =时,由(1)可得()()11ln 10f x x f x=--<=,()1x >,因为N n *∈1>,则10<,即11>>所以n ++>-+L L2n =-L2n =-)21=-,即)2ln 1+>L .。
导数应用中的构造函数专题训练
1.设f (x )、g (x )是定义在R 上的恒大于0的可导函数,且f ′(x )g (x )-f (x )g ′(x )<0,则当a <x <b 时有( )
A .f (x )g (x )>f (b )g (b )
B .f (x )g (a )>f (a )g (x )
C .f (x )g (b )>f (b )g (x )
D .f (x )g (x )>f (a )g (a )
答案 C
解析 由条件,得⎝⎛⎭⎫f (x )
g (x )′=f ′(x )g (x )-f (x )g ′(x )
[g (x )]2<0.
∴f (x )
g (x )在(a ,b )上是减函数.
∴f (b )g (b )<f (x )g (x )<f (a )
g (a ),
∴f (x )g (b )>f (b )g (x ). 2.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )<0.对任意正数a ,b ,若a <b ,则必有(
) A .bf (a )<af (b ) B .af (b )<bf (a )
C .af (a )<f (b )
D .bf (b )<f (a )
解析:构造函数F (x )=xf (x ),则
F ′(x )=xf ′(x )+f (x ).
由题设条件知F (x )=xf (x )在(0,+∞)上单调递减.
若a <b ,则F (a )>F (b ),即af (a )>bf (b ).
又f (x )是定义在(0,+∞)上的非负可导函数,
所以bf (a )>af (a )>bf (b )>af (b ).故选B.
答案:B
3.已知函数f (x )、g (x )均为[a ,b ]上的可导函数,在[a ,b ]上连续且f ′(x )<g ′(x ),则f (x )-g (x )的最大值为(
) A .f (a )-g (a ) B .f (b )-g (b )
C .f (a )-g (b )
D .f (b )-g (a )
答案 A
解析 设F (x )=f (x )-g (x ),
F ′(x )=f ′(x )-g ′(x )<0,
∴F (x )在[a ,b ]上为减函数,
∴当x =a 时,F (x )取最大值f (a )-g (a ).
4.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )
A .(-1,1)
B .(-1,+∞)
C .(-∞,-1)
D .(-∞,+∞)
答案 B
解析 设m (x )=f (x )-(2x +4),
则m ′(x )=f ′(x )-2>0,
∴m (x )在R 上是增函数.
∵m (-1)=f (-1)-(-2+4)=0,
∴m (x )>0的解集为{x |x >-1},
即f (x )>2x +4的解集为(-1,+∞).
5.设f (x ),g (x )在[a ,b ]上可导,且f ′(x )>g ′(x ),则当a <x <b 时,有( )
A .f (x )>g (x )
B .f (x )<g (x )
C .f (x )+g (a )>g (x )+f (a )
D .f (x )+g (b )>g (x )+f (b )
答案 C
解析 ∵f ′(x )-g ′(x )>0,∴(f (x )-g (x ))′>0,
∴f (x )-g (x )在[a ,b ]上是单调增函数,
∴当a <x <b 时f (x )-g (x )>f (a )-g (a ),
∴f (x )+g (a )>g (x )+f (a ).
6.设f (x )、g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g '(x )>0,且g (3)=0.则不等式f (x )g (x )<0的解集是( )
A .(-3,0)∪(3,+∞)
B .(-3,0)∪(0,3)
C .(-∞,-3)∪(3,+∞)
D .(-∞,-3)∪(0,3)
答案 D
解析 设F (x )=f (x )·g (x ),
则当x <0时,F ′(x )>0,
即F (x )在(-∞,0)上是增函数.
又∵g (x )是偶函数,∴g (-3)=g (3)=0.
∴在x ∈(-∞,-3)上F (x )<F (-3)=f (-3)·g (-3)=0,
即f (x )g (x )<0.又∵可证得F (x )是奇函数,∴在x ∈(0,3)上,f (x )g (x )<0,故选D. 7. (2015·课标全国Ⅱ)设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是( )
A.(-∞,-1)∪(0,1)
B.(-1,0)∪(1,+∞)
C.(-∞,-1)∪(-1,0)
D.(0,1)∪(1,+∞) 答案 A
解析 因为f (x )(x ∈R )为奇函数,f (-1)=0,所以f (1)=-f (-1)=0.当x ≠0时,令g (x )=f (x )x
,则g (x )为偶函数,且g (1)=g (-1)=0.则当x >0时,g ′(x )=⎝⎛⎭
⎫f (x )x ′=xf ′(x )-f (x )x 2<0,故g (x )在(0,+∞)上为减函数,在(-∞,0)上为增函数.所以在(0,+∞)上,当0<x <1时,g (x )>g (1)=0⇔f (x )x
>0⇔f (x )>0;在(-∞,0)上,当x <-1时,g (x )<g (-1)=0⇔f (x )x
<0⇔f (x )>0.综上,使得f (x )>0成立的x 的取值范围是(-∞,-1)∪(0,1),选A. 8.函数f (x )的定义域是R ,f (0)=2,对任意的x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集是( )
A .{x |x >0}
B .{x |x <0}
C .|x |x <-1或x >1|
D .{x |x <-1或0<x <1}
答案 A
解析 构造函数g (x )=e x ·f (x )-e x -1,
求导得到g ′(x )=e x ·f (x )+e x ·f ′(x )-e x =e x [f (x )+f ′(x )-1]. 由已知f (x )+f ′(x )>1,可得到g ′(x )>0,
所以g (x )为R 上的增函数;
又g (0)=e 0·f (0)-e 0-1=0,
所以e x ·f (x )>e x +1,
即g (x )>0的解集为{x |x >0}.
9.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则(
) A .f (1)<e f (0),f (2016)>e 2016f (0)
B .f (1)>e f (0),f (2016)>e 2016f (0)
C .f (1)>e f (0),f (2016)<e 2016f (0)
D .f (1)<e f (0),f (2016)<e 2016f (0)
答案 D
解析 令g (x )=f (x )
e x ,
则g ′(x )=(f (x )e x )′=f ′(x )e x -f (x )e x
e 2x =
f ′(x )-f (x )
e x <0,
所以函数g (x )=f (x )
e x 是单调减函数,
所以g (1)<g (0),g (2016)<g (0),
即f (1)e 1<f (0)1,f (2016)e 2016<f (0)1,
故f (1)<e f (0),f (2016)<e 2016f (0).
10.(2014·湖南卷)若0<x 1<x 2<1,则( )
A.21e e x x ->ln x 2-ln x 1
B.21e e x x -<ln x 2-ln x 1
C.1221e e x x
x x >
D.1221e e x x
x x <
答案 C
解析 设f (x )=e x x ,则f ′(x )=x ·e x
-e x x 2=e x (x -1)
x 2.。