圆锥的侧面积和全面积
- 格式:ppt
- 大小:2.22 MB
- 文档页数:27
圆锥的侧面积和全面积教案教学目标:1. 理解圆锥的侧面积和全面积的概念。
2. 学会计算圆锥的侧面积和全面积。
3. 能够应用圆锥的侧面积和全面积解决实际问题。
教学重点:1. 圆锥的侧面积和全面积的概念。
2. 计算圆锥的侧面积和全面积的方法。
教学难点:1. 圆锥的侧面积和全面积的计算方法。
教学准备:1. 圆锥模型。
2. 直尺、圆规等绘图工具。
教学过程:一、导入(5分钟)1. 引导学生观察圆锥模型,让学生尝试描述圆锥的特征。
2. 提问:圆锥的侧面积和全面积是什么意思?二、新课讲解(15分钟)1. 讲解圆锥的侧面积的概念:圆锥的侧面积是指圆锥的侧面展开后形成的扇形的面积。
2. 讲解圆锥的全面积的概念:圆锥的全面积是指圆锥的底面积和侧面积之和。
3. 讲解计算圆锥的侧面积的方法:利用圆锥的侧面展开图,计算扇形的面积。
4. 讲解计算圆锥的全面积的方法:将底面积和侧面积相加。
三、例题解析(15分钟)1. 给出一个圆锥的侧面展开图,让学生计算圆锥的侧面积。
2. 给出一个圆锥的底面和侧面,让学生计算圆锥的全面积。
四、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。
2. 解答学生提出的问题,给予及时的指导和帮助。
五、总结与反思(5分钟)1. 让学生总结本节课所学的内容,巩固知识点。
2. 提问学生:如何应用圆锥的侧面积和全面积解决实际问题?教学延伸:1. 引导学生进一步学习圆锥的体积计算。
2. 让学生尝试解决与圆锥侧面积和全面积相关的实际问题。
教学反思:本节课通过讲解、例题解析和课堂练习,让学生掌握了圆锥的侧面积和全面积的概念及计算方法。
在教学过程中,要注意引导学生观察实物,培养学生的空间想象能力。
通过课堂练习和教学延伸,让学生巩固所学知识,提高解决问题的能力。
六、圆锥侧面积和全面积的公式推导教学目标:1. 理解圆锥侧面积和全面积的公式推导过程。
2. 学会运用公式计算圆锥的侧面积和全面积。
教学重点:1. 圆锥侧面积和全面积的公式推导过程。
圆锥的侧面积和全面积教案教案:圆锥的侧面积和全面积一、教学目标:1.理解圆锥的侧面积和全面积的概念和计算公式;2.能够熟练计算给定圆锥的侧面积和全面积;3.培养学生的观察、分析和解决问题的能力。
二、教学准备:1.板书:圆锥的侧面积和全面积的计算公式;2.准备圆锥模型和计算侧面积和全面积的实际例题;3.提前准备好计算侧面积和全面积的练习题。
三、教学过程:1.导入新课:通过给学生展示圆锥模型引入圆锥的侧面积和全面积的概念。
询问学生对圆锥有什么了解。
2.引入侧面积的概念:将圆锥展开,形成一个扇形,它的弧长就是圆锥的侧面积。
板书:侧面积=πr×l,其中r为圆锥底面的半径,l为圆锥的斜高。
3.讲解侧面积的计算方法:通过板书展示计算公式的推导过程,并对每个符号进行解释。
例如,解释π的意义为圆的周长与直径的比值。
4.进行实际例题的练习:给学生一个圆锥模型,要求他们计算该圆锥的侧面积。
让学生自己测量圆锥底面的半径和斜高,并代入侧面积的计算公式进行计算。
5.引入全面积的概念:将圆锥展开,除了侧面积外,还存在一个底面积,即圆锥底面的面积。
板书:全面积=底面积+侧面积。
6.讲解全面积的计算方法:通过板书展示计算公式的推导过程,并对每个符号进行解释。
例如,解释π的意义为圆的周长与直径的比值。
7.进行实际例题的练习:给学生一个圆锥模型,要求他们计算该圆锥的全面积。
让学生自己测量圆锥底面的半径和斜高,并代入全面积的计算公式进行计算。
8.深化学生对侧面积和全面积的理解:提问学生侧面积和全面积之间的关系,并用图示进行解释。
9.提高学生的练习能力:给学生进行更多的计算侧面积和全面积的练习题,包括有一定难度的思考题。
10.小结:总结圆锥的侧面积和全面积的计算公式和方法,并请学生回答一些问题,以检验他们的学习成果。
四、教学延伸:1. Homework(作业):布置一些书面作业,要求学生练习计算圆锥的侧面积和全面积。
2. Enrichment(拓展):为学生提供更多复杂的圆锥问题,如计算圆锥的体积和表面积等,培养学生更深入的数学思维。
圆锥的侧面积和全面积教学反思摘要:1.圆锥侧面积和全面积的概念解释2.教学反思:圆锥侧面积和全面积的教学方法及效果3.改进措施:引导学生自主探究,加强实践操作4.总结:提高教学效果,关注学生需求和兴趣正文:在数学教学中,圆锥的侧面积和全面积是一个重要的知识点。
侧面积指的是圆锥侧面展开图的面积,而全面积则包括侧面积和底面积。
不少学生在初次接触这一概念时可能会感到困惑,因此,作为一名教师,如何更好地教授这一知识点,提高学生的理解程度,是值得我们反思和探讨的问题。
首先,我们需要明确圆锥侧面积和全面积的定义。
圆锥的侧面积可以通过以下公式计算:侧面积= 1/2 × 底面周长× 母线长。
全面积则包括侧面积和底面积,底面积的公式为:底面积= π × 底面半径。
在教学过程中,要反复强调这些公式,并让学生熟悉和理解这些公式。
在教学反思中,我们发现虽然我们在课堂上详细讲解了圆锥侧面积和全面积的计算方法,但部分学生依然表示感到困惑。
这让我们意识到,仅仅讲解理论公式是远远不够的,还需要通过实践操作来帮助学生理解和掌握这一知识点。
为了改进教学方法,我们在后续的课程中采取了以下措施:1.增加实际操作环节:让学生自己动手制作圆锥模型,观察展开后的侧面和底面,从而更加直观地了解圆锥侧面积和全面积的计算方法。
2.引导学生自主探究:鼓励学生通过查阅资料、与他人讨论等方式,自主探究圆锥侧面积和全面积的计算方法及其应用。
3.强化练习:布置一些具有代表性的习题,让学生在练习中巩固所学知识,提高解题能力。
通过以上改进措施,我们发现学生的学习效果有了明显提高。
他们在课堂上更加积极参与,对于圆锥侧面积和全面积的概念有了更清晰的认识。
在总结这一教学过程时,我们认为,要想提高教学效果,关键在于关注学生的需求和兴趣,引导学生主动学习,并将理论与实践相结合。
圆锥的侧面积和全面积教案教学内容:第一章:圆锥侧面积的概念和计算方法1.1 引入圆锥侧面积的概念1.2 解释圆锥侧面积的计算方法1.3 举例说明圆锥侧面积的计算步骤第二章:圆锥全面积的概念和计算方法2.1 引入圆锥全面积的概念2.2 解释圆锥全面积的计算方法2.3 举例说明圆锥全面积的计算步骤第三章:圆锥侧面积和全面积的性质3.1 介绍圆锥侧面积和全面积的性质3.2 解释圆锥侧面积和全面积之间的关系3.3 举例说明圆锥侧面积和全面积的性质应用第四章:圆锥侧面积和全面积的运用4.1 介绍圆锥侧面积和全面积的运用方法4.2 解释如何利用圆锥侧面积和全面积解决实际问题4.3 举例说明圆锥侧面积和全面积的运用实例第五章:巩固练习和拓展思考5.1 提供圆锥侧面积和全面积的相关练习题5.2 引导学生通过练习题巩固所学知识5.3 提供一些拓展思考题,引导学生深入思考圆锥侧面积和全面积的相关问题教学目标:通过本教案的学习,学生将能够:1. 理解圆锥侧面积和全面积的概念;2. 掌握圆锥侧面积和全面积的计算方法;3. 了解圆锥侧面积和全面积的性质和运用方法;4. 通过练习题巩固所学知识,并能够解决实际问题。
教学资源:1. 教学PPT或黑板;2. 圆锥模型或图片;3. 练习题和答案;4. 拓展思考题。
教学方法:1. 采用讲解法,讲解圆锥侧面积和全面积的概念和计算方法;2. 采用示例法,举例说明圆锥侧面积和全面积的计算步骤;3. 采用问答法,解答学生提出的问题;4. 采用练习法,提供练习题供学生巩固所学知识;5. 采用拓展法,提供拓展思考题供学生深入思考。
教学评价:通过学生在课堂上的参与度、练习题的正确率和拓展思考题的完成情况进行评价。
第六章:圆锥侧面积和全面积的图形直观6.1 利用圆锥模型或图片,帮助学生直观理解圆锥侧面积和全面积的构成;6.2 引导学生观察圆锥侧面积和全面积在图形上的分布和变化;6.3 举例说明如何通过图形直观地判断圆锥侧面积和全面积的大小关系。
第2课时圆锥的侧面积和全面积【知识与技能】通过实物演示让学生知道圆锥的侧面展开图是扇形;知道圆锥各部分的名称,能够计算圆锥的侧面积和全面积.【过程与方法】通过展开圆锥知道圆锥的全面积是扇形和底面圆形,通过制作圆锥,理解圆锥与扇形和圆之间的关系,进一步体会数学中的转化思想,培养学生动手操作能力和分析问题解决问题的能力.【情感态度】通过把圆锥展开和制作圆锥,理解事物之间的联系,激发学生动手的欲望和积极思考的兴趣.【教学重点】计算圆锥的侧面积和全面积.【教学难点】圆锥侧面展开的扇形和底面圆之间有关元素的计算.一、情境导入,初步认识多媒体播放:青青草原上的蒙古包,介绍蒙古包资料.请同学们仔细观察蒙古包图片,说说它整体框架近似地看成是由哪些几何体构成的?你知道怎么计算包围在它外表毛毡的面积吗?【教学说明】通过播放视频,吸引学生的注意力,在学生欣赏过程中思考数学问题,在轻松愉快的状态下开始这节课.二、思考探究,获取新知1.圆锥的相关概念由具体的圆锥模型认识它的侧面展开图,认识圆锥各部分的名称.把一个圆锥模型沿着母线剪开.让学生观察圆锥的侧面展开图,学生很容易得出:圆锥的侧面展开图是一个扇形;圆锥的全面展开图是一个扇形和一个圆.如图,连接圆锥顶点和底面圆上任意点的线段叫做圆锥的母线(图中的线段l),连接顶点和底面圆心的线段叫圆锥的高(图中的h).问题圆锥有多少条母线?圆锥的母线有什么性质?通过这个问题使学生理解,在讨论圆锥的侧面展开图时,无论从哪里展开都行.【结论】圆锥有无数条母线,圆锥的母线长相等.2.圆锥的侧面积和全面积.设圆锥的母线长为l,底面圆的半径为r,那么把圆锥侧面展开后的扇形的半径为:l,扇形的弧长为:2πr,因此圆锥的侧面积为;1/2·2πr·l=πrl.圆锥的全面积为:πrl+πr2=πr(l+r).【教学说明】让学生探究、思考、合作交流,找出图中隐藏的等量关系,明确圆锥侧面积,全面积的计算方法,学会分析问题、解决问题的方法.三、典例精析,掌握新知例1(教材114页例3)蒙古包可以近似地看作由圆锥和圆柱组成,如果想用毛毡搭建20个底面积为12m2,高为3.2m,外围高1.8m的蒙古包,至少需要多少平方米的毛毡(π取3.142,结果取整数)?解:由题意可知:下部圆柱的底面积为12m2,高为1.8m,∴上部圆锥的高为:3.2-1.8=1.4(m).12(m)≈1.954(m).π∴圆柱的侧面积为:2π×1.954×1.8≈22.10(m2),221.954 1.4+ 2.404(m).圆锥侧面展开扇形的弧长为:2π×1.954≈12.28(m).圆锥的侧面积为:1/2×2.404×12.28≈14.76(m2)∴搭建20个这样的蒙古包至少需要毛毡:20×(22.10+14.76)≈738(m2)【教学说明】这个例题也是弧长、扇形面积公式在圆锥中的应用.在计算扇形面积时,学生常常把圆锥底面半径当做是扇形的半径,所以在解题前要理解清楚这个扇形中各个元素与圆锥各个元素之间的关系,即扇形的半径是圆锥的母线,扇形的弧长是圆锥底面圆的周长.例2 如图所示是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯上开口圆的直径为6cm,下底圆直径是4cm,母线长EF=8cm,求扇形OAB的圆心角及这个纸杯的表面积(结果保留π).【教学说明】此例综合考查了弧长公式,扇形面积公式的灵活应用.教师在讲解前,可先让学生自由思考,然后评析.最后可让优秀学生上台板书解题过程.四、运用新知,深化理解1.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为_____cm2.2.圆锥底面圆的直径为6cm,高为4cm,则它的全面积为______cm2.3.已知圆锥的底面半径为40cm,母线长为90cm,则它的侧面展开图的圆心角为______.4.亮亮想制作一个圆锥模型,模型的侧面是用一个半径为9cm,圆心角为240°的扇形铁皮制作的,再用一块圆形铁皮做底,请你帮他计算这块铁皮的半径为_____cm.【教学说明】1、2题是圆锥的侧面积和全面积的计算,3、4题则较难,这两题教师作图引导学生分析问题,再由学生讨论交流完成,并写出解题过程.【答案】1. 40π五、师生互动,课堂小结圆锥的侧面展开图是什么?如何计算圆锥的侧面积和全面积?你还有什么疑惑?【教学说明】教师先提出问题,然后让学生进行回顾与思考,反思学习体会,完善知识结构.1.布置作业:从教材“习题24.4”中选取.2.完成练习册中本课时练习的“课后作业”部分.1.本节课从观察圆锥模型开始,通过猜想侧面展开图的形状,然后由老师具体操作验证结论的正确性,并能运用所学知识推导出圆锥的侧面积和全面积公式,培养了学生观察、猜想、探索等方面的能力.2.本小节教材是复习圆周长公式推出弧长公式,复习圆面积公式推出扇形面积公式,是在小学基础知识上的提升,圆柱和圆锥的侧面积的计算,是将立体图形化为平面图形,通过具体操作,学生可以获得直观的感受,对于学习高中立体几何,会大有帮助.24.4 弧长和扇形面积第2课时 圆锥的侧面积与全面积一、新课导入1.导入课题:情景:圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽.如图,已知纸帽的底面周长为58cm ,高为20cm ,要制作20顶这样的纸帽至少要用多少平方厘米的纸?(结果精确到0.1cm 2)本节课将学习圆锥的侧面积和全面积.(板书课题)2.学习目标:(1)知道什么是圆锥的母线,知道圆锥的侧面展开图是扇形.(2)知道圆锥的侧面积和全面积的计算方法,会求圆锥的侧面积与全面积.3.学习重、难点:圆锥侧面积和全面积的计算方法.二、分层学习1.自学指导:(1)自学内容:教材第113页“练习”以下第114页例3上面的内容.(2)自学时间:5分钟.(3)自学方法:结合展开图模型理解和阅读.(4)自学参考提纲: ①圆锥是由 一个底面 和 一个侧面 围成的几何体,连接圆锥 顶点 和 底面圆周上任意一点 的线段叫做圆锥的母线,圆锥的母线处处相等.②如图,沿圆锥的任意一条母线将圆锥的侧面剪开并展平,可得圆锥的侧面展开图是扇形.该扇形的半径就是就是圆锥的母线长.扇形的弧长等于圆锥的底面周长.③若设圆锥的母线长为l ,底面圆的半径为r ,试求圆锥的侧面积和全面积.侧底侧底全=()S rl ,S r S S S rl r r r l πππππ===+=++222.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:关注学生对自学参考提纲第③题的求解过程.②差异指导:合理选择扇形的面积计算公式.(2)生助生:小组内相互交流、研讨.4.强化:(1)圆锥的侧面积,注意结合展开图模型理解.(2)练习:圆锥的底面直径是80cm,母线长90cm,则它的侧面展开图的圆心角是160°,全面积是5200πcm2.1.自学指导:(1)自学内容:教材第114页例3.(2)自学时间:5分钟.(3)自学方法:阅读,观察,猜测,计算.(4)自学参考提纲:①例题中所求的问题实际上就是要求哪些图形的侧面积?圆锥的侧面积和圆柱的侧面积.②上部圆锥的母线是怎样求的?圆锥的侧面积又是如何计算的?上部圆锥的母线是用勾股定理,使高和底面半径分别为直角边来求得的.×圆锥的母线长×底面周长来求得的.圆锥的侧面积是根据122.自学:学生结合自学指导进行自学.3.助学:(1)师助生:①明了学情:能否理清例题的计算思路.②差异指导:结合课本图形引导学生分析.(2)生助生:小组内相互交流、研讨.4.强化:(1)实际问题抽象成数学问题.(2)根据实际问题需灵活运用公式进行计算.(3)练习:①已知圆锥的侧面展开图是一个半径为12cm 、弧长为12πcm 的扇形.求这个圆锥的侧面积、高(结果保留根号和π). 解:()()侧面底面半径S cm ,r cm ππππ=⨯⨯===2112121272622. ()高h R r cm =-=-=222212663.②如图,圆锥形烟囱帽的底面直径为80cm ,母线长50cm,制作100个这样的烟囱帽至少需要多少平方米的铁皮?解:()侧S cm ππ=⨯⨯⨯=21805020002()侧全S S .cm π==⨯≈21001002000628三、评价1.学生学习的自我评价(围绕三维目标):这节课你学到了哪些知识?还有哪些疑惑?2.教师对学生的评价:(1)表现性评价:点评学生学习的专注度、小组交流协作状况、学习效果及存在的问题等.(2)纸笔评价:课题评价检测.3.教师的自我评价(教学反思):(1)本节课从观察圆锥模型开始,通过猜想侧面展开图的形状,然后由老师具体操作验证结论的正确性,并能运用所学知识推导出圆锥的侧面积和全面积公式,培养了学生观察、猜想、探究等方面的能力.(2)本小节教学是复习圆周长公式推出弧长公式,复习圆面积公式推出扇形面积公式,是小学基础知识上的提升,圆柱和圆锥的侧面积的计算,是将立体图形化为平面图形,通过具体操作,学生可以获得直观的感受,对于学习高中立体几何,会大有帮助.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)圆锥的母线长为13cm ,底面半径为5cm ,则此圆锥的高为(D )A.6cmB.8cmC.10cmD.12cm2.(10分)一个圆锥的侧面积是底面积的2倍,这个圆锥的侧面展开图扇形的圆心角是(D )A.60°B.90°C.120°D.180°3.(10分)已知圆锥的母线长为5,底面半径为3,则圆锥的表面积为(B )A.15πB.24πC.30πD.39π4.(20分)如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为32 m ,母线长为7 m ,为了防雨,需要在它的顶部铺上油毡,则所需油毡的面积至少为多少平方米? 解:()S m =⨯⨯=⨯=213271671122答:所需油毡的面积至少是112m5.(20分)如图,已知圆锥的母线长AB=8cm ,轴截面的顶角为60°,求圆锥全面积. 解:∵AB=AC ,∠BAC=60°,∴△ABC 是等边三角形.∴AB=BC=AC=8cm.∴侧()S rl cm πππ==⨯⨯=24832, 底()S r cm πππ==⨯⨯=224416, ∴侧底全()S S S cm π=+=248. 二、综合应用(20分)6.(20分)Rt △ABC 中,∠C=90°,AC=3,BC=4,把它分别沿三边所在直线旋转一周,求所得的三个几何体的全面积.解:AB AC BC =+=225,第一个几何体:绕AC 旋转.侧底全S S S r l r πππππ=+=+=⨯⨯+⨯=2211111145436.第二个几何体:绕BC 旋转.侧底全S S S r l r πππππ=+=+=⨯⨯+⨯=2221222235324.第三个几何体:绕AB 旋转,底面半径r .⨯==334245. 侧上侧下全S S S r l r l ....πππππ=+=+=⨯⨯+⨯⨯=32333243244168三、拓展延伸(10分)7.(10分)如图,从一个直径是1m 的圆形铁皮中剪出一个圆心角为90°的扇形,求被剪掉的部分的面积;如果将剪下来的扇形围成一个圆锥,圆锥的底面圆的半径是多少?解:连接BC,AO,则AO ⊥BC. ∵OA=12m,∠BAO=45°, ∴AB OA OB =+=2222m. ∴扇形BAC AB S πππ⎛⎫⨯⨯ ⎪ ⎪⨯⨯⎝⎭===22290903603608(m 2). ∴被剪掉部分的面积为()m πππ⎛⎫⨯-= ⎪⎝⎭221288. ∵=BC l ππ⨯⨯=290221804(m ), ∴圆锥的底面半径为=BC l r π=228(m ).。