一次函数在生活中的应用
- 格式:doc
- 大小:70.50 KB
- 文档页数:3
初中数学一次函数在音乐中的应用有哪些一次函数在音乐中有许多应用,它们可以帮助我们分析和解决与音乐相关的问题。
以下是一次函数在音乐中的一些应用:1. 音高与弦长关系:一次函数可以用来描述音高与弦长之间的关系。
在乐器演奏中,弦乐器如吉他、小提琴等,音高是指乐器弦的振动频率。
我们可以使用一次函数来计算不同弦长对应的音高,并预测不同音高下的弦长要求。
这有助于我们理解乐器演奏、音高调整和音乐创作。
2. 节奏与速度关系:一次函数可以用来描述节奏与速度之间的关系。
在音乐中,节奏是指音符之间的时间关系,速度是指音符的演奏速度。
我们可以使用一次函数来计算不同速度下的节奏要求,并预测不同节奏下的演奏时间。
这有助于我们理解音乐演奏、节奏控制和曲目选择。
3. 音乐形态的变化:一次函数可以用来描述音乐形态的变化。
在音乐创作中,形态是指音乐作品的结构和发展。
我们可以使用一次函数来描述不同音乐区段之间的过渡关系,并预测未来形态的变化。
这有助于我们理解音乐创作、曲式分析和艺术表达。
4. 音乐声音的衰减:一次函数可以用来描述音乐声音的衰减。
在音乐演奏中,声音的衰减是指音量随时间的减弱。
我们可以使用一次函数来计算不同时间段内的音量变化,并预测未来声音的衰减趋势。
这有助于我们理解音乐演奏、声学特性和音响设计。
5. 和弦音的变化:一次函数可以用来描述和弦音的变化。
在和弦进行中,和弦音是指多个音符同时演奏所形成的和声。
我们可以使用一次函数来计算不同和弦音之间的音程关系,并预测未来和弦音的变化。
这有助于我们理解和声学、和弦进行和编曲技巧。
以上是一次函数在音乐中的一些应用。
一次函数的线性关系使得它在音乐分析中具有广泛的应用,帮助我们理解和解决与音乐相关的问题。
希望以上内容能够帮助你了解一次函数在音乐中的应用。
一次函数在实际生活中的应用例1某房地产开发公司计划建A B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:分析:设AA型住房的总成本是__________ 万元;B型住房的总成本是______________ 万元;80套住房的总成本是 ______________万丿元。
A型住房的总售价是___________ 万元;B型住房的总售价是___________ 万元;80套住房的总售价是_______________ 万元。
A型住房的总利润是___________ 万元;B型住房的总利润是___________ 万元;80套住房的总利润是_______________ 万元。
依据所筹资金情况可列不等式组彳-----------不等式组的解集是____________ ,故有_________ 种建房方案。
依据总利润的解析式,当x= _________ 套时总利润最大,最大利润为__________ 万元•终上所述,共有 _____ 种建房方案;当建A型房________ 套,B型住房____ 套时,总利润最大,最大利润是_________ 万元。
例2塑料厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y i元和y2元,分别求y i和屮关于x的函数解析式(注: 利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?例3某商场欲购进A、B两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示。
设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.⑴求y关于x的函数关系式?⑵如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润。
一次函数生活中的实际应用题目一次函数是数学中的一种函数类型,表示为 y = kx + b 的形式,其中 k 是函数的增减速度,b 是函数的零点。
一次函数在生活中有许多实际应用,以下是一些实际问题的例子:1. 温度计:一次函数可以用来描述温度的变化情况。
当温度上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示温度变化的水平方向。
例如,在摄氏 0 度和 100 度之间,温度每增加 1 度,温度计上的指针会上升多少格,就可以用一次函数来描述。
2. 流量控制:一次函数在流量控制中被广泛应用,特别是在水管和发动机的设计之中。
当水流量为恒定值时,一次函数可以用来描述水流量和水压之间的关系。
例如,如果想控制水流量为一定值,可以通过调节水管中的阀门大小来控制水压,从而实现流量的控制。
3. 存款利率:一次函数可以用来描述存款利率的变化情况。
当利率上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示利率变化的水平方向。
例如,如果利率上升 1%,银行的存款利率会相应上涨多少元,就可以用一次函数来描述。
4. 股票价格:一次函数可以用来描述股票价格的变化情况。
当股票价格上升或下降时,一次函数的斜率会发生变化,而常数 b 则表示股票价格变化的水平方向。
例如,如果股票价格上升 1%,投资者获得的回报率会相应上涨多少个百分点,就可以用一次函数来描述。
5. 植物生长:一次函数可以用来描述植物的生长情况。
当植物的生长速度加快或减缓时,一次函数的斜率会发生变化,而常数 b 则表示植物的生长速度保持不变的水平方向。
例如,如果想预测植物在未来几天内的生长速度,可以使用一次函数来计算。
一次函数在生活中的具体应用1. 引言1.1 什么是一次函数一次函数是指数学中的一种特殊函数形式,通常表示为f(x) = ax + b的形式。
a和b是常数,且a不等于0。
一次函数也被称为一次多项式函数,因为它的最高次数为1。
在一次函数中,变量x的最高次数为1,这使得函数的图像呈现为一条直线。
一次函数的特点是其图像是一条直线,具有线性的特性。
这种简单的函数形式在数学建模和实际问题求解中具有重要意义。
一次函数可以描述很多实际生活中的问题,比如描述两个变量之间的线性关系,预测未来的变化趋势,进行经济预测和规划等。
在实际应用中,一次函数可以帮助我们分析经济学、物理学、工程学、社会科学和医学领域中的各种现象和问题。
通过一次函数的建模和分析,我们可以更好地理解和解决复杂的实际问题,为社会发展和个人发展提供有力的支持和指导。
了解一次函数的基本概念和应用是非常重要的。
1.2 为什么一次函数在生活中具有重要意义一次函数在生活中的重要意义在于其简单性和直观性。
一次函数是最基本的一种函数形式,具有线性关系的特点,易于理解和应用。
通过一次函数,我们可以轻松地描述许多实际问题的规律和模式,比如物体的运动轨迹、经济的增长趋势、工程中的力学关系等,为我们理解和解决问题提供了重要的工具和方法。
一次函数在生活中的重要意义还体现在其广泛应用的范围。
一次函数几乎涉及到生活的各个领域,包括经济学、物理学、工程学、社会科学、医学等,可以用来分析和描述各种不同的现象和问题。
掌握一次函数的知识和技能对我们了解世界、改善生活具有重要的意义。
一次函数在生活中的重要意义在于其简单性、直观性和广泛应用性。
通过学习和应用一次函数,我们可以更好地理解世界、解决问题,促进社会的发展和进步。
深入理解和掌握一次函数的知识对我们每个人来说都是非常重要的。
2. 正文2.1 一次函数在经济学中的应用一次函数在经济学中的应用非常广泛,经济学家们经常使用一次函数来描述和分析各种经济现象和关系。
函数在日常生活中的应用函数不仅在我们的学习中应用广泛,日常生活中也有充分的应用。
在此举出一些例子并作适当分析。
当人们在社会生活中从事买卖活动或其他生产时,其中常涉及到变量的线性依存关系,经营者为达到宣传、促销或其他目的,往往会为我们提供两种或多种付款方案或优惠办法。
总之,函数渗透在我们生活中的各个方面,我们也经常遇到此类函数问题,这时我们应三思而后行,深入发掘自己头脑中的数学知识,用函数解决。
如:1.一次函数的应用:购物时总价与数量间的关系,是最基本的一次函数的应用,由函数解析式可以清楚地了解到其中的正比例关系,在单价一定的条件下,数量越大,总价越大。
此类问题非常基本,却也运用最为广泛。
2.二次函数的应用:当某一变量在因变量变化均匀时变化越来越快,常考虑用二次函数解决。
如细胞的分裂数量随时间的变化而变化、利润随销售时间的增加而增多、自由落体时速度随时间的推移而增大、计算弹道轨迹等。
二次函数的解析式及其图像可简明扼要地阐述出我们需要的一系列信息。
如增加的速度、增加的起点等。
3.反比例函数的应用:反比例函数在生活中应用广泛,其核心为一个恒定不变的量。
如木料的使用,当木料一定时长与宽的分别设置即满足相应关系。
还有总量一定的分配问题,可应用在公司、学校等地方。
所分配的数量及分配的单位即形成了这样的关系。
4.三角函数的应用:实际生活中,我们常常可以遇到三角形,而三角函数又蕴含其中。
如建筑施工时某物体高度的测量,确定航海行程问题,确定光照及房屋建造合理性以及河宽的测量都可以利用三角函数方便地测出。
在日常生活中,我们往往需要将各种函数结合起来灵活运用,以解决复杂的问题。
要时刻将函数的解析式与其图形联系起来,以得到最简单的解决办法。
初中数学一次函数的应用一、引言初中数学中,一次函数是一个重要的内容,也是数学思维的基础。
掌握一次函数的应用可以帮助学生更好地理解实际问题,并且培养其解决实际问题的能力。
本教案将以一次函数的应用为主题,通过具体的案例分析,让学生深入了解一次函数在现实生活中的应用。
二、案例分析1. 飞机票价问题假设一架飞机从A城市到B城市,飞行距离为800公里,飞行时间为2小时。
已知该航线的燃油成本为每公里4元,且其他开销为固定费用5000元。
每张机票定价为p元。
假设有x人订购机票,请问如何确定机票的价格才能使航空公司利润最大化?解析:这是一个典型的一次函数应用问题。
设定x为订购机票的人数,p为机票价格。
首先,我们可以列出航空公司的收入函数和成本函数:收入函数:R(x) = px成本函数:C(x) = 800 * 4 + 5000 = 3800利润函数:P(x) = R(x) - C(x) = px - 3800为了使航空公司的利润最大化,我们需要求出利润函数的最大值点。
通过求导可知,利润函数的最大值点即为极值点。
令利润函数的导数为零,得到:P'(x) = p = 0因此,当机票价格为0时,航空公司可以获得最大利润。
但这是不现实的,所以我们需要考虑在满足航空公司成本的情况下,选择一个合理的价格。
2. 高楼坠物问题某座高楼上有一块距离地面h米的平台,设一个物体从此平台自由下落。
已知物体每经过一个时间单位,下落的距离与时间的关系是:每个时间单位下落h/10米。
请问,当物体下落到平台下方10米处时,经过了多少个时间单位?解析:这是一个典型的一次函数应用问题。
根据题意,我们可以列出物体下落的距离与时间的关系为一次函数:距离函数:d(t) = h - (h/10)t为了求解物体下落到平台下方10米处所需的时间单位,我们需要找到方程d(t) = 10的解。
代入距离函数,得到:h - (h/10)t = 10解方程可得:t = (h/10) / (h/10 - 1)这个式子就是物体下落到平台下方10米处所需的时间单位。
一次函数的应用练习题及答案一次函数是数学中一个非常基础且常见的函数类型,其形式为 y = ax + b。
在现实生活中,我们经常会遇到一次函数的应用场景。
本文将提供一些基于一次函数的应用练习题,并附带答案,希望能够帮助读者更好地理解一次函数的概念和应用。
练习题1:某公司的年工资总额与员工人数之间存在一次函数关系。
已知当公司的员工人数为100人时,年工资总额为500万元;当员工人数为200人时,年工资总额为800万元。
求该公司年工资总额与员工人数的一次函数表达式,并根据该函数回答以下问题:a) 当员工人数为300人时,年工资总额是多少?b) 当员工人数为0人时,年工资总额是多少?解答:设年工资总额为 y,员工人数为 x。
根据题意,我们可以列出两个方程:100a + b = 500200a + b = 800通过解这个方程组,我们可以得到 a 的值为 1.5,b 的值为 350。
因此,该公司的年工资总额与员工人数的一次函数表达式为 y = 1.5x + 350。
a) 当员工人数为 300 人时,将 x = 300 代入函数表达式中,可得年工资总额为 1.5 * 300 + 350 = 850 万元。
b) 当员工人数为 0 人时,将 x = 0 代入函数表达式中,可得年工资总额为 1.5 * 0 + 350 = 350 万元。
练习题2:某手机品牌的某款手机的售价与销量之间存在一次函数关系。
已知当该手机的销量为3000部时,售价为2000元/部;当销量为5000部时,售价为1500元/部。
求该手机的售价与销量的一次函数表达式,并根据该函数回答以下问题:a) 当销量为4000部时,售价是多少?b) 当销量为0部时,售价是多少?解答:设售价为 y,销量为 x。
根据题意,我们可以列出两个方程:3000a + b = 20005000a + b = 1500通过解这个方程组,我们可以得到 a 的值为 -0.1,b 的值为 500。
一次函数在生活中的应用咱们聊聊啊,这数学里头的一次函数,听起来挺高深莫测的,其实啊,它就在咱们日常生活里头溜达呢,跟咱们老百姓的日子那是息息相关,紧密得跟亲兄弟似的。
你想啊,早上起床,得琢磨着吃点啥吧?比如说,你去楼下包子铺,那价格表上写着呢,肉包子两块五一个,素包子两块一个。
这不就是一次函数嘛!你买的包子数量是X,总价是Y,Y就是X乘以单价。
肉包子的话,Y=2.5X;素包子,Y=2X。
简单吧,一口一个,吃出学问来了。
吃完早饭,该上班了。
开车去?那油费也得算算。
油价一升多少钱,咱们心里得有个数。
车子油耗多少,也得心里有谱。
这一路上,油门一踩,那就是钱在烧啊。
不过别担心,这也是一次函数在作祟。
油耗是X,油费是Y,Y=油价乘以油耗X。
省油就是省钱,这个道理大家都懂。
到了公司,得干活了。
老板说了,这个月业绩得上去,不然奖金泡汤。
这业绩和奖金的关系,嘿,又是一次函数。
业绩是X,奖金是Y,Y=奖金系数乘以业绩X。
当然啦,这个系数老板说了算,咱们只能努力提升X值,争取多拿点Y。
下了班,回家路上经过超市,得买点菜。
蔬菜水果,价格都不一样。
你挑挑拣拣,放进购物车,心里还得盘算着这得花多少钱。
挑的东西越多,钱花得越多,这也是一次函数在默默工作。
购物车里的东西重量是X,总价是Y,Y=单价乘以重量X。
勤俭持家,就得这么精打细算。
晚上,一家人围坐在一起看电视。
孩子说:“爸爸,我想学钢琴。
”你一听,心里那个激动啊,得支持孩子啊!不过,学钢琴得花钱啊。
学费按课时算,这也是一次函数。
课时是X,学费是Y,Y=课时费乘以课时X。
为了孩子的未来,这钱花得值!你看啊,这一天到晚的,咱们的生活里到处都是一次函数。
它就像个隐形的朋友,默默地陪伴着我们,帮助我们更好地规划生活、管理财务。
所以啊,别觉得数学枯燥无味、高不可攀了。
其实啊,它就在我们身边,跟咱们的生活紧密相连、息息相关。
学好数学吧朋友们!让我们的生活因数学而更加精彩、更加有序!。
初中数学一次函数在医学中的应用有哪些一次函数在医学中有许多应用,它们可以帮助我们分析和解决与医学相关的问题。
以下是一次函数在医学中的一些应用:1. 药物浓度与时间关系:一次函数可以用来描述药物在体内的浓度与时间之间的关系。
在药物治疗中,药物浓度是指药物在血液中的浓度。
我们可以使用一次函数来计算不同时间点的药物浓度,并预测未来药物浓度的变化。
这有助于我们理解药物代谢、药物剂量和治疗效果的评估。
2. 疾病发展与时间关系:一次函数可以用来描述疾病在人体中的发展与时间之间的关系。
在疾病研究中,疾病发展是指疾病在人体中的进展和扩散。
我们可以使用一次函数来计算不同时间点的疾病发展程度,并预测未来疾病的发展趋势。
这有助于我们理解疾病机理、病情评估和治疗规划。
3. 生长发育与年龄关系:一次函数可以用来描述生物体的生长发育与年龄之间的关系。
在儿童医学中,生长发育是指儿童身体和智力的成长。
我们可以使用一次函数来计算不同年龄段的生长发育指标,并预测未来的生长发育水平。
这有助于我们理解儿童发育、生长曲线和营养评估。
4. 血糖与胰岛素关系:一次函数可以用来描述血糖与胰岛素之间的关系。
在糖尿病管理中,血糖是指血液中的葡萄糖浓度,胰岛素是一种调节血糖的激素。
我们可以使用一次函数来计算不同血糖水平下的胰岛素需求,并预测不同胰岛素剂量对血糖的影响。
这有助于我们理解糖尿病管理、胰岛素治疗和血糖控制。
5. 心脏功能与运动关系:一次函数可以用来描述心脏功能与运动强度之间的关系。
在心血管疾病预防中,心脏功能是指心脏的泵血能力,运动强度是指身体在运动中所需的能量消耗。
我们可以使用一次函数来计算不同运动强度下的心脏功能需求,并预测不同运动水平对心脏功能的影响。
这有助于我们理解心血管健康、运动处方和心脏康复。
以上是一次函数在医学中的一些应用。
一次函数的线性关系使得它在医学分析中具有广泛的应用,帮助我们理解和解决与医学相关的问题。
希望以上内容能够帮助你了解一次函数在医学中的应用。
一次函数的内部原理及应用1. 什么是一次函数一次函数,也称为线性函数,是数学中的一种基本函数。
它的特点是函数表达式中只包含一个自变量,并且自变量的最高次数为1。
一次函数的一般形式为:y = kx + b其中,x为自变量,k为斜率,表示函数的变化速率,b为截距,表示函数与y轴的交点。
2. 一次函数的原理2.1 斜率斜率是一次函数的重要参数。
斜率k表示了函数图像在横轴方向上的变化速率。
斜率的计算公式为:k = Δy / Δx其中,Δy表示y轴上的变化量,Δx表示x轴上的变化量。
斜率可以表示函数图像的倾斜情况,如果斜率为正,则表示函数图像向上倾斜;如果斜率为负,则表示函数图像向下倾斜;如果斜率为零,则表示函数图像是水平的。
斜率还可以用来判断两点之间的关系,如果一个点的x坐标增加1,而对应的y坐标增加k,那么这两点就在同一条直线上。
2.2 截距截距b表示一次函数与y轴的交点。
截距的计算公式为:b = y - kx其中,x和y表示一次函数上的一个点的坐标。
截距可以用来确定函数图像在y轴上的位置。
3. 一次函数的应用一次函数在现实生活中有许多应用,下面列举几个常见的应用场景:3.1 距离与速度的关系在物理学中,一次函数可以用来描述物体的位移与时间的关系。
如果物体的速度是匀速的,那么位移和时间之间的关系可以用一次函数表示。
假设物体在时刻t=0的位置为x0,在时刻t=1的位置为x1,则位移Δx等于两个位置之间的距离差。
假设物体的速度是v,则有Δx = v * Δt。
因此,位移和时间之间的关系可以表示为:Δx = vt其中,Δx表示位移,v表示速度,t表示时间。
这个一次函数可以用来计算物体在某个时间点的位置。
3.2 成本与产量的关系在经济学中,一次函数可以用来描述成本与产量的关系。
假设某个公司的总成本是固定成本加上可变成本的和。
固定成本是不随产量的变化而变化的,而可变成本是随着产量变化的。
设固定成本为b,可变成本的单位产量成本为k,则总成本C与产量x的关系可以表示为:C = kx + b其中,C表示总成本,x表示产量。
一次函数在生活中的应用
所谓一次函数在生活中的应用,就是指运用一次函数的有关概念、性质去解决实际问题。
它的基本思路是通过对题目的阅读理解,抽象出实际问题中的函数关系,将文字语言转化为数学语言,再运用函数的思想方法来建立实际问题中的变量间的函数关系。
下面,以中考题为例说明,希望能够对大家有所帮助。
例1 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。
根据下表提供的信息,解答以下问题:
(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。
分析:利用题中数量关系,先确定y 与x 之间的函数关系式,再分类讨论。
(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为()y x --20,则有:
()10020456=--++y x y x 整理得:202+-=x y
(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,
由题意得:⎩
⎨⎧≥+-≥42024x x ,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种。
方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;
方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;
方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;
方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;
方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车;
(3)设利润为W (百元)则:
()160048104162025126+-=⨯+⨯+-+⨯=x x x x W
∵048<-=k ∴W 的值随x 的增大而减小
要使利润W 最大,则4=x ,故选方案一
1600448+⨯-=最大W =1408(百元)=14.08(万元)
答:当装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车时,获利最大,最大利润为14.08万元。
点评:认真审题,根据图表中的数量关系代入所设的函数解析式求解,图表信息问题是近几年中考的热点问题。
一次函数结合不等式在实际生活中有着广泛的应用。
例2 某水产品市场管理部门规划建造面积为2400m 2的集贸大棚,大棚内设A 种类型和B 种类型的店面共80间,每间A 种类型的店面的平均面积为28m 2,月租费为400元;每间B 种类型的店面的平均面积为20m 2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.
(1)试确定A 种类型店面的数量;
(2)该大棚管理部门通过了解业主的租赁意向得知, A 种类型店面的出租率为75%,B 种类型店面的出租率为90%.为使店面的月租费最高,应建造A 种类型的店面多少间?
解:(1)设A 种类型店面的数量为x 间,则B 种类型店面的数量为(80-x )间,根据题意,得:
⎩
⎨⎧⨯≤-+⨯≥-+%.852400)80(2028%,802400)80(2028x x x x 解之,得⎩⎨⎧≤≥.
55,40x x ∴A 种类型店面的数量为40≤x ≤55,且x 为整数.
(2)设应建造A种类型的店面x间,则店面的月租费为:
W=400×75%·x+360×90%·(80-x)
=-24x+25920,
∵-24<0,40≤x≤55,
∴为使店面的月租费最高,应建造A种类型的店面40间.
点评:解本题的关键是要读懂图象的含义,
例3 我市一水果销售公司,需将一批孝感杨店产鲜桃运往某地,有汽车、火车运输工具可供选择,两种运输工具的主要参考数据如下:
若这批水果在运输过程中(含装卸时间)的损耗为150元/时,那么你认为采用哪种运输工具比较好(即运输所需费用与损耗之和较少)?
解:设运输路程为x(x>0)千米,用汽车运输所需总费用为y1元,用火车运输所需总费用为y2元.
x+2) ×150+8x+1000
y1=(
75
y1=10x+1300
x+4) ×150+6x+2000
y2=(
100
∴y2=7.5x+2600
(1)当y1> y2时,即10x+1300>7.5x+2600 ∴x>520;
(2)当y1= y2时,即10x+1300=7.5x+2600 ∴x=520;
(3)当y1< y2时,即10x+1300<7.5x+2600 ∴x<520.
∴当两地路程大于520千米时,采用火车运输较好;当两地路程等于520千米时,两种运输工具一样;当两地路程小于520千米时,采用汽车运输较好.。