汽车人机校核(总布置)..
- 格式:ppt
- 大小:3.56 MB
- 文档页数:48
作者简介:张 冰(1971—),工程师,主要从事整车系统集成,整车总体设计工作。
收稿日期:2004-04-30人机工程在汽车总布置设计中的应用张 冰(柳州五菱汽车有限责任公司技术中心,广西柳州 545007)摘要:探讨总结人机工程在汽车总布置设计的应用,同时阐述了总布置中的一些概念和定义,并给出了相关的标准和参考值,可为新产品的开发和技术改进提供参考和帮助。
关键词:人机工程;汽车;总布置;应用中图分类号:U 46 文献标识码:B 文章编号:1672-545X (2005)03-0051-041 人机工程的概况 人机工程是从20世纪50年代开始迅速发展起来的新兴边缘学科,它是从人的生理和心理特点出发,研究人、机、环境相互关系和相互作用的规律,以优化人—机—环境系统的一门学科,其目标是让人在使用机械的过程中感到“安全、健康、舒适、高效”。
在汽车的开发设计中,人机工程设计与车内空间的确定占有重要地位,必须根据新产品的实际情况,进行合理的布置设计。
这不仅关系到有效利用车内空间及提高乘用舒适性,而且会影响整车、内外造型和尺寸参数,进而会影响整车性能和市场竞争力。
而要获得人性化并贴近用户的最优化设计结果,就必须运用人机工程的设计方法程序。
在我国,由于没有合适的人体数据及工具且缺乏设计经验,尚未形成清晰有效的汽车人机工程设计方法。
2 汽车人机工程设计的基本内容211 汽车人机工程设计的任务与要求 汽车的设计开发,必须围绕以人为中心的人性化前提展开。
因此,汽车人机工程设计的任务就是开发出使驾驶者感到操纵方便、高效、不易疲劳,使乘坐者感到舒适、安全的汽车产品。
由于驾驶者身材各异,而一种汽车的布置尺寸只有一种,要使一种操纵件的布置能最大限度地满足不同身材驾驶者的手脚伸及性与姿势舒适性的要求,必须对人机工程进行仔细研究。
例如,同是操纵油门踏板,高个子驾驶者比矮个的座椅要靠后一些,但他们的手臂和腿的长度相差并不大,因此,高大的男人比娇小的女人更不易触到仪表板(如图1)。
踏板布置空间校核规范编号:项目名称:总布置编制:校对:审核:会签:批准:乘用车研究院2006年12月一、目的为统一各车型踏板布置校核程序及输出结果,特制定本规范。
二、适用范围适用于乘用车研究院内各车型踏板布置空间的校核。
三、规范内容1. 规范引用标准a)GB/T 17346 轿车脚踏板的侧向间距b)ECE R35 关于就脚控制件的布置方面批准车辆的统一规定c)DIN 73001内燃机汽车的操纵其中GB/T 17346与ECE R35标准等效。
2. 相关定义a)横向平面:指与汽车纵向中心平面相垂直的平面。
b)纵向平面:指与汽车纵向中心平面平行的平面。
c)点A:点A是加速踏板上的一个点,它与点B的距离为200 mm。
一般取加速踏板的中心点。
d)点B:汽车制造厂规定的踵点。
e)参考平面P:指通过点A且垂直于点A和点R相连直线的横向平面(点R为座椅调至最后正常驾驶时的位置,见图1)。
3. 踏板布置设计要求a)踏板排列:从驾驶员位置观察时,踏板应按以下次序自左至右排列:离合器踏板、制动踏板、加速踏板;b)踏板间距:踏板间距以两个踏板在参考平面P上投影之间的最小距离来测量(如图1所示),所谓踏板之间的最小距离是指加速踏板和制动踏板之间的最小距离及制动踏板和离合器踏板之间的最小距离;图1 踏板布置校核P平面示意图c)离合器踏板与车身固定部分的距离:离合器踏板在参考平面P上的投影至被P平面所截的车身内饰板截面之间的最小距离(如图2所示);图2 踏板布置空间校核示意图d)操作单个踏板的最小侧向间距:紧挨踏板左右侧向有碍于踏板操作的两障碍物在参考平面P上投影之间的最小距离。
除相邻踏板外,还应考虑转向柱,固定装置等。
e)相关标准所规定或推荐的一些具体数值见表1和表2。
表1 有离合器踏板时的三踏板布置间距值表2 无离合器踏板时的二踏板布置间距值4.校核步骤a)确定A点:以汽车制造厂规定的踵点B点为球心,作一半径为200mm 的球,该球与加速踏板上表面的交线和踏板的纵向中心线的交点即为A点,逆向时A点一般取加速踏板的中心点;b)确定参考平面P:将R点投影到通过A点且与车辆纵向对称面平行的平面内得到R´点,通过A点作一平面使其垂直于A点和 R´点相连直线,该平面即为参考平面P;c)通过参考平面P作车辆固定部分的断面,同时将三踏板的上表面轮廓投影到参考平面P内;d)测量图2中所示的各项距离。
浅谈整车总布置DMU校核整车总布置DMU校核是一种基于数字化技术的设计方法,可以使设计师在设计整车布局时可以快速地进行评估和对比设计方案的优劣。
这种校核方法在汽车制造行业中被广泛使用。
整车总布置DMU校核包括多个方面的校核,以下是其中的主要校核:1. 空间校核:通过将各个部件、系统的三维CAD模型共享,可以在虚拟环境中进行整车布置的空间校核。
空间校核主要是为了验证各个部件在车身内的布置是否合理,以及检查不同部件之间的冲突和干涉情况,避免设计时出现空间上的问题。
2. 人机工程学:整车总布置DMU校核可以通过各种手段,例如天线覆盖面积、人类工程学等来优化驾驶员的认知、操作和驾驶体验。
这种校核方法主要是为了保证车辆的人机工程学符合人类的生理需求,方便驾驶员使用车辆。
3. 强度校核:在整车总布置DMU校核中,设计师需要考虑车身的强度和安全性。
这种校核包括分析车身的结构和材料来保证车身的刚度和抗撞性,通过模拟各种比例载荷下的变形和应力来检查车身设计的结果是否符合标准。
4. 风洞校核:风洞校核是车辆设计中必要的一步。
通过在虚拟环境中进行风流场分析来优化车辆的气动性能,这种校核可以说明车辆在不同速度下的行驶情况,帮助设计师理解车流线和起伏以及风压的分布,以便进行车辆设计的优化。
整车总布置DMU校核是一种高效的设计方法,可以大大缩短设计周期和降低错误率。
这种方法已经广泛应用于汽车制造行业,成为车辆设计的重要组成部分。
整车总布置DMU校核不仅可以优化车辆设计,还可以提高整车的生产效率和质量。
通过虚拟环境,整车厂商可以在没有实际生产车辆的情况下,进行生产线的布置和工艺分析,以便提高生产效率。
此外,在整车制造过程中,还可以利用DMU校核来分析装配过程,并验证各组件的匹配性和装配性,以确保制造出符合标准、具有良好质量的整车。
这种校核方法并不是只具有汽车制造行业可以采用,而是可以运用在其他的制造业中。
此外,整车总布置DMU校核还可以支持车辆的后期服务和维护。
整车视野校核1 GB 11562-2014《汽车驾驶员前方视野要求及测量方法》1.1 适用范围本标准适用于M1类汽车。
1.2 术语及定义1.2.1 V点1.2.2 风窗玻璃基准点1.2.3 P点1.2.4 Pm点1.2.5 E点1.2.6 驾驶员侧A柱的双目障碍角1.2.7 乘客侧A柱的双目障碍角1.2.8 “S”区域1.3 技术要求1.3.11.3.21.3.3 每台车辆不得多于两根A柱。
1.3.4 除1.3.4.1和1.3.4.2之外,在驾驶员前视野180°范围内,在通过V1的水平面下方和通过V2的三个平面(三个平面都和水平面向下成4°夹角,其中一个平面垂直于Y基准平面,另两个平面垂直于X基准平面)上方的范围内,除了A柱、固定或活动的排气通风口、三角窗分隔条、车外无线电天线,后视镜和风窗玻璃刮水器等造成的障碍外,不得有其他障碍。
见下图。
但是以下情况除外:1.3.4.11.3.4.21.4 测量条件1.4.1 V点位置1.4.2 P点位置1.4.3 设计座椅靠背角非25°时的修正1.4.4 E点位置1.4.4.1 E1和E2距P1各为104mm,E1距E2为65mm。
1.4.4.2 E3和E4距P2各为104mm,E3距E4为65mm。
1.4.5 A区的确定A区的确定应按照GB 11555-2009中的要求进行。
1.5 A柱障碍角测定方法1.5.1 通过三维坐标系表示的R点和座椅状态进行修正后来确定V点(V1、V2)的位置。
1.5.2 用三维坐标系表示的R点和座椅状态进行修正后来确定P点(P1、P2)的位置;25°以外的设计靠背角的修正值见表4。
1.5.3 在A柱上做两个水平界面,即:1.5.41.5.52 GB 15084-2013《机动车辆 间接视野装置的性能和安装要求》 2.1 适用范围本标准适用与M 和N 类及至少驾驶室被部分封闭的L 类机动车辆的间接视野装置安装。
总布置及饰件的人机校核1、人机舒适性要求1.1 人体舒适坐姿经验值驾驶员舒适参考范围后排乘员舒适参考范围代码尺寸名称H30-1 R 点到踵点的垂直距离(mm)250-405——127-405 ——L53 R 点到踵点的水平距离(mm)A40-1 靠背角(°)(°)(°)(°)(°)20-30 20-75A42-1 躯干与大腿夹角A57-1 大腿与水平面夹角A44-1 膝盖角95-115——95-115——100-14587-11090-145A46-1 脚角95-130 1.2 不同车型的空间、坐姿角度名称腿部空间头部空间臀部角度膝关节紧凑型轿车1055 970 90°-95°115°-120°小型轿车中型轿车大型轿车10651075108597097595°95°-100°100°125°125°-130°130°975-9801.3 座椅调节行程名称微型轿车轿车小轿车座椅调节范围(mm)160-180180-200200中型轿车大型轿车≥2001.4 H点Y向推荐值名称车中心至 H 点的间距(mm)紧凑型轿车小轿车315 335 365 380中型轿车大型轿车1.5内部空间推荐值坐垫和门内饰之名称臀部空间(mm)坐垫宽度(mm)肩部空间(mm)间的间隙(mm)紧凑型轿车小型轿车中型轿车大型轿车808090951310136014501500510520-53054013101335144514905501.6横向头部间隙名称横向头部空间(mm)紧凑型轿车小轿车315 335 365 380中型轿车大型轿车1.7油门踏板、制动踏板、离合踏板的相对位置踏 板 间 距(mm )踏板高度差(mm ) A 分 类 CBA-BB-C油门-刹车刹车-离合器左置右置设计指 南70-80 40-50 最小 165 最小 15560-7070-8030-40 0-51.8 方向盘与 R 点相对位置关系尺寸代码 设计要求 260-320mm 370-380mm 405-415mm 390-395mm 23°-25°①(此尺寸仅供参考)② ③ ④ ⑤1.9沿长度和高度方向的 H 点位置名称 腿部空间(mm )750-800 头部空间(mm )紧凑型轿车 小型轿车 中型轿车 大型轿车920-1000 950 850-900 900-950 960 ≥9509701.10 沿宽度方向的H点位置名称坐着臀部宽度肩宽沿宽度方向的 H 点位置400mm490mm1.11 Y向空间名称乘客肩部至车门内饰的间距汽车中心至 H 点紧凑型轿车小型轿车中型轿车大型轿车1101151251302853153503751.12 车门内拉手舒适区域(适合所有类型的车门内拉手)类型尺寸 A(mm) 尺寸 B(mm) 尺寸 C(mm)单排座轿车四门轿车前部四门轿车后部1351901602252002001001001001.13 手间距手间距代号名称在上端或前部无换档按钮/换档按钮最小 135mm最小 50mm 换档按钮在侧面A B C D E F平面图乘客侧前方最小 182mm最小 50mm最小 50mm最小 55mm最小 110mm最小 35mm最小 50mm上端最小 55mm俯视图驾驶员侧最小 110mm最小 35mm变速器换档球头位置均应处在上图三维梯形之内1.14驻车制动手柄1.确定所建议的副仪表板或地板安装驻车制动手柄的合理手控活动范围2.手柄的建议尺寸3-1)建议按纽最小直径尺寸:19mm3-2)建议指关节最小间隙:41mm3-3)建议手指最小间隙:34mm3-4)建议手柄下方最小垂直间隙:36mm 3-5)建议前部最小间隙:30mm3-6)建议直径或抓握宽度:19-50mm3-7)建议最小抓握长度:110mm1.15车顶辅助把手1.定位1-1)前座椅辅助把手抓握长度最小120mm应位于从前座椅H点后10mm延伸至A柱的区域之内。
整车集成篇第二章人机校核2.1 人体乘坐舒适性2.1.1 人体姿态角度Ramsis里面的二维人体模型是95%SAE人体,其默认最舒适角度如下图1所示:图1 RAMSIS默认舒适角度Ramsis中的靠背角调节角度是5°-40°,躯干角是60°-130°,膝盖角是80°-180°,踝角是87°-135°,基本上能够反映大部分人体常规姿态。
而实际在汽车设计当中,人体有一个设计舒适角度,见表1和图2示意。
表1 舒适角度舒适角度最佳角度20°<A1<30°25°95°<A2<110°95°95°<A3<135°125°85°<A4<110°87°25°<A5<60°80°<A6<165°170°<A7<190°图2 人体姿态角度示意当然,设计值并非一成不变的,对于微型车以及后排乘客而言,某些角度是能够在上述舒适角度范围之外的,特别是臀部角度以及后排乘客的踝角。
比如还有一种设计,根据车型种类来定义人体角度,见表2。
表2 根据车型定义人体舒适角度范围臀部角度膝关节紧凑型轿车90°-95°115°-120°小型轿车95°125°中型轿车95°-100°125°-130°大型轿车100°130°在实际的人机校核当中,一般根据上述经验角度来验证人体姿态的舒适性,如果超出了舒适范围,则在有足够布置空间的状态下,考虑适当调整人体。
2.1.2 座椅使用舒适性一般座椅的设计H点位置与人体的H点轨迹是一致的,因此首先可以查看座椅行程轨迹的可行性。
一般情况下,汽车设计当中驾驶员座椅主要考虑5%女性-95%男性之间所有的人体情况。