高考数学大二轮总复习与增分策略 专题四 数列、推理与证明 第4讲 推理与证明练习 理
- 格式:doc
- 大小:339.00 KB
- 文档页数:17
当n =1时,a 1=1,上式也成立.∴a n =1n .(3)∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3,又a 1+1=2, ∴a n +1=2·3n -1, ∴a n =2·3n -1-1.由数列递推式求通项公式的常用方法『对接训练』1.根据下列条件,确定数列{a n }的通项公式: (1)a 1=1,a n +1=a n +2n ; (2)a 1=1,a n +1=2n a n ;(3)a 1=1,a n +1=2a na n +2.解析:(1)a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n-2+…+2+1=1-2n1-2=2n -1.(2)∵a n +1a n=2n ,∴a 2a 1=21,a 3a 2=22,…,a n a n -1=2n -1,所谓“错位”,就是要找“同类项”相减.要注意的是相减后得『对接训练』利用裂项相消法求和的注意事项『对接训练』1.若一个数列由若干个等差数列或等比数列组成,则求和时可用(1)根据等差、等比数列分组;(2)根据正号、负号分组.『对接训练』4.[2016·高考全国卷Ⅱ]S n为等差数列{a n}的前n项和,且a1=1,S7=28.记b n=[lg a n],其中[x]表示不超过x的最大整数,如[0.9]=0,[lg 99]=1.(1)求b1,b11,b101;(2)求数列{b n}的前1 000项和.解析:(1)设{a n}的公差为d,据已知有7+21d=28,解得d=1.所以{a n}的通项公式为a n=n.b1=[lg 1]=0,b11=[lg 11]=1,b101=[lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0,1≤n<10,1,10≤n<100,2,100≤n<1 000,3,n=1 000,所以数列{b n}的前1 000项和为1×90+2×900+3×1=1 893.Tn;②证明.解析:(1)解:设等比数列{an}的公比为q+1)(k+2)k+2k+1所以,.2.[2019·重庆市七校联合考试关于x的不等式a1x2-dx-3<0的解集为(1)求数列{a n}的通项公式;。
高考数学二轮复习教案【篇一:高考数学二轮专题复习教案共23讲精品专题】专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值?还是因变量的取值?还是曲线上的点??2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.3. 已知集合a、b,当a∩b=?时,你是否注意到“极端”情况:a=?或b=??求集合的子集时是否忘记??分类讨论思想的建立在集合这节内容学习中要得到强化.4. 对于含有n个元素的有限集合m, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.5. ?是任何集合的子集,是任何非空集合的真子集.2. 已知命题p:n∈n,2n>1 000,则p为________.3. 条件p:a∈m={x|x2-x0},条件q:a∈n={x||x|2},p是q的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4. 若命题“?x∈r,x2+(a-1)x+10”是假命题,则实数a的取值范围为________.【例1】已知集合a={x|x2-3x-10≤0},集合b={x|p+1≤x≤2p-1}.若b?a,求实数p的取值范围.【例2】设a={(x,y)|y2-x-1=0},b={(x,y)|4x2+2x-2y+5=0},c={(x,y)|y=kx+b},是否存在k、b∈n,使得(a∪b)∩c =??若存在,求出k,b的值;若不存在,请说明理由.则下列结论恒成立的是________.a. t,v中至少有一个关于乘法封闭b. t,v中至多有一个关于乘法封闭 c. t,v中有且只有一个关于乘法封闭 d. t,v中每一个关于乘法封闭【例4】已知a0,函数f(x)=ax-bx2.(1) 当b0时,若?x∈r,都有f(x)≤1,证明:0a≤b; (2) 当b1时,证明:?x∈[0,1],|f(x)|≤1的充要条件是b-1≤a≤b.①2 011∈[1];②-3∈[3];③z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a,b属于同一‘类’”的充要条件是“a-b∈[0]”.其中,正确结论的个数是________个.1解:由f(x)为二次函数知a≠0,令f(x)=0解得其两根为x1=a12+a由此可知x10,x20,(3分)①当a0时,a={x|xx1}∪{x|xx2},(5分) 1a∩b≠?的充要条件是x2<3,即a②当a0时, a={x|x1xx2},(10分) 1a∩b≠?的充要条件是x21,即+a2+1,解得a-2,(13分) a62+3,解得a(9分) a712,x2=+aa6?.(14分) 综上,使a∩b≠?成立的实数a的取值范围为(-∞,-2)∪??7?一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语a. 57b. 56c. 49d. 8【答案】 b 解析:集合a的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合s共有56个.故选b.m2y≤2m+1,x,y∈r}, 若a∩b≠?,则实数m的取值范围是________.1m12+2? 解析:由a∩b≠?得,a≠?,所以m2≥,m≥m≤0.【答案】 ??2?22|2-2m||2-2m-1|2当m≤0=22m>-m,且=2m>-m,又2+0=2>2m222|2-2m|1+1,所以集合a表示的区域和集合b表示的区域无公共部分;当m≥时,只要≤m22|2-2m-1|22或m,解得22≤m≤2+2或1-m≤1,所以实数m的取值范围222122?. 是??2?点评:解决此类问题要挖掘问题的条件,并适当转化,画出必要的图形,得出求解实数m的取值范围的相关条件.基础训练1. (-∞,3) 解析:a=(-∞,0]∪[3,+∞),b=(0,+∞),a∪b=(-∞,+∞),a∩b=[3,+∞).2. ?n∈n,2n≤1 0003. 充分不必要解析:m=(0,1)?n=(-2,2).例1 解:由x2-3x-10≤0得-2≤x≤5. ∴ a=[-2,5].①当b≠?时,即p+1≤2p-1?p≥2.由b?a得-2≤p+1且2p-1≤5.得-3≤p≤3.∴ 2≤p≤3.②当b=?时,即p+12p-1?p<2.b?a成立.综上得p≤3.点评:从以上解答应看到:解决有关a∩b=?,a∪b=a,a∪b=b 或a?b等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中全方位、多角度审视问题.变式训练设不等式x2-2ax+a+2≤0的解集为m,如果m?[1,4],求实数a的取值范围.??f?1?≥0且f?4?≥0,[x1,x2],m?[1,4]?1≤x1<x2≤4??-a+3≥0,??18-7a≥0,即?1≤a≤4,??a<-1或a>2,1818-1. 解得:2<a≤,综上实数a的取值范围是?7?7例2 解:∵ (a∪b)∩c=?,∵a∩c=?且b∩c=?,2??y=x+1,由 ? 得k2x2+(2bk-1)x+b2-1=0, ?y=kx+b?∴ 4k2-4bk+10,此不等式有解,其充要条件是16b2-160,即b21,①2??4x+2x-2y+5=0,∵ ? ?y=kx+b,?∴ 4x2+(2-2k)x+(5-2b)=0,∴ k2-2k+8b-190, 从而8b20,即b2.5,②?4k2-8k+1<0,??2 ?k-2k-3<0,?∴ k=1,故存在自然数k=1,b=2,使得(a∪b)∩c=?.点评:把集合所表示的意义读懂,分辨出所考查的知识点,进而解决问题.???1-y=3变式训练已知集合a=??x,y???x+1?????,b={(x,y)|y=kx+3},若a∩b=?,??求实数k的取值范围.解:集合a表示直线y=-3x-2上除去点(-1,1)外所有点的集合,集合b表示直线y=kx+3上所有点的集合,a∩b=?,所以两直线平行或直线y=kx+3过点(-1,1),所以k=2或k=-3.例3 【答案】 a 解析:由于t∪v=z,故整数1一定在t,v两个集合中的一个中,不妨设1∈t,则?a,b∈t,另一方面,当t={非负整数},v={负整数}时,t关于乘法封闭,v关于乘法不封闭,故d不对;当t={奇数},v={偶数}时,t,v显然关于乘法都是封闭的,故b,c不对.从而本题就选a.例4 证明:(1) ax-bx2≤1对x∈r恒成立,又b>0, ∴a2-4b≤0,∴ 0<a≤b. (2) 必要性,∵ ?x∈[0,1],|f(x)|≤1恒成立,∴ bx2-ax≤1且bx2-ax≥-1,显然x=0时成立,111对x∈(0,1]时a≥bx-且a≤bx+f(x)=bxx∈(0,1]上单调增,f(x)最大值xxxf(1)=b-1.1111函数g(x)=bx+在?0,?上单调减,在?1?上单调增,函数g(x)的最小值为g?x?b????b?=2,∴ b-1≤a≤2b,故必要性成立;a2a2aa1122b4b2b2a2f(x)max=1,又f(x)是开口向下的抛物线,f(0)=0,f(1)=a-b,4bf(x)的最小值从f(0)=0,f(1)=a-b中取最小的,又a-b≥-1,∴-1≤f(x)≤1,故充分性成立;综上命题得证.变式训练命题甲:方程x2+mx+1=0有两个相异负根;命题乙:方程4x2+4(m-2)x+1=0无实根,这两个命题有且只有一个成立,求实数m的取值范围.2解:使命题甲成立的条件是: ??m>2.?x1+x2=-m<0?∴集合a={m|m2}.【篇二:高三数学二轮复习教案】高三数学二轮复习教案学校:寿县迎河中学汇编:龙如山第一部分:三角问题的题型与方法一、考试内容1.理解任意角的概念、弧度的意义,能正确地进行弧度与角度的换算。
高考小题分项练13推理与证明1.某单位支配甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可推断丙必定值班的日期是() A.2日和5日B.5日和6日C.6日和11日D.2日和11日答案C解析由题意,得1至12的和为78,由于三人各自值班的日期之和相等,所以三人各自值班的日期之和为26.依据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可推断丙必定值班的日期是6日和11日,故选C.2.用反证法证明命题“设a,b为实数,则方程x2+ax+b=0至少有一个实根”时,要做的假设是() A.方程x2+ax+b=0没有实根B.方程x2+ax+b=0至多有一个实根C.方程x2+ax+b=0至多有两个实根D.方程x2+ax+b=0恰好有两个实根答案A解析反证法证明问题时,反设实际是命题的否定,∴用反证法证明命题“设a,b为实数,则方程x2+ax +b=0至少有一个实根”时,要做的假设是方程x2+ax+b=0没有实根.故选A.3.观看下列规律|x|+|y|=1的不同整数解(x,y)的个数为4,|x|+|y|=2的不同整数解(x,y)的个数为8,|x|+|y|=3的不同整数解(x,y)的个数为12,….则|x|+|y|=20的不同整数解(x,y)的个数为()A.76 B.80C.86 D.92答案B解析观看可得不同整数解的个数4,8,12,…可以构成一个首项为4,公差为4的等差数列,通项公式为a n =4n,则所求为第20项,所以a20=80,故选B.4.下列三句话按“三段论”模式排列挨次正确的是()①y=cos x(x∈R)是三角函数;②三角函数是周期函数;③y=cos x(x∈R)是周期函数.A.①②③B.②①③C.②③①D.③②①答案B解析依据“三段论”:“大前提”⇒“小前提”⇒“结论”可知:①y=cos x(x∈R )是三角函数是“小前提”;②三角函数是周期函数是“大前提”;③y=cos x(x∈R )是周期函数是“结论”.故“三段论”模式排列挨次为②①③,故选B.5.某电商在“双十一”期间用电子支付系统进行商品买卖,全部商品共有n类(n∈N*),分别编号为1,2,…,n,买家共有m名(m∈N*,m<n),分别编号为1,2,…,m.若a ij=⎩⎪⎨⎪⎧1,第i名买家购买第j类商品,0,第i名买家不购买第j类商品,1≤i≤m,1≤j≤n,则同时购买第1类和第2类商品的人数是()A.a11+a12+…+a1m+a21+a22+…+a2mB.a11+a21+…+a m1+a12+a22+…+a m2C.a11a12+a21a22+…+a m1a m2D.a11a21+a12a22+…+a1m a2m答案C解析∵a ij=⎩⎪⎨⎪⎧1,第i名买家购买第j类商品,0,第i名买家不购买第j类商品,1≤i≤m,1≤j≤n,∴a i1a i2表示第i名买家同时购买第1类和第2类商品,∴同时购买第1类和第2类商品的人数是a11a12+a21a22+…+a m1a m2,故选C.6.如图所示,将若干个点摆成三角形图案,每条边(包括两个端点)有n(n>1,n∈N*)个点,相应的图案中总的点数记为a n,则9a2a3+9a3a4+9a4a5+…+9a2 013a2 014等于()A.2 0122 013 B.2 0132 012C.2 0102 011 D.2 0112 012答案A解析由已知,a2=3=3×(2-1),a3=6=3×(3-1),a4=9=3×(4-1),a5=12=3×(5-1),…,a n=3(n-1),数列{a n}是首项为3,公差为3的等差数列,通项为a n=3(n-1)(n≥2).所以1a n a n +1=13(n -1)·3n =19(1n -1-1n ),则9a 2a 3+9a 3a 4+9a 4a 5+…+9a 2 013a 2 014=9×19×(1-12+12-13+…+12 012-12 013)=1-12 013=2 0122 013.7. 已知数列{a n }是正项等差数列,若c n =a 1+2a 2+3a 3+…+na n1+2+3+…+n ,则数列{c n }也为等差数列.已知数列{b n }是正项等比数列,类比上述结论可得( )A .若{d n }满足d n =b 1+2b 2+3b 3+…+nb n1+2+3+…+n ,则{d n }也是等比数列B .若{d n }满足d n =b 1·2b 2·3b 3·…·nb n1·2·3·…·n,则{d n }也是等比数列C .若{d n }满足d n =[b 1·(2b 2)·(3b 3)·…·(nb n )]11+2+…+n ,则{d n }也是等比数列D .若{d n }满足d n =[b 1·b 22·b 33·…·b n n]11+2+…+n,则{d n }也是等比数列答案 D解析 等差数列与等比数列的对应关系有:等差数列中的加法对应等比数列中的乘法,等差数列中的除法对应等比数列中的开方,据此,我们可以类比得:若{d n }满足d n =[b 1·b 22·b 33·…·b n n ]11+2+…+n,则{d n }也是等比数列.8.如图,在△ABC 中,AB ⊥AC ,若AD ⊥BC ,则AB 2=BD ·BC ;类似地有命题:在三棱锥A -BCD 中,AD ⊥平面ABC ,若A 点在平面BCD 内的射影为点M ,延长DM 交BC 于点E ,则有S 2△ABC =S △BCM ·S △BCD .上述命题是( )A .真命题B .增加条件“AB ⊥AC ”才是真命题C .增加条件“M 为△BCD 的垂心”才是真命题 D .增加条件“三棱锥A -BCD 是正三棱锥”才是真命题 答案 A解析 连接AE .由于AD ⊥平面ABC ,AE ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥AE ,AD ⊥BC ,在△ADE 中,AE 2=ME ·DE ,又A 点在平面BCD 内的射影为点M ,所以AM ⊥平面BCD ,AM ⊥BC ,又AM ∩AD =A ,所以BC ⊥平面ADE ,所以BC ⊥DE ,BC ⊥AE ,S 2△ABC =(12·BC ·AE )2=12BC ·EM ·12BC ·DE =S △BCM ·S △BCD ,可得S 2△ABC =S △BCM ·S △BCD ,故选A. 9.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|P A |+|PB |=2a >|AB |,则P 点的轨迹为椭圆 B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab D .科学家利用鱼的沉浮原理制造潜艇 答案 B解析 由S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理. 10.已知a n =log (n +1)(n +2) (n ∈N *),观看下列运算: a 1·a 2=log 23·log 34=lg 3lg 2·lg 4lg 3=2;a 1·a 2·a 3·a 4·a 5·a 6=log 23·log 34·…·log 78=lg 3lg 2·lg 4lg 3·…·lg 8lg 7=3;…若a 1·a 2·a 3·…·a k (k ∈N *)为整数,则称k 为“企盼数”,试确定当a 1·a 2·a 3·…·a k =2 017时,“企盼数”k 为( ) A .22 017+2 B .22 017 C .22 017-2 D .22 017-4答案 C解析 a 1·a 2·a 3·…·a k =lg (k +2)lg 2=2 017⇒lg(k +2)=lg 22 017⇒k =22 017-2.11.已知每生产100克饼干的原材料加工费为1.8元,某食品加工厂对饼干接受两种包装,其包装费用、销售价格如表所示:型号 小包装 大包装 重量 100克 300克 包装费 0.5元 0.7元 销售价格3.00元8.4元则下列说法正确的是( )①买小包装实惠;②买大包装实惠;③卖3小包比卖1大包盈利多;④卖1大包比卖3小包盈利多.A .①②B .①④C .②③D .②④答案 D解析 大包装300克8.4元,则等价为100克2.8元,小包装100克3元,则买大包装实惠,故②正确;卖1大包盈利8.4-0.7-1.8×3=2.3(元),卖1小包盈利3-0.5-1.8=0.7(元),则卖3小包盈利0.7×3=2.1(元),则卖1大包比卖3小包盈利多.故④正确,故选D.12.假如甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙.在100个小伙子中,假如某人不亚于其他99人,就称他为棒小伙子,那么100个小伙子中的棒小伙子最多可能有( ) A .3个 B .4个 C .99个 D .100个答案 D解析 先推出两个小伙子的情形,假如甲的身高数>乙的身高数,且乙的体重数>甲的体重数,可知棒小伙子最多有2人.再考虑三个小伙子的情形,假如甲的身高数>乙的身高数>丙的身高数,且丙的体重数>乙的体重数>甲的体重数,可知棒小伙子最多有3人.由此可以设想,当有100个小伙子时,设每个小伙子为A i (i =1,2,…,100),其身高数为x i ,体重数为y i ,当y 100>y 99>…>y i >y i -1>…>y 1,x 1>x 2>…>x i >xi +1>…>x 100时,由身高看,A i 不亚于A i +1,A i +2,…,A 100;由体重看,A i 不亚于Ai -1,A i -2,…,A 1,所以,A i 不亚于其他99人(i =1,2,…,100),所以,A i 为棒小伙子(i =1,2,…,100).因此,100个小伙子中的棒小伙子最多可能有100个.故选D.13.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,点P 为三角形内任一点,P 到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________. 答案 P a h a +P b h b +P c h c +P dh d=1解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,点P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.14.设S =1+112+122+1+122+132+ 1+132+142+…+1+12 0142+12 0152,则不大于S 的最大整数[S ]=________. 答案 2 014解析 ∵1+1n 2+1(1+n )2=(n 2+n )2+2(n 2+n )+1n 2(1+n )2=n 2+n +1n (n +1)=1+(1n -1n +1),∴S =1+(11-12)+1+(12-13)+…+1+(12 014-12 015)=2 015-12 015,故[S ]=2 014.15.在平面上,我们假如用一条直线去截正方形的一个角,那么截下的一个直角三角形,按下图所标边长,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O -LMN ,假如用S 1,S 2,S 3表示三个侧面面积,S 4表示截面面积,那么类比得到的结论是________.答案 S 21+S 22+S 23=S 24解析 将侧面面积类比为直角三角形的直角边,截面面积类比为直角三角形的斜边,可得S 21+S 22+S 23=S 24.16.对于E ={a 1,a 2,…,a 100}的子集X ={ai 1,ai 2,…,ai k },定义X 的“特征数列”为x 1,x 2,…,x 100,其中xi 1=xi 2=…=xi k =1.其余项均为0,例如:子集{a 2,a 3}的“特征数列”为0,1,1,0,0,…,0. (1)子集{a 1,a 3,a 5}的“特征数列”的前3项和等于________;(2)若E 的子集P 的“特征数列”p 1,p 2,…,p 100满足p 1=1,p i +p i +1=1,1≤i ≤99;E 的子集Q 的“特征数列”q 1,q 2,…,q 100满足q 1=1,q j +q j +1+q j +2=1,1≤j ≤98,则P ∩Q 的元素个数为________. 答案 (1)2 (2)17解析 (1)子集{a 1,a 3,a 5}的“特征数列”为1,0,1,0,1,0,…,0,故前3项和为2.(2)依题意,E 的子集P 的“特征数列”为1,0,1,0,1,0,…,1,0,所以P ={a 1,a 3,a 5,…,a 99};E 的子集Q 的“特征数列”为1,0,0,1,0,0,1,0,0,…,1,0,0,1,所以Q ={a 1,a 4,a 7,…,a 97,a 100}.将目标转化为求数列M n =2n -1与数列L n =3n -2在1≤n ≤100,n ∈N 时有几个公共元素,所以P ∩Q ={a 1,a 7,a 13,…,a 97},由于97=1+(17-1)×6,所以共有17个元素.。
5.立体几何1.几何体的三视图排列规则:俯视图放在正(主)视图下面,侧(左)视图放在正(主)视图右面,“长对正,高平齐,宽相等.”由几何体的三视图确定几何体时,要注意以下几点:(1)还原后的几何体一般为较熟悉的柱、锥、台、球的组合体. (2)注意图中实、虚线,实际是原几何体中的可视线与被遮挡线.(3)想象原形,并画出草图后进行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调整准确画出原几何体.[问题1] 如图,若一个几何体的正(主)视图、侧(左)视图、俯视图均为面积等于2的等腰直角三角形,则该几何体的体积为________.答案 432.空间几何体表面积和体积的求法几何体的表面积是各个面的面积之和,组合体的表面积应注意重合部分的处理,求几何体的体积常用公式法、割补法、等积变换法.[问题2] 如图所示,一个空间几何体的正(主)视图和俯视图都是边长为1的正方形,侧(左)视图是一个直径为1的圆,那么这个几何体的表面积为( )A .4πB .3πC .2πD.32π答案 D3.空间平行问题的转化关系平行问题的核心是线线平行,证明线线平行的常用方法有:三角形的中位线、平行线分线段成比例(三角形相似)、平行四边形等.[问题3] 判断下列命题是否正确,正确的在括号内画“√”号,错误的画“×”号. (1)如果a ,b 是两条直线,且a ∥b ,那么a 平行于经过b 的任何平面.( ) (2)如果直线a 和平面α满足a ∥α,那么a 与α内的任何直线平行.( ) (3)如果直线a ,b 和平面α满足a ∥α,b ∥α,那么a ∥b .( ) (4)如果直线a ,b 和平面α满足a ∥b ,a ∥α,b ⊄α,那么b ∥α.( ) 答案 (1)× (2)× (3)× (4)√ 4.空间垂直问题的转化关系线线垂直线面垂直的判定线面垂直的定义线面垂直面面垂直的判定面面垂直的性质面面垂直垂直问题的核心是线线垂直,证明线线垂直的常用方法有: 等腰三角形底边上的中线、勾股定理、平面几何方法等. [问题4] 已知两个平面垂直,下列命题①一个平面内已知直线必垂直于另一个平面内的任意一条直线; ②一个平面内的已知直线必垂直于另一个平面的无数条直线; ③一个平面内的任一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面. 其中正确命题的个数是( ) A .3 B .2 C .1 D .0答案 C5.多面体与球接、切问题的求解策略(1)涉及球与棱柱、棱锥的接、切问题时,一般过球心及多面体中的特殊点(一般为接、切点)或线作截面,把空间问题转化为平面问题,再利用平面几何知识寻找几何体中元素间的关系,或只画内接、外切的几何体的直观图,确定球心的位置,弄清球的半径(直径)与该几何体已知量的关系,列方程(组)求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,则4R 2=a 2+b 2+c 2求解.[问题5] 一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是32π3,那么这个三棱柱的体积是( ) A .96 3 B .16 3 C .24 3 D .48 3答案 D解析 如图,设球的半径为R ,由43πR 3=32π3,得R =2.所以正三棱柱的高h =4. 设其底面边长为a , 则13·32a =2, 所以a =43, 所以V =34×(43)2×4=48 3. 6.求平面的法向量的方法(1)性质法:根据线面垂直的判定找出与平面垂直的直线,则此直线的方向向量就是平面的法向量.(2)赋值法:在平面内取两个不共线向量,设出平面的法向量建立方程组,通过赋值求出其中的一个法向量. 7.“转化法”求空间角(1)设两条异面直线a ,b 所成的角为θ,两条直线的方向向量分别为a ,b . 因为θ∈(0,π2],故有cos θ=|cos 〈a ,b 〉|=|a·b|a||b ||.(2)设直线l 和平面α所成的角为θ,l 是斜线l 的方向向量,n 是平面α的法向量,则sin θ=|cos 〈l ,n 〉|=|l·n|l||n||.(3)设二面角α—l —β的大小为θ,n 1,n 2是二面角α—l —β的两个半平面的法向量,则|cos θ|=|cos 〈n 1,n 2〉|,两个角之间的关系需要根据二面角的取值范围来确定.[问题6] 在三棱锥P —ABC 中,AB ⊥BC ,AB =BC =12P A ,点O ,D 分别是AC ,PC 的中点,OP ⊥底面ABC ,求直线P A 与平面PBC 所成角的正弦值. 解 ∵OP ⊥平面ABC ,OA =OC ,AB =BC , ∴OA ⊥OB ,OA ⊥OP ,OB ⊥OP .以O 为原点,射线OP 为z 轴正方向,OA 为x 轴正方向,OB 为y 轴正方向,建立空间直角坐标系Oxyz (如图).设AB =a ,则A (22a,0,0),B (0,22a,0),C (-22a,0,0), 设OP =h ,则P (0,0,h ),由12P A =AB ,则P A =2a ,则P =(0,0,72a ),P A →=( 22a,0,-72a ). 可求得平面PBC 的一个法向量为n =(1,-1,-17), ∴cos 〈P A →,n 〉=P A →·n |P A →||n |=21030,设P A 与平面PBC 所成的角为θ, 则sin θ=|cos 〈P A →,n 〉|=21030.8.求点到平面的距离的方法(1)“等积法”:求解点到面的距离常转化为锥体的高,利用三棱锥体积公式求点到平面的距离.(2)“向量法”:如图,设P 在平面α外,n 为平面α的法向量,在平面α内任取一点Q ,则点P 到平面α的距离d =|PQ →·n ||n |.[问题7] 正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 1的中心,则点O 到平面ABC 1D 1的距离为________. 答案24解析建立如图所示的空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,1),C 1(0,1,1),O ⎝⎛⎭⎫12,12,1. 设平面ABC 1D 1的法向量为 n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·AD 1→=0,∴⎩⎪⎨⎪⎧y =0,-x +z =0.令z =1,得⎩⎪⎨⎪⎧x =1,y =0,∴n =(1,0,1),又OD 1→=⎝⎛⎭⎫-12,-12,0, ∴O 到平面ABC 1D 1的距离d =|n ·OD 1→||n |=122=24.易错点1 三视图识图不准例1 如图为某几何体的三视图,则该几何体的表面积为________.易错分析 解本题易出现的错误有:(1)还原空间几何体的形状时出错,不能正确判断其对应的几何体;(2)计算时不能准确把三视图中的数据转化为对应几何体中的线段长度,尤其侧视图中的数据处理很容易出错.解析 该几何体为一个四棱锥,如图所示.CD ⊥底面P AD ,BA ⊥底面P AD , P A ⊥AD ,P A =AD =CD =2,AB =1. PC =23,PB =5,BC = 5. ∴S △PBC =12×23×2= 6.该几何体的表面积S =(1+2)×22+12×2×1+12×22×2+12×2×2+6=6+22+ 6.答案 6+22+ 6易错点2 旋转体辨识不清例2 如图所示(单位:cm),求图中阴影部分绕AB 旋转一周所形成的几何体的体积.易错分析 注意这里是旋转图中的阴影部分,不是旋转梯形ABCD .在旋转的时候边界形成一个圆台,并在上面挖去了一个“半球”,其体积应是圆台的体积减去半球的体积.解本题易出现的错误是误以为旋转的是梯形ABCD ,在计算时没有减掉半球的体积. 解 由题图中数据,根据圆台和球的体积公式,得 V 圆台=13×π(22+2×5+52)×4=52π(cm 3),V 半球=43π×23×12=163π(cm 3).所以旋转体的体积为V 圆台-V 半球=52π-163π=1403π(cm 3).易错点3 线面关系把握不准例3 设a ,b 为两条直线,α,β为两个平面,且a ⊄α,a ⊄β,则下列结论中不成立的是( ) A .若b ⊂β,a ∥b ,则a ∥β B .若a ⊥β,α⊥β,则a ∥α C .若a ⊥b ,b ⊥α,则a ∥α D .若α⊥β,a ⊥β,b ∥a ,则b ∥α易错分析 本题易出现的问题就是对空间点、线、面的位置关系把握不准,考虑问题不全面,不能准确把握题中的前提——a ⊄α,a ⊄β,对空间中的平行、垂直关系的判定和性质定理中的条件把握不准导致判断失误.如A 项中忽视已知条件中的a ⊄β,误以为该项错误等. 解析 对于选项A ,若有b ⊂β,a ∥b ,且已知a ⊄β,所以根据线面平行的判定定理可得a ∥β,故选项A 正确;对于选项B ,若a ⊥β,α⊥β,则根据空间线面位置关系可知a ⊂α或a ∥α,而由已知可知a ⊄α,所以有a ∥α,故选项B 正确;对于选项C ,若a ⊥b ,b ⊥α,所以a ⊂α或a ∥α,而由已知可得a ⊄α,所以a ∥α,故选项C 正确;对于选项D ,由a ⊥β,b ∥a 可得b ⊥β,又因为α⊥β,所以b ⊂α或b ∥α,故不能得到b ∥α,所以选项D 错,故选D. 答案 D易错点4 线面关系论证不严谨例4 在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别为DD 1,DB 的中点.(1)求证:EF ∥平面ABC 1D 1; (2)求证:EF ⊥B 1C .易错分析 利用空间线面关系的判定或性质定理证题时,推理论证一定要严格按照定理中的条件进行,否则出现证明过程不严谨的问题. 证明 (1)连接BD 1,如图所示.在△DD 1B 中,E ,F 分别为DD 1,DB 的中点,则⎭⎬⎫EF ∥D 1BD 1B ⊂平面ABC 1D 1EF ⊄平面ABC 1D 1⇒EF ∥平面ABC 1D 1.(2)ABCD —A 1B 1C 1D 1为正方体⇒AB ⊥平面BCC 1B 1⇒⎭⎬⎫B 1C ⊥ABB 1C ⊥BC 1AB ,BC 1⊂平面ABC 1D 1AB ∩BC 1=B⎭⎪⎬⎪⎫⇒B 1C ⊥平面ABC 1D 1 BD 1⊂平面ABC 1D 1⎭⎪⎬⎪⎫⇒B 1C ⊥BD 1 EF ∥BD 1⇒EF ⊥B 1C .易错点5 混淆空间角与向量夹角例5 如图,△ABC 和△BCD 所在平面互相垂直,且AB =BC =BD =2,∠ABC =∠DBC =120°,E ,F 分别为AC ,DC 的中点.(1)求证:EF ⊥BC ;(2)求二面角E —BF —C 的正弦值.易错分析 本题易错点在于认为两个平面法向量的夹角等于所求二面角的大小.根据向量计算出二面角的余弦值的绝对值后,其大小还要通过二面角的取值范围确定.(1)证明 由题意,以B 为坐标原点,在平面DBC 内过B 作垂直BC 的直线为x 轴,BC 所在直线为y 轴,在平面ABC 内过B 作垂直BC 的直线为z 轴,建立如图所示空间直角坐标系.易得B (0,0,0),A (0,-1,3),D (3,-1,0),C (0,2,0), 因而E (0,12,32),F (32,12,0),所以EF →=(32,0,-32),BC →=(0,2,0),因此EF →·BC →=0.从而EF →⊥BC →,所以EF ⊥BC .(2)解 在图中,平面BFC 的一个法向量为n 1=(0,0,1). 设平面BEF 的法向量为n 2=(x ,y ,z ). 又BF →=(32,12,0),BE →=(0,12,32),由⎩⎪⎨⎪⎧n 2·BF →=0,n 2·BE →=0,得其中一个法向量n 2=(1,-3,1).设二面角E —BF —C 的大小为θ,且由题意知θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2|n 1||n 2||=15. 因此sin θ=25=255,即所求二面角的正弦值为255.1.已知m ,n 为空间中两条不同的直线,α,β为空间中两个不同的平面,下列命题中正确的是( )A .若m ∥α,m ∥β,则α∥βB .若m ⊥α,m ⊥n ,则n ∥αC .若m ∥α,m ∥n ,则n ∥αD .若m ⊥α,m ∥β,则α⊥β 答案 D解析 对于选项A ,若m ∥α,m ∥β,则可能α,β相交,或者α∥β,所以选项A 不正确;对于选项B ,若m ⊥α,m ⊥n ,则可能n ⊂α,或n ∥α,所以选项B 不正确;对于选项C ,若m ∥α,m ∥n ,则n ⊂α,或n ∥α,所以选项C 不正确;对于选项D ,若m ⊥α,m ∥β,则由线面平行可得在平面β内存在一条直线l ,使得m ∥l ,然后由m ⊥α可得l ⊥α,进而得出α⊥β,故应选D.2.(2015·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8cm 3B .12cm 3C.323cm 3D.403cm 3答案 C解析 该几何体是棱长为2cm 的正方体与一底面边长为2cm 的正方形、高为2cm 的正四棱锥组成的组合体,V =2×2×2+13×2×2×2=323cm 3.故选C.3.如图,已知△ABC 为直角三角形,其中∠ACB =90°,M 为AB 的中点,PM 垂直于△ABC 所在平面,那么( )A .P A =PB >PC B .P A =PB <PC C .P A =PB =PCD .P A ≠PB ≠PC 答案 C解析 ∵M 为AB 的中点,△ACB 为直角三角形,∴BM =AM =CM ,又PM ⊥平面ABC ,∴Rt △PMB ≌Rt △PMA ≌Rt △PMC ,故P A =PB =PC .4.如图,已知六棱锥P —ABCDEF 的底面是正六边形,P A ⊥平面ABC ,P A =2AB ,则下列结论正确的是( )A .PB ⊥ADB .平面P AB ⊥平面PBC C .直线BC ∥平面P AED .直线PD 与平面ABC 所成的角为45° 答案 D解析 若PB ⊥AD ,则AD ⊥AB ,但AD 与AB 成60°角,A 错误;平面P AB 与平面ABD 垂直,所以平面P AB 一定不与平面PBC 垂直,B 错误;BC 与AE 是相交直线,所以BC 一定不与平面P AE 平行,C 错误;直线PD 与平面ABC 所成角为∠PDA ,在Rt △P AD 中,AD =P A , 所以∠PDA =45°,D 正确.5.如图,在正方体ABCD —A 1B 1C 1D 1中,M ,N ,P ,Q 分别是AA 1,A 1D 1,CC 1,BC 的中点,给出以下四个结论:①A 1C ⊥MN ;②A 1C ∥平面MNPQ ;③A 1C 与PM 相交;④NC 与PM 异面.其中不正确的结论是( )A .①B .②C .③D .④答案 B解析 作出过M ,N ,P ,Q 四点的截面交C 1D 1于点S ,交AB 于点R ,如图中的六边形MNSPQR ,显然点A 1,C 分别位于这个平面的两侧,故A 1C 与平面MNPQ 一定相交,不可能平行,故结论②不正确.6.如图,在空间四边形ABCD 中,M ∈AB ,N ∈AD ,若AM MB =ANND ,则直线MN 与平面BDC 的位置关系是________.答案 平行解析 由AM MB =ANND ,得MN ∥BD .而BD ⊂平面BDC ,MN ⊄平面BDC , 所以MN ∥平面BDC .7.球O 内有一个内接正方体,正方体的全面积为24,则球O 的体积是________. 答案 43π解析 由于正方体的顶点都在球面上,则正方体的对角线即为球的直径.正方体的全面积为24,则设正方体的边长为a ,即有6a 2=24,解得a =2,设球的半径为R ,则2R =23,解得,R =3,则有球的体积为V =43πR 3=43π×33=43π.8.如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,AC =5,AA 1=3,M 为线段BB 1上的一动点,则过A 、M 、C 1三点的平面截该三棱柱所得截面的最小周长为________.答案 32+14 解析 由图形可知,当AM +MC 1最小时,所得截面的周长最小,如图所示把平面A 1ABB 1与平面C 1CBB 1展开成一个平面AA 1C 1C ,则AM +MC 1最短为AC 1=32+32=32,所以截面的最小周长为32+(5)2+32=32+14.9.(2015·山东改编)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD绕AD 所在的直线旋转一周而形成的曲面所围成的几何体的体积为______. 答案5π3解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V 圆锥=π·AB2·BC -13·π·CE 2·DE =π×12×2-π3×12×1=5π3.10.如图,四棱锥P—ABCD中,∠ABC=∠BAD=90°,BC=2AD,△P AB与△P AD都是等边三角形.(1)证明:PB⊥CD;(2)求二面角A—PD—B的余弦值.(1)证明如图,取BC的中点E,连接DE,则ADEB为正方形,过P作PO⊥平面ABCD,垂足为O,连接OA,OB,OE,OD,则由△P AB和△P AD都是等边三角形可知P A=PB=PD,∴OA=OB=OD,即点O为正方形ADEB对角线的交点,故OE⊥BD,从而OE⊥平面PBD,∴OE⊥PB,∵O是BD的中点,E是BC的中点,∴OE∥CD,因此PB⊥CD.(2)解由(1)可知,OE,OB,OP两两垂直,以O为原点,OE方向为x轴正方向,OB方向为y轴正方向,OP方向为z轴正方向,建立如图所示的空间直角坐标系Oxyz,设AB=2,则A(-2,0,0),D(0,-2,0),P(0,0,2),AD →=(2,-2,0),AP →=(2,0,2), 设平面P AD 的法向量n =(x ,y ,z ), n ·AD →=2x -2y =0,n ·AP →=2x +2z =0, 取x =1,得y =1,z =-1,得n =(1,1,-1),∵OE ⊥平面PBD ,设平面PBD 的法向量为m ,取m =(1,0,0), 由图象可知二面角A —PD —B 的大小为锐角, ∴二面角A —PD —B 的余弦值为 cos θ=|n·m||n||m |=13=33.。
第讲数列的求和问题.(·课标全国甲)为等差数列{}的前项和,且=,=.记=[],其中[]表示不超过的最大整数,如[]=,[]=. ()求,,;()求数列{}的前项和.解()设{}的公差为,据已知有+=,解得=.所以{}的通项公式为=.=[]=,=[]=,=[]=.()因为=所以数列{}的前项和为×+×+×=..(·山东)已知数列{}的前项和=+,{}是等差数列,且=++.()求数列{}的通项公式;()令=,求数列{}的前项和.解()由题意知,当≥时,=--=+,当=时,==,所以=+.设数列{}的公差为.由即可解得=,=,所以=+.()由()知,==(+)·+.又=++…+,得=×[×+×+…+(+)×+],=×[×+×+…+(+)×+].两式作差,得-=×[×+++…++-(+)×+]=×=-·+,所以=·+.高考对数列求和的考查主要以解答题的形式出现,通过分组转化、错位相减、裂项相消等方法求一般数列的和,体现转化与化归的思想.热点一分组转化求和有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.例等比数列{}中,,,分别是下表第一、二、三行中的某一个数,且,,中的任何两个数不在下表的同一列.第一列第二列第三列第一行第二行第三行()求数列{}的通项公式;()若数列{}满足:=+(-),求数列{}的前项和.解()当=时,不合题意;当=时,当且仅当=,=时,符合题意;当=时,不合题意.因此=,=,=,所以公比=.。
第3讲 数列的综合问题1.(2016·浙江)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=______,S 5=______.答案 1 121 解析 由⎩⎪⎨⎪⎧a 2=2a 1+1,a 2+a 1=4,解得a 1=1,a 2=3,当n ≥2时,由已知可得:a n +1=2S n +1,① a n =2S n -1+1,②①-②得a n +1-a n =2a n ,∴a n +1=3a n ,又a 2=3a 1, ∴{a n }是以a 1=1为首项,以q =3为公比的等比数列. ∴S 5=1-1×351-3=121.2.(2016·四川)已知数列{a n }的首项为1,S n 为数列{a n }的前n 项和,S n +1=qS n +1,其中q >0,n ∈N *.(1)若2a 2,a 3,a 2+2成等差数列,求数列{a n }的通项公式;(2)设双曲线x 2-y 2a 2n =1的离心率为e n ,且e 2=53,证明:e 1+e 2+…+e n >4n -3n3n -1.(1)解 由已知,S n +1=qS n +1,S n +2=qS n +1+1,两式相减得a n +2=qa n +1,n ≥1.又由S 2=qS 1+1得a 2=qa 1,故a n +1=qa n 对所有n ≥1都成立. 所以数列{a n }是首项为1,公比为q 的等比数列. 从而a n =qn -1.由2a 2,a 3,a 2+2成等差数列,可得2a 3=3a 2+2,即2q 2=3q +2,则(2q +1)(q -2)=0, 由已知,q >0,故q =2.所以a n =2n -1(n ∈N *).(2)证明 由(1)可知,a n =qn -1.所以双曲线x 2-y 2a 2n=1的离心率e n =1+a 2n =1+q2n -1.由e 2=1+q 2=53,解得q =43.因为1+q2(k -1)>q2(k -1),所以1+q2k -1>qk -1(k ∈N *).于是e 1+e 2+…+e n >1+q +…+q n -1=q n -1q -1.故e 1+e 2+…+e n >4n-3n3n -1.1.数列的综合问题,往往将数列与函数、不等式结合,探求数列中的最值或证明不等式.2.以等差数列、等比数列为背景,利用函数观点探求参数的值或范围.3.将数列与实际应用问题相结合,考查数学建模和数学应用.热点一 利用S n ,a n 的关系式求a n 1.数列{a n }中,a n 与S n 的关系:a n =⎩⎪⎨⎪⎧S 1 n =1S n -S n -1 n ≥2.2.求数列通项的常用方法(1)公式法:利用等差(比)数列求通项公式.(2)在已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n .(3)在已知数列{a n }中,满足a n +1a n=f (n ),且f (1)·f (2)·…·f (n )可求,则可用累积法求数列的通项a n .(4)将递推关系进行变换,转化为常见数列(等差、等比数列). 例1 已知数列{a n }的前n 项和为S n ,若S n =2a n -2n,则S n =________. 答案 n ·2n解析 由S n =2a n -2n,得S 1=a 1=2a 1-2,a 1=2,S n =2(S n -S n -1)-2n(n ≥2),则S n =2S n -1+2n(n ≥2),S n 2n -S n -12n -1=1(n ≥2),所以⎩⎨⎧⎭⎬⎫S n 2n 是首项为S 12=1,公差为1的等差数列,所以S n 2n =S 12+n -1=n ,故S n =n ·2n.思维升华 给出S n 与a n 的递推关系,求a n ,常用思路:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .跟踪演练1 已知正项数列{a n }的前n 项和为S n ,且S n =a n a n +24,则数列{a n }的通项公式是________.答案 a n =2n 解析 S n =a n a n +24,当n =1时,a 1=S 1=a 1a 1+24,解得a 1=2或a 1=0(舍去). 当n ≥2时,由a n =S n -S n -1=a n a n +24-a n -1a n -1+24⇒a 2n -a 2n -1=2(a n +a n -1),因为a n >0,所以a n +a n -1≠0,则a n -a n -1=2, 所以数列{a n }是首项为2,公差为2的等差数列, 故a n =2n .热点二 数列与函数、不等式的综合问题数列与函数的综合问题一般是利用函数作为背景,给出数列所满足的条件,通常利用点在曲线上给出S n 的表达式,还有以曲线上的切点为背景的问题,解决这类问题的关键在于利用数列与函数的对应关系,将条件进行准确的转化.数列与不等式的综合问题一般以数列为载体,考查最值问题,不等关系或恒成立问题.例2 已知等比数列{a n }的前n 项和为S n ,S 1,S 3,S 2成等差数列,且a 1-a 3=3. (1)求{a n }的通项公式a n ;(2)求S n ,并求满足S n ≤2的n 的值.解 (1)设等比数列{a n }的首项为a 1,公比为q . 依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2), 由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =-12,由已知可得a 1-a 1(-12)2=3,故a 1=4,∴a n =4(-12)n -1.(2)由(1)得a 1=4,q =-12,∴S n =4[1--12n]1--12=83[1-(-12)n], 由S n =83[1-(-12)n ]≤2得(-12)n ≥14,当n 为奇数时不满足,当n 为偶数时, (-12)n 递减,(-12)n ≤14.∴满足(-12)n =14的n 的值为2,即满足S n ≤2的n 的值为2.思维升华 解决数列与函数、不等式的综合问题要注意以下几点:(1)数列是一类特殊的函数,函数定义域是正整数,在求数列最值或不等关系时要特别重视;(2)解题时准确构造函数,利用函数性质时注意限制条件;(3)不等关系证明中进行适当的放缩.跟踪演练2 若数列{a n }的前n 项和为S n ,点(a n ,S n )在y =16-13x 的图象上(n ∈N *).(1)求数列{a n }的通项公式;(2)若c 1=0,且对任意正整数n 都有c n +1-c n =12log a n .求证:对任意正整数n ≥2,总有13≤1c 2+1c 3+1c 4+…+1c n <34. (1)解 ∵S n =16-13a n ,∴当n ≥2时,a n =S n -S n -1=13a n -1-13a n ,∴a n =14a n -1.又∵S 1=16-13a 1,∴a 1=18,∴a n =18(14)n -1=(12)2n +1.(2)证明 由c n +1-c n =12log a n =2n +1,得当n ≥2时,c n =c 1+(c 2-c 1)+(c 3-c 2)+…+(c n-c n -1)=0+3+5+…+(2n -1)=n 2-1=(n +1)(n -1). ∴1c 2+1c 3+1c 4+…+1c n =122-1+132-1+142-1+…+1n 2-1 =12×[(1-13)+(12-14)+(13-15)+…+(1n -1-1n +1)] =12[(1+12)-(1n +1n +1)] =34-12(1n +1n +1)<34. 又∵1c 2+1c 3+1c 4+…+1c n ≥1c 2=13,∴原式得证.热点三 数列的实际应用用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列是等差模型还是等比模型,它的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题的结果.例3 自从祖国大陆允许台湾农民到大陆创业以来,在11个省区设立了海峡两岸农业合作试验区和台湾农民创业园,台湾农民在那里申办个体工商户可以享受“绿色通道”的申请、受理、审批一站式服务,某台商第一年年初到大陆就创办了一座120万元的蔬菜加工厂M ,M 的价值在使用过程中逐年减少,从第二年到第六年,每年年初M 的价值比上年年初减少10万元,从第七年开始,每年年初M 的价值为上年年初的75%. (1)求第n 年年初M 的价值a n 的表达式; (2)设A n =a 1+a 2+…+a nn,若A n 大于80万元,则M 继续使用,否则须在第n 年年初对M 更新,证明:必须在第九年年初对M 更新.(1)解 当n ≤6时,数列{a n }是首项为120,公差为-10的等差数列,故a n =120-10(n -1)=130-10n ,当n ≥7时,数列{a n }从a 6开始的项构成一个以a 6=130-60=70为首项,以34为公比的等比数列,故a n =70×(34)n -6,所以第n 年年初M 的价值a n =⎩⎪⎨⎪⎧130-10n ,n ≤6,70×34n -6,n ≥7.(2)证明 设S n 表示数列{a n }的前n 项和,由等差数列和等比数列的求和公式,得 当1≤n ≤6时,S n =120n -5n (n -1),A n =S nn=120-5(n -1)=125-5n ≥95>80,当n ≥7时,由于S 6=570,故S n =570+(a 7+a 8+…+a n )=570+70×34×4×[1-(34)n -6]=780-210×(34)n -6.因为{a n }是递减数列,所以{A n }是递减数列. 因为A n =S nn =780-210×34n -6n,A 8=780-210×3428≈82.734>80,A 9=780-210×3439≈76.823<80,所以必须在第九年年初对M 更新.思维升华 常见数列应用题模型的求解方法(1)产值模型:原来产值的基础数为N ,平均增长率为p ,对于时间n 的总产值y =N (1+p )n. (2)银行储蓄复利公式:按复利计算利息的一种储蓄,本金为a 元,每期的利率为r ,存期为n ,则本利和y =a (1+r )n .(3)银行储蓄单利公式:利息按单利计算,本金为a 元,每期的利率为r ,存期为n ,则本利和y =a (1+nr ).(4)分期付款模型:a 为贷款总额,r 为年利率,b 为等额还款数,则b =r 1+r n a1+r n-1. 跟踪演练3 一牧羊人赶着一群羊通过6个关口,每过1个关口守关人将拿走当时羊的一半,然后退还1只给牧羊人,过完这些关口后,牧羊人只剩下2只羊,则牧羊人在过第1个关口前有________只羊. 答案 2解析 记此牧羊人通过第1个关口前、通过第2个关口前、……、通过第6个关口前,剩下的羊的只数组成数列{a n }(n =1,2,3,4,5,6),则由题意得a 2=12a 1+1,a 3=12a 2+1,…,a 6=12a 5+1,而12a 6+1=2,解得a 6=2,因此代入得a 5=2,a 4=2,…,a 1=2.已知数列{a n }的前n 项和S n 满足关系式S n =ka n +1,k 为不等于0的常数. (1)试判断数列{a n }是否为等比数列; (2)若a 2=12,a 3=1.①求数列{a n }的通项公式及前n 项和S n 的表达式; ②设b n =log 2S n ,数列{c n }满足c n =1b n +3b n +4+b n +2·2b n ,数列{c n }的前n 项和为T n ,当n >1时,求使4n -1T n <S n +3+n +122成立的最小正整数n 的值. 押题依据 本题综合考查数列知识,第(1)问考查反证法的数学方法及逻辑推理能力,第(2)问是高考的热点问题,即数列与不等式的完美结合,其中将求数列前n 项和的常用方法“裂项相消法”与“错位相消法”结合在一起,考查了综合分析问题、解决问题的能力. 解 (1)若数列{a n }是等比数列,则由n =1得a 1=S 1=ka 2,从而a 2=ka 3. 又取n =2得a 1+a 2=S 2=ka 3,于是a 1=0,显然矛盾,故数列{a n }不是等比数列.(2)①由条件得⎩⎪⎨⎪⎧a 1=12k ,a 1+12=k ,解得⎩⎪⎨⎪⎧a 1=12,k =1,从而S n =a n +1.当n ≥2时,由S n -1=a n ,得a n =S n -S n -1=a n +1-a n ,即a n +1=2a n ,此时数列是首项为a 2=12、公比为2的等比数列.综上所述,数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧12n =1,2n -3 n ≥2.从而其前n 项和S n =2n -2(n ∈N *).②由①得b n =n -2, 从而c n =1n +1n +2+n ·2n -2.记C 1=12×3+13×4+…+1n +1n +2=⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n +1-1n +2 =n2n +2,记C 2=1·2-1+2·20+…+n ·2n -2,则2C 2=1·20+2·21+…+n ·2n -1,两式相减得C 2=(n -1)·2n -1+12, 从而T n =n 2n +2+(n -1)·2n -1+12=n +1n +2+(n -1)·2n -1, 则不等式4n -1T n <S n +3+n +122可化为4n +1n -1n +2+2n +1<2n +1+n +122, 即n 2+n -90>0,因为n ∈N *,故n >9, 从而最小正整数n 的值是10.A 组 专题通关1.在一个有穷数列每相邻两项之间添加一项,使其等于两个相邻项的和,我们把这样的操作叫做该数列的一次“H 扩展”.已知数列1,2.第一次“H 扩展”后得到1,3,2;第二次“H 扩展”后得到1,4,3,5,2.那么第10次“H 扩展”后得到的数列的项数为( ) A .1 023 B .1 025 C .513 D .511答案 B解析 设第n 次“H 扩展”后得到的数列的项数为a n ,则第n +1次“H 扩展”后得到的数列的项数为a n +1=2a n -1,∴a n +1-1=2(a n -1),∴a n +1-1a n -1=2.又∵a 1-1=3-1=2,∴{a n -1}是以2为首项,2为公比的等比数列, ∴a n -1=2·2n -1,∴a n =2n +1,∴a 10=210+1=1 025.故选B.2.在数列{a n }中,a n +1=a n +a (n ∈N *,a 为常数),若平面上的三个不共线的非零向量OA →,OB →,OC →满足OC →=a 1OA →+a 2 016OB →,三点A ,B ,C 共线且该直线不过O 点,则S 2 016等于( )A .1 007B .1 008C .2 016D .2 012答案 B解析 ∵OC →=a 1OA →+a 2 016OB →,且三点A ,B ,C 共线, ∴必有a 1+a 2 016=1,又a n +1=a n +a ,∴a n +1-a n =a 为常数,故数列{a n }为等差数列, 故S 2 016=2 016a 1+a 2 0162=1 008,故选A.3.已知函数y =f (x )对任意自变量x 都有f (x +1)=f (1-x ),且函数f (x )在[1,+∞)上单调.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 20),则{a n }的前25项之和为( ) A .0 B.252 C .25 D .50 答案 C解析 由已知函数关系可知a 6+a 20=2,又{a n }是等差数列,所以a 6+a 20=a 5+a 21=a 4+a 22=a 3+a 23=a 2+a 24=a 1+a 25=a 7+a 19=a 8+a 18=a 9+a 17=a 10+a 16=a 11+a 15=a 12+a 14=2a 13=2,所以数列的前25项和为12×2+1=25,故选C.4.今有女善织,日益功疾,且从第2天起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天计)共织390尺布,则每天比前一天多织的布的尺数为(不作近似计算)( ) A.12B.815C.1629D.1631答案 C解析 由题意可知,该女每天的织布量成等差数列,首项是5,公差为d ,前30项和为390.根据等差数列前n 项和公式,有390=30×5+30×292d ,解得d =1629.5.已知定义在R 上的函数f (x ),g (x )满足f x g x =a x,且f ′(x )g (x )<f (x )g ′(x ),f 1g 1+f -1g -1=52,若有穷数列⎩⎨⎧⎭⎬⎫f n g n (n ∈N *)的前n 项和等于3132,则n 等于( ) A .5 B .6 C .7 D .8 答案 A 解析 令h (x )=f xg x,则h ′(x )=f ′xg x -f x g ′x[g x ]2<0, 故函数h (x )为减函数,即0<a <1. 再根据f 1g 1+f -1g -1=52,得a +1a =52,解得a =2(舍去)或a =12.所以f n g n =⎝ ⎛⎭⎪⎫12n,数列⎩⎨⎧⎭⎬⎫f n g n 的前n 项和是12⎝ ⎛⎭⎪⎫1-12n 1-12=1-12n ,由于1-12n =3132,所以n =5.6.已知数列{a n }的前n 项和构成数列{b n },若b n =(2n -1)3n+4,则数列{a n }的通项公式a n =____________.答案 a n =⎩⎪⎨⎪⎧7 n =1,4n ·3n -1n ≥2解析 当n =1时,a 1=b 1=(2×1-1)·31+4=7, 当n ≥2时,a n =b n -b n -1=[(2n -1)·3n+4]-[(2n -3)·3n -1+4]=4n ·3n -1,综上所述,a n =⎩⎪⎨⎪⎧7 n =1,4n ·3n -1n ≥2,故答案为a n =⎩⎪⎨⎪⎧7 n =1,4n ·3n -1n ≥2.7.已知向量a =(2,-n ),b =(S n ,n +1),n ∈N *,其中S n 是数列{a n }的前n 项和,若a ⊥b ,则数列{a na n +1a n +4}的最大项的值为________.答案 19解析 依题意得a ·b =0, 即2S n =n (n +1),S n =n n +12.当n ≥2时,a n =S n -S n -1=n n +12-n n -12=n ;又a 1=S 1=1×1+12=1, 因此a n =n ,a n a n +1a n +4=n n +1n +4=nn 2+5n +4=1n +4n+5≤19,当且仅当n =4n ,n ∈N *,即n =2时取等号,因此数列{a n a n +1a n +4}的最大项的值为19.8.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=1.{a n }的“差数列”的通项公式为a n +1-a n =2n,则数列{a n }的前n 项和S n =________. 答案 2n +1-n -2解析 因为a n +1-a n =2n, 应用累加法可得a n =2n-1, 所以S n =a 1+a 2+a 3+…+a n =2+22+23+ (2)-n =21-2n 1-2-n=2n +1-n -2.9.(2016·课标全国丙)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1,得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1. 因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n . 由S 5=3132得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132. 解得λ=-1.10.已知等差数列{a n }的公差d >0,其前n 项和为S n ,若S 3=12,且2a 1,a 2,1+a 3成等比数列.(1)求数列{a n }的通项公式;(2)记b n =1a n a n +1 (n ∈N *),且数列{b n }的前n 项和为T n ,证明:14≤T n <13. (1)解 依题意,得⎩⎪⎨⎪⎧ 2a 1a 3+1=a 22,a 1+a 2+a 3=12,即⎩⎪⎨⎪⎧ a 1a 1+2d +1=8,a 1+d =4,得d 2+d -12=0. ∵d >0,∴d =3,a 1=1.∴数列{a n }的通项公式a n =1+3(n -1)=3n -2.(2)证明 ∵b n =1a n a n +1=13n -23n +1=13(13n -2-13n +1), ∴T n =b 1+b 2+b 3+…+b n=13[(1-14)+(14-17)+…+(13n -2-13n +1)] =13(1-13n +1)=n 3n +1. ∵n ∈N *,∴13n +1>0, 故T n <13,又T n 为单调递增, ∴当n =1时,取最小值14,故14≤T n <13. B 组 能力提高11.2008年5月18日某爱心人士为一位孤儿去银行存款a 元,存的是一年定期储蓄;2009年5月18日他将到期存款的本息一起取出,再加a 元后,还存一年的定期储蓄,此后每年5月18日都如此,假设银行一年定期储蓄的年利率r 不变,直到2015年5月18日这位孤儿准备上大学时,他将所有的存款和利息全部取出并且资助给这位孤儿,则取出的钱数共为( )A .a (1+r )7元B .a [(1+r )7+(1+r )]元 C.a r [(1+r )7-r ]元 D.a r [(1+r )8-(1+r )]元答案 D解析 由题意,2009年5月18日的存款为a (1+r )+a 元;2010年5月18日的存款为a (1+r )2+a (1+r )+a 元;2011年5月18日的存款为a (1+r )3+a (1+r )2+a (1+r )+a 元;2012年5月18日的存款为a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )+a 元;2013年5月18日的存款为a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )+a 元; 2014年5月18日的存款为a (1+r )6+a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )+a 元;到2015年5月18日他所有的存款和本息为a (1+r )7+a (1+r )6+a (1+r )5+a (1+r )4+a (1+r )3+a (1+r )2+a (1+r )=a r [(1+r )8-(1+r )]元.12.已知函数f (x )=x 2+(a +8)x +a 2+a -12,且f (a 2-4)=f (2a -8),设等差数列{a n }的前n 项和为S n (n ∈N *),若S n =f (n ),则S n -4a a n -1的最小值为( ) A.276B.358C.143D.378 答案 D解析 由题意可得a 2-4=2a -8或a 2-4+2a -8=2×(-a +82),解得a =1或a =-4, 当a =1时,f (x )=x 2+9x -10,数列{a n }不是等差数列;当a =-4时,f (x )=x 2+4x ,S n =f (n )=n 2+4n ,∴a 1=5,a 2=7,a n =5+(7-5)(n -1)=2n +3, ∴S n -4a a n -1=n 2+4n +162n +2=12×n +12+2n +1+13n +1 =12×⎣⎢⎡⎦⎥⎤n +1+13n +1+2≥12⎝ ⎛⎭⎪⎫2 n +1×13n +1+2=13+1, 当且仅当n +1=13n +1,即n =13-1时取等号, ∵n 为正数,故当n =3时原式取最小值378,故选D. 13.对于数列{a n },若∀m ,n ∈N * (m ≠n ),都有a m -a n m -n ≥t (t 为常数)成立,则称数列{a n }具有性质P (t ).(1)若数列{a n }的通项公式为a n =2n ,且具有性质P (t ),则t 的最大值为________;(2)若数列{a n }的通项公式为a n =n 2-a n ,且具有性质P (10),则实数a 的取值范围是________. 答案 (1)2 (2)[36,+∞)解析 (1)a m -a n m -n ≥t ⇒a m -tm -a n -tn m -n≥0, 所以数列{a n -tn }是递增数列,即a n +1-t (n +1)-(a n -tn )≥0.因为a n =2n ,所以上式化简为t ≤2n ,得t ≤2,故t 的最大值为2.(2)由已知条件得a m -a n m -n ≥10 ⇒a m -10m -a n -10n m -n≥0. 所以数列{a n -10n }是递增数列,即a n +1-10(n +1)-(a n -10n )≥0.因为a n =n 2-a n,所以上式化简为-a ≤n (n +1)(2n -9),令f (n )=n (n +1)(2n -9),由三次函数的图象性质可知f (n )min 为f (1)或f (2)或f (3)或f (4). f (1)=-14,f (2)=-30,f (3)=-36,f (4)=-20.所以f (n )min =-36,所以-a ≤-36⇒a ≥36,故a 的取值范围为[36,+∞).14.数列{a n }的通项a n 是关于x 的不等式x 2-x <nx 的解集中正整数的个数,f (n )=1a n +1+1a n +2+…+1a n +n.(1)求数列{a n }的通项公式;(2)若b n =a n2n ,求数列{b n }的前n 项和S n ; (3)求证:对n ≥2且n ∈N *恒有712≤f (n )<1. (1)解 x 2-x <nx 等价于x (x -n -1)<0,解得x ∈(0,n +1),其中有正整数n 个,于是a n =n . (2)解 b n =n 2n =n ·⎝ ⎛⎭⎪⎫12n , S n =b 1+b 2+…+b n=1×12+2×⎝ ⎛⎭⎪⎫122+…+n ·⎝ ⎛⎭⎪⎫12n , 12S n =1×⎝ ⎛⎭⎪⎫122+2×⎝ ⎛⎭⎪⎫123+…+n ·⎝ ⎛⎭⎪⎫12n +1, 两式相减得,12S n =12+⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫123+…+⎝ ⎛⎭⎪⎫12n -n ·⎝ ⎛⎭⎪⎫12n +1 =1-⎝ ⎛⎭⎪⎫12n -n ·⎝ ⎛⎭⎪⎫12n +1, 故S n =2-⎝ ⎛⎭⎪⎫12n -1-n ·⎝ ⎛⎭⎪⎫12n . (3)证明 f (n )=1a n +1+1a n +2+…+1a n +n =1n +1+1n +2+…+1n +n <1n +1n +…+1n =1. 由f (n )=1a n +1+1a n +2+…+1a n +n =1n +1+1n +2+…+1n +n, 知f (n +1)=1n +2+1n +3+…+12n +12n +1+12n +2, 于是f (n +1)-f (n )=12n +1+12n +2-1n +1>12n +2+12n +2-1n +1=0, 故f (n +1)>f (n ),∴当n ≥2且n ∈N *时,f (n )为增函数,∴f (n )≥f (2)=712, 综上可知712≤f (n )<1.。
8.推理与证明、复数、算法1.推理方法 (1)合情推理合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等),实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程,归纳和类比是合情推理常见的方法,在解决问题的过程中,合情推理具有猜测和发现结论、探索和提供思路的作用,有利于创新意识的培养.[问题1] 图1有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB,则图2有体积关系:__________________.(2)演绎推理演绎推理是指如果推理是从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.演绎推理的一般模式是“三段论”,包括:①大前提;②小前提;③结论. 2.证明方法 (1)直接证明 ①综合法一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫综合法.综合法又叫顺推法或由因导果法. ②分析法一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明方法叫分析法.分析法又叫逆推法或执果索因法. (2)间接证明——反证法一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法. (3)数学归纳法一般地,证明一个与正整数n 有关的命题,可按下列步骤进行: ①(归纳奠基)证明当n 取第一个值n 0 (n 0∈N *)时命题成立;②(归纳递推)假设n =k (k ≥n 0,k ∈N *)时命题成立,证明当n =k +1时命题也成立. 只要完成这两个步骤,就可以断定命题对从n 0开始的所有正整数n 都成立.上述证明方法叫做数学归纳法.[问题2] 用反证法证明命题“三角形三个内角至少有一个不大于60°”时,应假设________________________________________________________________________. 3.复数的概念对于复数a +b i(a ,b ∈R ),a 叫做实部,b 叫做虚部;当且仅当b =0时,复数a +b i(a ,b ∈R )是实数a ;当b ≠0时,复数a +b i 叫做虚数;当a =0且b ≠0时,复数a +b i 叫做纯虚数. [问题3] 若复数z =lg(m 2-m -2)+i·lg(m 2+3m +3)为实数,则实数m 的值为________. 4.复数的运算法则与实数运算法则相同,主要是除法法则的运用,另外复数中的几个常用结论应记熟:(1)(1±i)2=±2i;(2)1+i 1-i =i ;1-i 1+i=-i ;(3)i 4n =1;i 4n +1=i ;i 4n +2=-1;i 4n +3=-i ;i 4n +i 4n +1+i4n +2+i4n +3=0;(4)设ω=-12±32i ,则ω0=1;ω2=ω;ω3=1;1+ω+ω2=0.[问题4] 已知复数z =1-3i3+i ,z 是z 的共轭复数,则|z |=________.5.算法(1)控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束.(2)条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值.[问题5] 执行如图所示的程序框图,如果输出a =341,那么判断框中可以是( )A .k <4?B .k >5?C .k <6?D .k <7?易错点1 复数概念不清例1 设复数z 1=1-i ,z 2=a +2i ,若z 2z 1的虚部是实部的2倍,则实数a 的值为( ) A .6 B .-6 C .2 D .-2错因分析 本题易出现的问题有两个方面,一是混淆复数的实部和虚部;二是计算z 2z 1时,错用运算法则导致失误. 解析z 2z 1=a +2i 1-i =a +2i 1+i 1-i 1+i =a -2+2+a i 2,故该复数的实部是a -22,虚部是a +22.由题意,知a +22=2×a -22.解得a =6.故选A. 答案 A易错点2 循环结束条件判断不准例2 如图所示是一算法的程序框图,若此程序运行结果为S =720,则在判断框中应填入关于k 的判断条件是( )A .k ≥6?B .k ≥7?C .k ≥8?D .k ≥9?错因分析 本题可以按照开始的输入值、程序执行的规律和输出结果进行综合解决.容易出错的就是不清楚这个判断条件是什么,本题是当不满足判断框中的条件时结束循环,当判断框中的条件满足时执行循环,故应该从k =10开始按照递减的方式逐步进行,直到S 的输出结果为720.解析 第一次运行结果为S =10,k =9,第二次运行结果为S =10×9=90,k =8;第三次运行结果为S =720,k =7.这个程序满足判断框的条件时执行循环,故判断条件是k ≥8?.故选C. 答案 C易错点3 类比不当例3 已知圆的面积S (R )=πR 2,显然S ′(R )=2πR 表示的是圆的周长:C =2πR .把该结论类比到空间,写出球中的类似结论:________________________________________. 错因分析 该题易出现的问题是从平面圆类比到空间球的结论时缺乏对应特点的分析,误以为是球的表面积的导数问题,而无法得到正确的结论.解析 平面图形的面积应该和空间几何体的表面积问题类比;平面图形的周长应和空间几何体的表面积类比.所以半径为R 的球的体积为V (R )=43πR 3,其导函数V ′(R )=43×3πR 2=4πR 2,显然表示的是球的表面积.所以结论是:半径为R 的球的体积为V (R )=43πR 3,其导函数表示的是球的表面积:S =4πR 2.答案 半径为R 的球的体积为V (R )=43πR 3,其导函数表示的是球的表面积:S =4πR 2易错点4 归纳假设使用不当例4 用数学归纳法证明:12+122+…+12n <1(n ∈N *).错因分析 解答本题时,归纳假设使用不当,如果直接应用归纳假设到n =k +1有12+122+…+12k +12k +1=f (k )+12k +1<1+12k +1<1不成立,就会致使证明中断或随便下结论. 证明 (1)当n =1时,f (1)=12<1成立;(2)假设当n =k (k ∈N *且k ≥1)时,f (k )<1成立,即12+122+…+12k <1成立,则当n =k +1时,f (k +1)=12+122+…+12k +12k +1=12+12(12+122+…+12k )=12+12f (k )<12+12×1=1.即当n =k +1时,命题也成立.由(1)(2),知不等式对任意n ∈N *都成立.1.(2015·青岛质检)设i 是虚数单位,复数1+a i2-i 为纯虚数,则实数a 的值为( )A .2B .-2C .-12D.122.(2015·温州五校联考)集合M ={4,-3m +(m -3)i}(其中i 为虚数单位),N ={-9,3},若A ∩N ≠∅,则实数m 的值为( ) A .-1 B .-3 C .3或-3 D .33.(2015·北京海淀区期末)阅读如图所示的程序框图,如果输入的n 的值为6,那么运行相应程序,输出的n 的值为( )A .3B .5C .10D .164.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是( )A .n +(n +1)+(n +2)+…+(3n -2)=n 2B .n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2C .n +(n +1)+(n +2)+…+(3n -1)=n 2D .n +(n +1)+(n +2)+…+(3n -1)=(2n -1)25.设f (n )=⎝⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n (n ∈N *),则集合{f (n )}中元素的个数为( )A .1B .2C .3D .无数个6.(2015·沈阳质量监测)有如图所示的程序框图,则该程序框图表示的算法的功能是( )A .输出使1×2×4×…×n ≥1 000成立的最小整数nB .输出使1×2×4×…×n ≥1 000成立的最大整数nC .输出使1×2×4×…×n ≥1 000成立的最大整数n +2D .输出使1×2×4×…×n ≥1 000成立的最小整数n +2 7.(2015·广东七校联考)将全体正整数排成一个三角形数阵 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 …根据以上排列规律,数阵中第n (n ≥3)行的从左至右的第3个数是________.8.若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1-z 2)i 的实部为________. 9.在平面上有如下命题“O 为直线AB 外的一点,则点P 在直线AB 上的充要条件是:存在实数x ,y ,满足OP →=x ·OA →+y ·OB →,且x +y =1”,类比此命题,给出在空间相应的一个正确命题是________________________________________________________________________ ________________________________________________________________________. 10.(2014·湖北)设a 是一个各位数字都不是0且没有重复数字的三位数.将组成a 的3个数字按从小到大排成的三位数记为I (a ),按从大到小排成的三位数记为D (a )(例如a =815,则I (a )=158,D (a )=851).阅读如图所示的程序框图,运行相应的程序,任意输入一个a ,输出的结果b=________.学生用书答案精析8.推理与证明、复数、算法 要点回扣 [问题1]V P -A ′B ′C ′V P -ABC =PA ′·PB ′·PC ′PA ·PB ·PC[问题2] 三角形三个内角都大于60° [问题3] -2 [问题4] 1[问题5] C [根据程序框图,第一次循环,a =0+1=1,k =1+1=2; 第二次循环,a =4×1+1=5,k =2+1=3; 第三次循环,a =4×5+1=21,k =3+1=4; 第四次循环,a =4×21+1=85,k =4+1=5; 第五次循环,a =4×85+1=341,k =5+1=6.要使输出的a =341,判断框中可以是“k <6?”或“k ≤5?”. 故选C.] 查缺补漏1.A [∵1+a i 2-i =1+a i2+i 2-i 2+i =2-a 5+2a +15i ,∴2-a 5=0,2a +15≠0,∴a =2.] 2.D [由题意可知-3m +(m -3)i 必为实数,则m =3,经检验符合题意.]3.B [输入n =6时,第一次循环,有n =62=3,i =0+1=1;第二次循环,有n =3×3+1=10,i =1+1=2;第三次循环,有n =102=5,i =2+1=3,退出循环,此时n =5.]4.B [1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以归纳:等式左边为连续自然数的和,有2n -1项,且第一项为n ,则最后一项为3n -2,等式右边均为2n -1的平方.] 5.C [f (n )=⎝⎛⎭⎪⎫1+i 1-i n +⎝ ⎛⎭⎪⎫1-i 1+i n=i n+(-i)n ,f (1)=0,f (2)=-2,f (3)=0,f (4)=2,f (5)=0,…∴集合中共有3个元素.]6.D [依题意与题中的程序框图可知,该程序框图表示的算法的功能是输出使1×2×4×…×n ≥1 000成立的最小整数n +2.]7.n 2-n +62解析 前n -1行共用了[1+n -1]n -12个数,即n n -12个数,也就是说第n -1行的最后一个数就是n n -12,那么,第n (n ≥3)行的从左至右的第三个数是n n -12+3,也就是n 2-n +62.8.-20解析 (z 1-z 2)i =(-2+20i)i =-20-2i ,故(z 1-z 2)i 的实部为-20.9.O 为平面ABC 外一点,则点P 在平面ABC 上的充要条件是:存在实数x ,y ,z ,满足OP →=x ·OA→+y ·OB →+z ·OC →,且x +y +z =110.495解析 取a 1=815⇒b 1=851-158=693≠815⇒a 2=693;由a 2=693⇒b 2=963-369=594≠693⇒a 3=594;由a 3=594⇒b 3=954-459=495≠594⇒a 4=495;由a 4=495⇒b 4=954-459=495=a 4⇒b =495.。
高中数学题分客观题与主观题两大类,而客观题分为选择题与填空题,选择题属于“小灵通”题,其解题过程“不讲道理”,所以解答选择题的基本策略是:充分地利用题干和选项两方面的条件所提供的信息作出判断,先定性后定量,先特殊后推理,先间接后直接,先排除后求解.而填空题是不要求写出计算或推理过程,只需要将结论直接写出的“求解题”.解答此类题目的方法一般有直接法、特例法、数形结合法、构造法、排除法等.,技法一直接法女生入选,则不同的选法共有________种;(用数字填写答案)(2)(2018·北京卷)若双曲线x2a2-y24=1(a>0)的离心率为52,则a=________.解析:(1)按参加的女生人数可分两类:只有1位女生参加有C12C24种,有2位女生参加有C22C14种.故共有C12C24+C22C14=2×6+4=16(种).(2)由e=ca=a2+b2a2知a2+4a2=⎝⎛⎭⎫522=54,∴a2=16.∵a>0,∴a=4.答案:(1)16(2)4[方法点津] 直接法解决计算型客观题的关键 (1)要根据题目的要求准确转化为相关基本量的运算.(2)注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果. ◎ 变式训练1.记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4D .8解析: 法一:设公差为d ,则a 4+a 5=a 1+3d +a 1+4d =2a 1+7d =24,S 6=6a 1+6×52×d =6a 1+15d =48.联立得方程组⎩⎪⎨⎪⎧ 2a 1+7d =24,6a 1+15d =48.解得⎩⎪⎨⎪⎧a 1=-2,d =4.法二:因为S 6=6(a 1+a 6)2=3(a 3+a 4)=48,即a 3+a 4=16,则(a 4+a 5)-(a 3+a 4)=24-16=8,即a 5-a 3=2d =8,可得d =4.答案: C2.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析: 在△ABC 中,由cos A =-14可得sin A =154,所以有⎩⎪⎨⎪⎧ 12bc ×154=315,b -c =2,a 2=b 2+c 2-2bc ×⎝⎛⎭⎫-14,解得⎩⎪⎨⎪⎧a =8,b =6,c =4.答案: 8 技法二 排除法(1)(2018·全国卷Ⅱ)函数f (x )=e x 2的图象大致为( )(2)(2016·浙江卷)已知实数a ,b ,c ,( ) A .若|a 2+b +c |+|a +b 2+c |≤1,则a 2+b 2+c 2<100 B .若|a 2+b +c |+|a 2+b -c |≤1,则a 2+b 2+c 2<100 C .若|a +b +c 2|+|a +b -c 2|≤1,则a 2+b 2+c 2<100 D .若|a 2+b +c |+|a +b 2-c |≤1,则a 2+b 2+c 2<100 解析: (1)∵y =e x -e -x 是奇函数,y =x 2是偶函数, ∴f (x )=e x -e -x x 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >1,排除C 选项.故选B.(2)取a =10,b =10,c =-110,可排除选项A ;取a =10,b =-100,c =0,可排除选项B ;取a =10,b =-10,c =0,可排除选项C.答案: (1)B (2)D[方法点津] 排除法的使用技巧(1)当题目中的条件不唯一时,先根据某些条件找出明显与之矛盾的选项予以否定. (2)再根据另一些条件在缩小的范围内找出矛盾,这样逐步排除,直至得到正确的选择. ◎ 变式训练3.方程ax 2+2x +1=0至少有一个负根的充要条件是( ) A .0<a ≤1B .a <1C .a ≤1D .0<a ≤1或a <0解析: 当a =0时,x =-12,故排除A 、D.当a =1时,x =-1,排除B. 答案: C4.已知a ,b 为实数,且a ≠b ,a <0,则( ) A .a >2b -b 2aB .a <2b -b 2aC .a ≥2b -b 2aD .a ≤2b -b 2a解析: 法一:a =-1,b =1,则2b -b 2a=2+1=3,法二:因为a ,b 为实数,且a ≠b ,a <0,所以a -⎝⎛⎭⎫2b -b 2a =(a -b )2a <0,所以a <2b -b 2a.答案: B 技法三 特例法111C 三点的截面把棱柱分成两部分,则其体积之比为( ) A .3∶1 B .2∶1 C .4∶1D.3∶1(2)已知双曲线E :x 2a 2-y 2b 2=1(a >0,b >0).若矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是________.解析: (1)将P ,Q 置于特殊位置:P →A 1,Q →B ,此时仍满足条件A 1P =BQ (=0),则有VC -AA 1B =VA 1-ABC =VABC -A 1B 1C 13,故过P ,Q ,C 三点的截面把棱柱分成的两部分的体积之比为2∶1.(2)如图,不妨设|AB |=3,则|BC |=2,双曲线的左、右焦点分别为F 1,F 2,则AB 的中点为F 1,故|DF 1|=52,|DF 2|=32,根据双曲线的定义知2a =1,又2c =2,所以该双曲线的离心率为2c2a=2.答案: (1)B (2)2[方法点津] 特值法解选择题注意两点第一,取特例尽可能简单,有利于计算和推理;第二,若在不同的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.◎ 变式训练5.计算tan ⎝⎛⎭⎫π4+αcos 2α2cos 2⎝⎛⎭⎫π4-α=( )A .-2B .2C .-1D .1解析: 取α=π12,则原式=tan ⎝⎛⎭⎫π4+π12cos π62cos 2⎝⎛⎭⎫π4-π12=3×322×34=1.答案: D6.如图所示,在▱ABCD 中,AP ⊥BD ,垂足为点P ,且AP =3,则AP →·AC →=________.解析: 把▱ABCD 看成正方形,则点P 为对角线的交点,AC =6,则AP →·AC →=18. 答案: 18技法四 图解法(数形结合法)有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2]∪[23,+∞)D .(0,2]∪[3,+∞)(2)(2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是( )A .(-∞,-1]B .(0,+∞)C .(-1,0)D .(-∞,0)解析:(1)①当0<m ≤1时,在同一平面直角坐标系中作出函数y =(mx -1)2与y =x +m 的图象,如图.易知此时两函数图象在x ∈[0,1]上有且只有一个交点;②当m >1时,在同一平面直角坐标系中作出函数y =(mx -1)2与y =x +m 的图象,如图.要满足题意,则(m -1)2≥1+m ,解得m ≥3或m ≤0(舍去), ∴m ≥3.综上,正实数m 的取值范围为(0,1]∪[3,+∞).(2)∵f (x )=⎩⎪⎨⎪⎧2-x ,x ≤0,1,x >0,∴函数f (x )的图象如图所示. 由图可知,当x +1≤0且2x ≤0时, 函数f (x )为减函数,故 f (x +1)<f (2x )转化为x +1>2x . 此时x ≤-1.当2x <0且x +1>0时,f (2x )>1,f (x +1)=1, 满足f (x +1)<f (2x ). 此时-1<x <0.综上,不等式f (x +1)<f (2x )的解集为(-∞,-1]∪(-1,0)=(-∞,0). 故选D.答案: (1)B (2)D[方法点津] 平面几何图形、Venn 图、三角函数线、函数的图象等,都是常用的图形.利用函数图象或某些数学知识的几何意义,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某些图形结合起来,利用图象的直观性,再辅以简单计算,确定正确答案,从而有效地降低这类客观题的错误率.◎ 变式训练7.若两个非零向量a ,b 满足|a +b |=|a -b |=2|a |,则向量a +b 与a -b 的夹角是( ) A.π6 B .π3C.2π3D .5π6解析: 在直角三角形中,如果直角边为斜边的一半,则该直角边所对的角为π6,如图,所求的夹角为2π3,故选C.答案: C8.不等式⎝⎛⎭⎫|x |-π2·sin x <0,x ∈[-π,2π]的解集为________.解析: 在同一坐标系中分别作出y =|x |-π2与y =sin x 的图象:根据图象可得不等式的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2∪(π,2π). 答案: ⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2∪(π,2π) 技法五 构造法(1)已知m ,n ∈(2,e),且1n 2-1m 2<ln mn ,则( )A .m >nB .m <nC .m >2+1nD .m ,n 的大小关系不确定(2)点P 是正方体ABCD -A 1B 1C 1D 1的底面A 1B 1C 1D 1内任意一点,AP 与棱AA 1,AB ,AD 的夹角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=________.解析: (1)由不等式可得1n 2-1m2<ln m -ln n ,即1n 2+ln n <1m 2+ln m . 设f (x )=1x2+ln x (x ∈(2,e)),则f ′(x )=-2x 3+1x =x 2-2x3.因为x ∈(2,e),所以f ′(x )>0,故函数f (x )在(2,e)上单调递增. 因为f (n )<f (m ),所以n <m .故选A.(2)如图,过点P 作平面PQQ ′P ′与平面PRR ′P ′,使它们分别与平面B 1C 1CB 和平面C 1D 1DC 平行,则构成一个长方体AQ ′P ′R ′-A 1QPR ,故cos 2α+cos 2β+cos 2γ=1.答案: (1)A (2)1[方法点津] 破解此类题的关键:一是“取特殊模型”,即构造长方体或正方体模型,把不规则的空间几何体(空间线、面)放置其中去研究;二是“用公式(用定理)”,即利用柱体、锥体的表面积与体积公式(空间线、面平行与垂直的判定定理、性质定理),即可求其表面积与体积(判断空间线、面平行与垂直关系).◎ 变式训练9.设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析: ∵a n +1=2S n +1, ∴S n +1-S n =2S n +1,∴S n +1=3S n +1,∴S n +1+12=3⎝⎛⎭⎫S n +12, ∴数列⎩⎨⎧⎭⎬⎫S n +12是公比为3的等比数列,∴S 2+12S 1+12=3.又S 2=4,∴S 1=1,∴a 1=1,∴S 5+12=⎝⎛⎭⎫S 1+12×34=32×34=2432,∴S 5=121. 答案: 1 12110.如图,已知球O 的球面上有四点A ,B ,C ,D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析: 如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62,故球O 的体积V =4πR 33=6π.答案:6π专题一集合、常用逻辑用语、不等式、平面向量、算法、复数、推理与证明第1课时集合与常用逻辑用语高考对本部分考查主要从以下方面进行:(1)对于集合,历年的高考以考查运算为主,往往与映射、函数、不等式、方程等知识融合在一起,体现出集合运算的工具性作用.(2)对于常用逻辑用语的考查,主要有两个命题重点,一是以其他数学知识为载体,考查充分条件、必要条件;二是利用命题的真假来确定参数.题型一集合的概念及运算集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.1.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9 B.8C.5 D.4解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.答案: A2.(2018·天津卷)设全集为R,集合A={x|0<x<2},B={x|x≥1},则A∩(∁R B)=() A.{x|0<x≤1} B.{x|0<x<1}C.{x|1≤x<2} D.{x|0<x<2}解析:全集为R,B={x|x≥1},则∁R B={x|x<1}.∵集合A={x|0<x<2},∴A∩(∁R B)={x|0<x<1}.故选B.答案: B3.(2018·惠州市第二次调研)已知集合A={x|x<a},B={x|x2-3x+2<0},若A∩B=B,则实数a的取值范围是()A.a<1 B.a≤1C.a>2 D.a≥2解析:集合B={x|x2-3x+2<0}={x|1<x<2},由A∩B=B可得B⊆A,所以a≥2.故选D.答案: D1.集合运算中的常用方法(1)数轴法:若已知的集合是不等式的解集,用数轴法求解.(2)图象法:若已知的集合是点集,用图象法求解.(3)Venn图法:若已知的集合是抽象集合,用Venn图法求解.2.[警示]忽视空集的讨论,若遇到A⊆B,A∩B=A时,要考虑A为空集的可能性.题型二命题真假的判断与否定1.四种命题的关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.2.全(特)称命题及其否定(1)全称命题p:∀x∈M,p(x).它的否定綈p:∃x0∈M,綈p(x0).(2)特称命题p:∃x0∈M,p(x0).它的否定綈p:∀x∈M,綈p(x).1.下列命题中为真命题的是()A.命题p:∃n∈N,n2>2n,则綈p为∀n∈N,n2>2nB.命题“若x>y,则x>|y|”的逆命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若tan x=3,则x=π3”的逆否命题解析:对于选项A,p的綈p为∀n∈N,n2≤2n,故选项A为假命题;对于选项B,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知选项B 为真命题;对于选项C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x=-2时,x 2+x -2=0,故选项C 为假命题;对于选项D ,命题“若tan x =3,则x =π3”的逆否命题为“若x ≠π3,则tan x ≠3”,易知当x =4π3时,tan x =3,故选项D 为假命题.综上可知,选B.答案: B2.(2018·太原市模拟试题(一))已知命题p :∃x 0∈R ,x 20-x 0+1≥0;命题q :若a <b ,则1a >1b,则下列为真命题的是( ) A .p ∧qB .p ∧綈qC .綈p ∧qD .綈p ∧綈q解析: 对于命题p ,当x 0=0时,1≥0成立,所以命题p 为真命题,命题綈p 为假命题;对于命题q ,当a =-1,b =1时,1a <1b,所以命题q 为假命题,命题綈q 为真命题,所以p ∧綈q 为真命题,故选B.答案: B3.(2018·北京卷)能说明“若f (x )>f (0)对任意的x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________.解析: 设f (x )=sin x ,则f (x )在⎣⎡⎦⎤0,π2上是增函数,在⎣⎡⎦⎤π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin 0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.答案: f (x )=sin x ,x ∈[0,2](答案不唯一)1.含逻辑联结词的命题真假的等价关系(1)p ∨q 真⇔p ,q 至少一个真⇔(綈p )∧(綈q )假.(2)p ∨q 假⇔p ,q 均假⇔(綈p )∧(綈q )真.(3)p ∧q 真⇔p ,q 均真⇔(綈p )∨(綈q )假.(4)p ∧q 假⇔p ,q 至少一个假⇔(綈p )∨(綈q )真.(5)綈p 真⇔p 假;綈p 假⇔p 真.2.[警示] “否命题”是对原命题“若p ,则q ”既否定其条件,又否定其结论;而“命题p 的否定”即:非p ,只是否定命题p 的结论.题型三 充要条件的判断若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p ,q 互为充要条件.1.(2018·天津卷)设x ∈R ,则“⎪⎪⎪⎪x -12<12”是“x 3<1”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析: 由“⎪⎪⎪⎪x -12<12”得0<x <1,则0<x 3<1,即“⎪⎪⎪⎪x -12<12”⇒“x 3<1”;由“x 3<1”得x <1,当x ≤0时,⎪⎪⎪⎪x -12≥12,即“x 3<1”⇒/ “⎪⎪⎪⎪x -12<12”.所以“⎪⎪⎪⎪x -12<12”是“x 3<1”的充分而不必要条件.答案: A2.(2018·北京卷)设a ,b 均为单位向量,则“|a -3b |=|3a +b |”是“a ⊥b ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析: 由|a -3b |=|3a +b |,得(a -3b )2=(3a +b )2,即a 2+9b 2-6a·b =9a 2+b 2+6a·b .又a ,b 均为单位向量,所以a 2=b 2=1,所以a·b =0,能推出a ⊥b .由a ⊥b 得|a -3b |=10,|3a +b |=10,能推出|a -3b |=|3a +b |,所以“|a -3b |=|3a +b |”是“a ⊥b ”的充分必要条件.故选C.答案: C3.甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D.甲既不是乙的充分条件,也不是乙的必要条件解析:“甲⇒乙”,即“x≠2或y≠3”⇒“x+y≠5”,其逆否命题为:“x+y=5”⇒“x=2且y=3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.答案: B1.充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇒/ p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A⊆B,则A是B的充分条件(B是A的必要条件);若A=B,则A是B的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.2.[警示]“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A是B 的充分不必要条件”则是指A能推出B,且B不能推出A.【课时作业】(本栏目内容,在学生用书中以独立形式分册装订!) 1.(2018·全国卷Ⅰ)已知集合A={x|x2-x-2>0},则∁R A=()A.{x|-1<x<2}B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2}D.{x|x≤-1}∪{x|x≥2}解析:∵x2-x-2>0,∴(x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.x|-1≤x≤2.由图可得∁R A={}故选B.答案: B2.(2018·天津卷)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-1≤x<2},则(A∪B)∩CA .{-1,1}B .{0,1}C .{-1,0,1}D .{2,3,4}解析: ∵A ={1,2,3,4},B ={-1,0,2,3},∴A ∪B ={-1,0,1,2,3,4}.又C ={x ∈R |-1≤x <2},∴(A ∪B )∩C ={-1,0,1}.答案: C3.(2018·安徽皖南八校3月联考)已知集合A ={(x ,y )|x 2=4y },B ={(x ,y )|y =x },则A ∩B 的真子集个数为( )A .1B .3C .5D .7解析: 由⎩⎪⎨⎪⎧ x 2=4y ,y =x 得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =4,y =4,即A ∩B ={(0,0),(4,4)},∴A ∩B 的真子集个数为22-1=3.故选B.答案: B4.已知f (x )=3sin x -πx ,命题p :∀x ∈⎝⎛⎭⎫0,π2,f (x )<0,则( ) A .p 是假命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )≥0 B .p 是假命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 C .p 是真命题,綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0 D .p 是真命题,綈p :∀x ∈⎝⎛⎭⎫0,π2,f (x )>0 解析: 因为f ′(x )=3cos x -π,所以当x ∈⎝⎛⎭⎫0,π2时,f ′(x )<0,函数f (x )单调递减,即对∀x ∈⎝⎛⎭⎫0,π2,f (x )<f (0)=0恒成立,所以p 是真命题.又全称命题的否定是特称命题,所以綈p :∃x 0∈⎝⎛⎭⎫0,π2,f (x 0)≥0. 答案: C5.(2018·北京卷)设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:a,b,c,d是非零实数,若a<0,d<0,b>0,c>0,且ad=bc,则a,b,c,d 不成等比数列(可以假设a=-2,d=-3,b=2,c=3).若a,b,c,d成等比数列,则由等比数列的性质可知ad=bc.所以“ad=bc”是“a,b,c,d成等比数列”的必要而不充分条件.故选B.答案: B6.(2018·洛阳市第一统考)设全集U=R,集合A={x|log2x≤1},B={x|x2+x-2≥0},则A∩∁U B=()A.(0,1] B.(-2,2]C.(0,1) D.[-2,2]解析:不等式log2x≤1即log2x≤log22,由y=log2x在(0,+∞)上单调递增,得不等式的解集为(0,2],即A=(0,2].由x2+x-2≥0,得(x+2)(x-1)≥0,得B={x|x≤-2或x≥1},所以∁U B=(-2,1),从而A∩∁U B=(0,1).故选C.答案: C7.设全集U是自然数集N,集合A={x|x2>9,x∈N},B={0,2,4},则图中阴影部分所表示的集合是()A.{x|x>2,x∈N} B.{x|x≤2,x∈N}C.{0,2} D.{1,2}解析:由题图可知,图中阴影部分所表示的集合是B∩(∁U A),∁U A={x|x2≤9,x∈N}={x|-3≤x≤3,x∈N}={0,1,2,3},因为B={0,2,4},所以B∩(∁U A)={0,2}.答案: C8.下列结论错误的是()A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.命题“x=4”是“x2-3x-4=0”的充分条件C .命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题D .命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0” 解析: C 项命题的逆命题为“若方程x 2+x -m =0有实根,则m >0”.若方程有实根,则Δ=1+4m ≥0,即m ≥-14,不能推出m >0.所以不是真命题,故选C. 答案: C9.(2018·陕西省质量检测(一))已知命题p :对任意的x ∈R ,总有2x >0;q :“x >1”是“x >2”的充分不必要条件,则下列命题为真命题的是( )A .p ∧qB .綈p ∧綈qC .綈p ∧qD .p ∧綈q解析: 由指数函数的性质知命题p 为真命题.易知x >1是x >2的必要不充分条件,所以命题q 是假命题.由复合命题真值表可知p ∧綈q 是真命题,故选D.答案: D10.(2018·辽宁省五校协作体联考)已知命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,则实数a 的取值范围为( )A .(-∞,0)B .[0,4]C .[4,+∞)D .(0,4)解析: 因为命题“∃x 0∈R,4x 20+(a -2)x 0+14≤0”是假命题,所以其否定“∀x ∈R,4x 2+(a -2)x +14>0”是真命题,则Δ=(a -2)2-4×4×14=a 2-4a <0,解得0<a <4,故选D. 答案: D11.(2018·山东泰安3月联考)下列命题正确的是( )A .命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x 2-1≤0”B .若命题p 为假命题,命题q 是真命题,则(綈p )∨(綈q )为假命题C .命题“若a 与b 的夹角为锐角,则a·b >0”及它的逆命题均为真命题D .命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”解析: 对于选项A ,命题“∃x 0∈[0,1],使x 20-1≥0”的否定为“∀x ∈[0,1],都有x2-1<0”,故A 项错误;对于选项B ,p 为假命题,则綈p 为真命题,q 为真命题,则綈q 为假命题,所以(綈p )∨(綈q )为真命题,故B 项错误;对于选项C ,原命题为真命题,若a·b >0,则a 与b 的夹角可能为锐角或零角,所以原命题的逆命题为假命题,故C 项错误;对于选项D ,命题“若x 2+x =0,则x =0或x =-1”的逆否命题为“若x ≠0且x ≠-1,则x 2+x ≠0”,故选项D 正确.因此选D.答案: D12.(2018·广东汕头一模)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,2x -a >0.若“綈p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( )A .(-∞,-2)∪(1,+∞)B .(-2,1]C .(1,2)D .(1,+∞)解析: 方程x 2+ax +1=0无实根等价于Δ=a 2-4<0,即-2<a <2.∀x >0,2x -a >0等价于a <2x 在(0,+∞)上恒成立,即a ≤1.因“綈p ”是假命题,则p 是真命题,又因“p ∧q ”是假命题,则q 是假命题,∴⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2,所以实数a 的取值范围是(1,2),故选C. 答案: C13.设命题p :∀a >0,a ≠1,函数f (x )=a x -x -a 有零点,则綈p :____________________. 解析: 全称命题的否定为特称命题,綈p :∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点.答案: ∃a 0>0,a 0≠1,函数f (x )=a x 0-x -a 0没有零点14.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 017+b 2 017的值为________. 解析: 因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧ b a =0,a 2=1或⎩⎪⎨⎪⎧ b a =0,a +b =1,解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),则a 2 017+b 2 017=-1.答案: -115.设全集U ={(x ,y )|x ∈R ,y ∈R },集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪ y -3x -2=1,P ={(x ,y )|y ≠x +1},则∁U (M ∪P )=________.解析: 集合M ={(x ,y )|y =x +1,且x ≠2,y ≠3},所以M∪P={(x,y)|x∈R,y∈R,且x≠2,y≠3}.则∁U(M∪P)={(2,3)}.答案:{(2,3)}16.a,b,c为三个人,命题A:“如果b的年龄不是最大,那么a的年龄最小”和命题B:“如果c不是年龄最小,那么a的年龄最大”都是真命题,则a,b,c的年龄由小到大依次是________.解析:显然命题A和B的原命题的结论是矛盾的,因此我们应该从它们的逆否命题来看.由命题A可知,当b不是最大时,则a是最小,所以c最大,即c>b>a;而它的逆否命题也为真,即“若a的年龄不是最小,则b的年龄是最大”为真,即b>a>c.同理,由命题B为真可得a>c>b或b>a>c.故由A与B均为真可知b>a>c,所以a,b,c三人的年龄大小顺序是:b最大,a次之,c最小.答案:c,a,b第2课时不等式高考对本部分考查主要从以下方面进行:(1)对于解不等式,主要涉及一元二次不等式、分式不等式、对数和指数不等式,并且以一元二次不等式为主.不等式的解法是基本功,它渗透在很多题型中.(2)对于线性规划知识的考查主要通过图示的方法获得最优解或已知最优解求参数,此类题型有时需要借助一个实际背景.其中以考查线性目标函数的最值为重点,常结合其代数式的几何意义(如斜率、截距、距离、面积等)来求解.(3)对于基本不等式重在考查对代数式的转化过程及适用条件、等号成立条件的检验,在求最值或不等式恒成立问题中常用基本不等式.题型一 不等式的解法 1.一元二次不等式的解法先化为一般形式ax 2+bx +c >0(a ≠0),再求相应一元二次方程ax 2+bx +c =0(a ≠0)的根,最后根据相应二次函数图象与x 轴的位置关系,确定一元二次不等式的解集.2.简单分式不等式的解法 (1)f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0); (2)f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. 1.如果关于x 的不等式x 2<ax +b 的解集是{x |1<x <3},那么b a 等于( ) A .-81 B .81 C .-64D .64解析: 因为不等式x 2<ax +b 可化为x 2-ax -b <0,其解集是{x |1<x <3},所以x =1和x =3是关于x 的一元二次方程x 2-ax -b =0的两个实数根,所以由一元二次方程根与系数的关系,得⎩⎪⎨⎪⎧ 1+3=a ,1×3=-b ,解得⎩⎪⎨⎪⎧a =4,b =-3.所以b a =(-3)4=81.故选B.答案: B2.若集合A ={x |x -x 2>0},B ={x |(x +1)(m -x )>0},则“m >1”是“A ∩B ≠∅”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析: A ={x |x -x 2>0}=(0,1),B ={x |(x +1)(m -x )>0}={x |(x +1)(x -m )<0}.当m >1时,B =(-1,m ),此时A ⊆B ,必有A ∩B ≠∅.当A ∩B ≠∅时,有m >0.所以“m >1”是“A ∩B ≠∅”的充分而不必要条件.故选A.答案: A3.不等式(a -2)x 2+2(a -2)x -4<0的解集为R ,则实数a 的取值范围是________. 解析: 当a =2时,不等式化为-4<0,恒成立;当a ≠2时,由条件知⎩⎪⎨⎪⎧a -2<0Δ=4(a -2)2+16(a -2)<0,解得-2<a <2.综上所述,a 的取值范围是(-2,2].答案: (-2,2]4.(2018·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.解析: 设x <0,则-x >0,因为f (x )是奇函数,所以f (x )=-f (-x )=-(x 2+2x ). 又f (0)=0,于是不等式f (x )>x 等价于⎩⎪⎨⎪⎧ x >0,x 2-2x >x 或⎩⎪⎨⎪⎧x <0,-x 2-2x >x ,解得x >3或-3<x <0.故不等式的解集为(-3,0)∪(3,+∞). 答案: (-3,0)∪(3,+∞)1.不等式的求解技巧(1)求解一元二次不等式的步骤:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. (3)有函数背景的不等式:灵活利用函数的性质(单调性、奇偶性、对称性等)与图象求解. 2.[警示] 解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.题型二 简单的线性规划问题 1.平面区域的确定方法平面区域的确定方法是“直线定界、特殊点定域”,二元一次不等式组所表示的平面区域是各个不等式所表示的区域的交集.2.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.1.(2018·天津卷)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y 的最大值为( )A .6B .19C .21D .45解析: 画出可行域如图中阴影部分所示,由z =3x +5y 得y =-35x+z 5. 设直线l 0为y =-35x ,平移直线l 0,当直线y =-35x +z5过点P (2,3)时,z 取得最大值,z max =3×2+5×3=21.答案:C2.(2018·开封市高三定位考试)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,x +2y +2≥0,x ≤1,则z =⎝⎛⎭⎫12x -2y的最大值是( ) A.132 B .116C .32D .64解析: 法一:作出不等式组表示的平面区域,如图中阴影部分所示,设u =x -2y ,由图知,当u =x -2y 经过点A (1,3)时取得最小值,即u min =1-2×3=-5,此时z =⎝⎛⎭⎫12x -2y取得最大值,即z max=⎝⎛⎭⎫12-5=32,故选C.法二:作出不等式组表示的平面区域,如图中阴影部分所示,易知z =⎝⎛⎭⎫12x -2y的最大值在区域的顶点处取得,只需求出顶点A ,B ,C 的坐标分别代入z =⎝⎛⎭⎫12x -2y,即可求得最大值.联立得⎩⎪⎨⎪⎧ x =1,x -y +2=0,解得A (1,3),代入可得z =32;联立得⎩⎪⎨⎪⎧x =1,x +2y +2=0,解得B ⎝⎛⎭⎫1,-32,代入可得z =116;联立得⎩⎪⎨⎪⎧x -y +2=0,x +2y +2=0,解得C (-2,0),代入可得z =4.通过比较可知,在点A (1,3)处,z =⎝⎛⎭⎫12x -2y取得最大值32,故选C. 答案: C3.(2018·广东肇庆二模)已知实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≥0,y ≥x ,y ≥-x +b ,若z =2x +y 的最小值为3,则实数b =( )A.94 B .32C .1D .34解析: 作出不等式组对应的平面区域,如图中阴影部分所示.由z =2x +y 得y =-2x +z , 平移直线y =-2x ,由图可知当直线y =-2x +z 经过点A 时,直线y =-2x +z 的截距最小,此时z 最小,为3,即2x +y =3.由⎩⎪⎨⎪⎧2x +y =3,y =2x ,解得⎩⎨⎧x =34,y =32,即A ⎝⎛⎭⎫34,32,又点A 也在直线y =-x +b 上,即32=-34+b ,∴b =94.故选A. 答案: A4.(2018·石家庄市质量检测(二))设变量x 、y 满足约束条件⎩⎪⎨⎪⎧x -3≤0,x +y ≥3,y -2≤0则y +1x的最大值为________.解析: 作出可行域,如图中阴影部分所示,而y +1x 表示区域内的动点(x ,y )与定点(0,-1)连线的斜率的取值范围,由图可知,当直线过点C (1,2)时,斜率最大,为2-(-1)1-0=3.答案: 35.(2018·合肥市第一次教学质量检测)某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A ,B 两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A ,B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为________千元.解析: 设生产甲产品x 件,生产乙产品y 件,利润为z 千元,则⎩⎪⎨⎪⎧2x +3y ≤480,6x +y ≤960,x ,y ∈N *,z=2x +y ,作出⎩⎪⎨⎪⎧2x +3y ≤480,6x +y ≤960,x >0,y >0的可行域如图中阴影部分所示,作出直线2x +y =0,平移该直线,当直线经过直线2x +3y =480与直线6x +y =960的交点(150,60)时,z 取得最大值,为360.答案:3601.线性规划中的参数问题及其求解思路(1)线性规划中的参数问题,就是已知目标函数的最值或其他限制条件,求约束条件或目标函数中所含参数的值或取值范围的问题.(2)求解策略:解决这类问题时,首先要注意对参数取值的讨论,将各种情况下的可行域画出来,以确定是否符合题意,然后在符合题意的可行域里,寻求最优解,从而确定参数的值.2.[警示] 解决线性规划问题应把握三点(1)首先要找到可行域,再注意目标函数所表示的几何意义,找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题要验证解决.(2)画可行域时应注意区域是否包含边界.(3)对目标函数z =Ax +By 中B 的符号,一定要注意B 的正负与z 的最值的对应,要结合图形分析.题型三 基本不等式 基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.1.下列结论正确的是( ) A .当x >0且x ≠1时,lg x +1lg x≥2 B .当x >0时,x +1x≥2 C .当x ≥2时,x +1x 的最小值为2D .当0<x ≤2时,x -1x无最大值解析: 由基本不等式的三个前提条件“一正、二定、三相等”来判断,A 中不能保证lg x 为正;C 中取等的条件不具备;D 中无法用基本不等式,x -1x 是单调增函数,有最大值,故选B.答案: B2.(2018·河南洛阳一模)若实数a ,b 满足1a +2b =ab ,则ab 的最小值为________.解析: 依题意知a >0,b >0,则1a +2b≥22ab =22ab,当且仅当1a =2b ,即b =2a 时,“=”成立.因为1a +2b =ab ,所以ab ≥22ab,即ab ≥22,所以ab 的最小值为2 2.答案: 2 23.设x >0,则函数y =x +22x +1-32的最小值是________.解析: y =x +22x +1-32=⎝⎛⎭⎫x +12+1x +12-2≥2-2=0.当且仅当x +12=1x +12,即x =12时等号成立.答案: 04.(2018·天津卷)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.解析: ∵a -3b +6=0,∴a -3b =-6,∴2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b =22-6=2×2-3=14,当且仅当⎩⎪⎨⎪⎧ a =-3b ,a -3b +6=0时等号成立,即⎩⎪⎨⎪⎧a =-3,b =1时取到等号. 答案: 141.利用不等式求最值的解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.[警示] 利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.【课时作业】(本栏目内容,在学生用书中以独立形式分册装订!)1.已知集合M ={x |x 2-4x >0},N ={x |m <x <8},若M ∩N ={x |6<x <n },则m +n =( ) A .10 B .12 C .14D .16解析: M ={x |x 2-4x >0}={x |x >4或x <0},N ={x |m <x <8},由于M ∩N ={x |6<x <n },∴m =6,n =8,∴m +n =14,故选C.答案: C2.若a <b <0,则下列不等式错误的是( )A.1a >1b B .1a -b >1aC .|a |>|b |D .a 2>b 2解析: 因为a <b <0,所以1a >1b ,故A 对.因为a <b <0,所以0<-b ,a <a -b <0, 所以1a >1a -b,故B 错.因为a <b <0,所以-a >-b >0,即|-a |>|-b |, 所以|a |>|b |,故C 对. 因为a <b <0,所以-a >-b >0, 所以(-a )2>(-b )2,即a 2>b 2,故D 对. 答案: B3.已知a ∈R ,不等式x -3x +a ≥1的解集为p ,且-2∉p ,则a 的取值范围为( )A .(-3,+∞)B .(-3,2)C .(-∞,2)∪(3,+∞)D .(-∞,-3)∪[2,+∞)解析: ∵-2∉p ,∴-2-3-2+a <1或-2+a =0,解得a ≥2或a <-3.答案: D4.(2018·北京卷)设集合A ={(x ,y )|x -y ≥1,ax +y >4,x -ay ≤2},则( ) A .对任意实数a ,(2,1)∈A B .对任意实数a ,(2,1)∉A C .当且仅当a <0时,(2,1)∉A D .当且仅当a ≤32时,(2,1)∉A解析: 若点(2,1)∈A ,则不等式x -y ≥1显然成立,且同时要满足⎩⎪⎨⎪⎧2a +1>4,2-a ≤2,即⎩⎪⎨⎪⎧a >32,a ≥0,解得a >32.即点(2,1)∈A ⇒a >32,其等价命题为a ≤32⇒点(2,1)∉A 成立.故选D.答案: D5.(2018·广东清远清城一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析: 关于x 的不等式ax -b <0的解集是(1,+∞),即不等式ax <b 的解集是(1,+∞),∴a =b <0,∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,∴所求解集是(-1,3).故选C.答案: C6.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -4≤0,-2≤x <2,y ≤1,若z =2x -y ,则z 的取值范围是( )A .[-5,6)B .[-5,6]C .(2,9)D .[-5,9]解析: 作出可行域如图中阴影部分所示,由z =2x -y ,得y =2x -z ,作出直线y =2x ,并平移,可知当该直线经过点A (-2,1)时,z 取得最小值,z min =2×(-2)-1=-5,当该直线经过点B (2,-2)时,z =2×2+2=6,由于点B 不在可行域内,故选A.答案: A7.在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0(a 为常数)所表示的平面区域的面积等于2,则a 的值为( )A .-5B .1C .2D .3解析: 如图,阴影部分即为满足x -1≤0与x +y -1≥0的区域,而ax -y +1=0的直。
第4讲 推理与证明1.(2016·课标全国丙)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k ≤2m ,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个 答案 C解析 第一位为0,最后一位为1,中间3个0,3个1,3个1在一起时为000111,001110;只有2个1相邻时,共A 24个,其中110100;110010;110001,101100不符合题意,三个1都不在一起时有C 34个,共2+8+4=14(个). 2.(2016·山东)观察下列等式:⎝ ⎛⎭⎪⎫sin π3-2+⎝ ⎛⎭⎪⎫sin 2π3-2=43×1×2; ⎝ ⎛⎭⎪⎫sin π5-2+⎝ ⎛⎭⎪⎫sin 2π5-2+⎝ ⎛⎭⎪⎫sin 3π5-2+⎝ ⎛⎭⎪⎫sin 4π5-2=43×2×3; ⎝ ⎛⎭⎪⎫sin π7-2+⎝ ⎛⎭⎪⎫sin 2π7-2+⎝ ⎛⎭⎪⎫sin 3π7-2+…+⎝ ⎛⎭⎪⎫sin 6π7-2=43×3×4; ⎝ ⎛⎭⎪⎫sin π9-2+⎝ ⎛⎭⎪⎫sin 2π9-2+⎝ ⎛⎭⎪⎫sin 3π9-2+…+⎝ ⎛⎭⎪⎫sin 8π9-2=43×4×5; …照此规律,⎝ ⎛⎭⎪⎫sin π2n +1-2+⎝ ⎛⎭⎪⎫sin 2π2n +1-2+⎝ ⎛⎭⎪⎫sin 3π2n +1-2+…+⎝ ⎛⎭⎪⎫sin 2n π2n +1-2=__________. 答案 43n (n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.3.(2016·课标全国甲)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________. 答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,所以由甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.1.以数表、数阵、图形为背景与数列、周期性等知识相结合考查归纳推理和类比推理,多以小题形式出现.2.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.热点一 归纳推理1.归纳推理是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理. 2.归纳推理的思维过程如下:实验、观察→概括、推广→猜测一般性结论例1 (1)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n n +1 2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n , 正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n , 六边形数 N (n,6)=2n 2-n……可以推测N (n ,k )的表达式,由此计算N (8,12)=____________.(2)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则有______________________. 答案 (1)288 (2)f (2n)>n +22(n ≥2,n ∈N *)解析 (1)原已知式子可化为N (n,3)=12n 2+12n =3-22n 2+4-32n ,N (n,4)=n 2=4-22n 2+4-42n ,N (n,5)=32n 2-12n =5-22n 2+4-52n ,N (n,6)=2n 2-n =6-22n 2+4-62n , 由归纳推理可得N (n ,k )=k -22n 2+4-k2n ,故N (8,12)=12-22×82+4-122×8=288.(2)由题意得f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n)>n +22(n ≥2,n ∈N *).思维升华 归纳递推思想在解决问题时,从特殊情况入手,通过观察、分析、概括,猜想出一般性结论,然后予以证明,这一数学思想方法在解决探索性问题、存在性问题或与正整数有关的命题时有着广泛的应用.其思维模式是“观察—归纳—猜想—证明”,解题的关键在于正确的归纳猜想.跟踪演练1 (1)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位的排法如图所示,则下列座位号码符合要求的应当是( )A .48,49B .62,63C .75,76D .84,85(2)用黑白两种颜色的正方形地砖依照下图所示的规律拼成若干个图形,则按此规律,第100个图形中有白色地砖________块;现将一粒豆子随机撒在第100个图中,则豆子落在白色地砖上的概率是________.答案 (1)D (2)503503603解析 (1)由已知图形中座位的排列顺序,可得:被5除余1的数和能被5整除的座位号临窗,由于两旅客希望座位连在一起,且有一个靠窗,分析答案中的4组座位号,只有D 符合条件. (2)按拼图的规律,第1个图有白色地砖(3×3-1)块,第2个图有白色地砖(3×5-2)块,第3个图有白色地砖(3×7-3)块,…,则第100个图中有白色地砖3×201-100=503(块).第100个图中黑白地砖共有603块,则将一粒豆子随机撒在第100个图中,豆子落在白色地砖上的概率是503603.热点二 类比推理1.类比推理是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理. 2.类比推理的思维过程如下:观察、比较→联想、类推→猜测新的结论例2 (1)已知结论:“在正△ABC 中,若D 是边BC 的中点,G 是△ABC 的重心,则AG GD=2”.若把该结论推广到空间,则有结论:“在棱长都相等的四面体A —BCD 中,若△BCD 的中心为M ,四面体内部一点O 到四面体各面的距离都相等”,则AOOM等于( ) A .1 B .2 C .3 D .4(2)已知双曲正弦函数sh x =e x-e -x2和双曲余弦函数ch x =e x +e -x2与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正弦函数和余弦函数的和角或差角.....公式,写出双曲正弦或双曲余弦函数的一个..类似的正确结论______________________. 答案 (1)C (2)ch(x -y )=ch x ch y -sh x sh y 解析 (1)如图,设正四面体的棱长为1,则易知其高AM =63,此时易知点O 即为正四面体内切球的球心,设其半径为r ,利用等积法有4×13×34r =13×34×63⇒r =612,故AO =AM-MO =63-612=64, 故AO ∶OM =64∶612=3∶1.(2)ch x ch y -sh x sh y =e x+e -x2·e y +e -y 2-e x -e -x 2·e y -e-y2=14(e x +y +e x -y +e -x +y +e -x -y -e x +y +e x -y +e -x +y -e -x -y) =14(2e x -y +2e -(x -y ))=e x -y+e - x -y2=ch(x -y ),故知ch(x +y )=ch x ch y +sh x sh y , 或sh(x -y )=sh x ch y -ch x sh y , 或sh(x +y )=sh x ch y +ch x sh y .思维升华 类比推理是合情推理中的一类重要推理,强调的是两类事物之间的相似性,有共同要素是产生类比迁移的客观因素,类比可以由概念性质上的相似性引起,如等差数列与等比数列的类比,也可以由解题方法上的类似引起.当然首先是在某些方面有一定的共性,才能有方法上的类比.跟踪演练2 (1)公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和,则有一相应的S 20-S 10,S 30-S 20,S 40-S 30成等差数列,该等差数列的公差为________.(2)若点P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过点P 0作该椭圆的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程为x 0x a 2+y 0y b 2=1.那么对于双曲线x 2a 2-y 2b2=1(a >0,b >0),类似地,可以得到切点弦所在直线的方程为____________________. 答案 (1)300 (2)x 0x a 2-y 0yb 2=1 解析 (1)在等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100;类比上述结论,在公差为3的等差数列{a n }中,我们可以类比推断出:S 20-S 10,S 30-S 20,S 40-S 30也构成等差数列,公差为100d =300.(2)设P 1(x 1,y 1),P 2(x 2,y 2),P 0(x 0,y 0),则过点P 1,P 2的切线的方程分别为x 1x a 2-y 1y b 2=1,x 2xa2-y 2y b 2=1.因为P 0(x 0,y 0)在这两条切线上,所以x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1,这说明P 1(x 1,y 1),P 2(x 2,y 2)都在直线x 0x a 2-y 0y b 2=1上,故切点弦P 1P 2所在直线的方程为x 0x a 2-y 0yb2=1.热点三 直接证明和间接证明直接证明的常用方法有综合法和分析法,综合法由因导果,而分析法则是执果索因,反证法是反设结论导出矛盾的证明方法.例3 已知{a n }是正数组成的数列,a 1=1,且点(a n ,a n +1) (n ∈N *)在函数y =x 2+1的图象上.(1)求数列{a n }的通项公式; (2)若数列{b n }满足b 1=1,b n +1=b n +2na ,求证:b n ·b n +2<b 2n +1.(1)解 由已知得a n +1=a n +1, 则a n +1-a n =1,又a 1=1,所以数列{a n }是以1为首项,1为公差的等差数列. 故a n =1+(n -1)×1=n .(2)证明 由(1)知,a n =n ,从而b n +1-b n =2n.b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1=2n -1+2n -2+…+2+1=1-2n1-2=2n-1.因为b n ·b n +2-b 2n +1=(2n -1)(2n +2-1)-(2n +1-1)2=(22n +2-2n +2-2n +1)-(22n +2-2·2n +1+1)=-2n<0, 所以b n ·b n +2<b 2n +1.思维升华 (1)有关否定性结论的证明常用反证法或举出一个结论不成立的例子即可. (2)综合法和分析法是直接证明常用的两种方法,我们常用分析法寻找解决问题的突破口,然后用综合法来写出证明过程,有时候分析法和综合法交替使用.跟踪演练3 (1)已知△ABC 的三个内角A ,B ,C 成等差数列,A ,B ,C 的对边分别为a ,b ,c .求证:1a +b +1b +c =3a +b +c; (2)已知f (x )=a x+x -2x +1(a >1),证明:方程f (x )=0没有负根. 证明 (1)要证1a +b +1b +c =3a +b +c, 即证a +b +c a +b +a +b +cb +c=3, 也就是c a +b +ab +c=1,只需证c (b +c )+a (a +b )=(a +b )(b +c ), 需证c 2+a 2=ac +b 2,又△ABC 三内角A ,B ,C 成等差数列, 故B =60°, 由余弦定理,得b 2=c 2+a 2-2ac cos 60°,即b 2=c 2+a 2-ac ,故c 2+a 2=ac +b 2成立. 于是原等式成立.(2)假设x 0是f (x )=0的负根, 则x 0<0,且x 0≠-1,0002,1x x ax -=-+ 所以001x a <<⇒0<-x 0-2x 0+1<1, 解得12<x 0<2,这与x 0<0矛盾,故方程f (x )=0没有负根.热点四 数学归纳法 数学归纳法证明的步骤(1)证明当n 取第一个值n 0(n 0∈N *)时结论成立.(2)假设n =k (k ∈N *,且k ≥n 0)时结论成立,证明n =k +1时结论也成立. 由(1)(2)可知,对任意n ≥n 0,且n ∈N *时,结论都成立.例4 已知数列{a n }的前n 项和为S n ,通项公式为a n =1n ,f (n )=⎩⎪⎨⎪⎧S 2n ,n =1,S 2n -S n -1,n ≥2.(1)计算f (1),f (2),f (3)的值;(2)比较f (n )与1的大小,并用数学归纳法证明你的结论. 解 (1)由题意知f (1)=S 2=1+12=32,f (2)=S 4-S 1=12+13+14=1312, f (3)=S 6-S 2=13+14+15+16=1920.(2)由(1)知f (1)>1,f (2)>1; 下面用数学归纳法证明: 当n ≥3时,f (n )<1.①由(1)知当n =3时,f (n )<1;②假设当n =k (k ≥3,k ∈N *)时,f (k )<1, 即f (k )=1k +1k +1+…+12k <1,那么当n =k +1时,f (k +1)=1k +1+1k +2+…+12k +12k +1+12k +2=(1k +1k +1+1k +2+…+12k )+12k +1+12k +2-1k<1+(12k +1-12k )+(12k +2-12k )=1+2k - 2k +1 2k 2k +1 +2k - 2k +2 2k 2k +2=1-12k 2k +1 -1k 2k +2 <1,所以当n =k +1时,f (n )<1也成立. 由①和②知,当n ≥3时,f (n )<1. 所以当n =1和n =2时,f (n )>1; 当n ≥3时,f (n )<1.思维升华 用数学归纳法证明与正整数有关的等式命题时,关键在于弄清等式两边的构成规律,等式的两边各有多少项,由n =k 到n =k +1时,等式的两边会增加多少项,增加怎样的项.难点在于寻求等式在n =k 和n =k +1时的联系. 跟踪演练4 设a >0,f (x )=ax a +x,令a 1=1,a n +1=f (a n ),n ∈N *. (1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明你的结论.(1)解 ∵a 1=1,∴a 2=f (a 1)=f (1)=a1+a;a 3=f (a 2)=a 2+a;a 4=f (a 3)=a3+a. 猜想a n =an -1 +a(n ∈N *).(2)证明 ①由(1)易知,n =1时,猜想正确. ②假设n =k 时猜想正确,即a k =ak -1 +a,则a k +1=f (a k )=a ·a ka +a k =a ·ak -1 +a a +ak -1 +a=a k -1 +a +1=a[ k +1 -1]+a.这说明,n =k +1时猜想正确. 由①②知,对于任何n ∈N *, 都有a n =an -1 +a.1.将正整数作如下分组:(1), (2,3), (4,5,6), (7,8,9,10), (11,12,13,14,15), (16,17,18,19,20,21), (22,23,24,25,26,27,28),…分别计算各组包含的正整数的和,如下所示:S 1=1, S 2=2+3=5, S 3=4+5+6=15, S 4=7+8+9+10=34, S 5=11+12+13+14+15=65, S 6=16+17+18+19+20+21=111, S 7=22+23+24+25+26+27+28=175,…试猜测S 1+S 3+S 5+…+S 2 015=________.押题依据 数表(阵)是高考命题的常见类型,本题以三角形数表中对应的各组包含的正整数的和的计算为依托,围绕简单的计算、归纳猜想以及数学归纳法的应用等,考查考生归纳猜想能力以及对数学归纳法逻辑推理证明步骤的掌握程度. 答案 1 0084解析 由题意知,当n =1时,S 1=1=14; 当n =2时,S 1+S 3=16=24; 当n =3时,S 1+S 3+S 5=81=34; 当n =4时,S 1+S 3+S 5+S 7=256=44; ……猜想:S 1+S 3+S 5+…+S 2n -1=n 4. ∴S 1+S 3+S 5+…+S 2 015=1 0084.2.已知下列不等式:x +1x ≥2,x +4x 2≥3,x +27x3≥4,…,则第n 个不等式为________________.押题依据 根据n 个等式或不等式归纳猜想一般规律的式子是近几年高考热点,相对而言,归纳推理在高考中出现的机率较大.答案 x +n nxn ≥n +1解析 已知所给不等式的左边第一个式子都是x ,不同之处在于第二个式子,当n =1时,为1x;当n =2时,为4x 2;当n =3时,为27x3;……显然式子中的分子与分母是对应的,分母为x n ,分子是n n,所以不等式左边的式子为x +n nxn ,显然不等式右边的式子为n +1,所以第n 个不等式为x +n nxn ≥n +1.3.设数列{a n }是公比为q 的等比数列,S n 是它的前n 项和,证明:数列{S n }不是等比数列. 押题依据 反证法是一种重要的证明方法,对含“至多”“至少”等词语的命题用反证法十分有效,近几年高考时有涉及.证明 假设{S n }是等比数列,则S 22=S 1S 3,即a 21(1+q )2=a 1·a 1(1+q +q 2).因为a 1≠0,所以(1+q )2=1+q +q 2,即q =0,这与q ≠0矛盾,故{S n }不是等比数列.A 组 专题通关1.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76 C .123 D .199答案 C解析 观察可得各式的值构成数列1,3,4,7,11,…,其规律为从第三项起,每项等于其前相邻两项的和,所求值为数列中的第10项.继续写出此数列为1,3,4,7,11,18,29,47,76,123,…, 第10项为123,即a 10+b 10=123.2.设a ,b ,c ∈(-∞,0),则a +1b ,b +1c ,c +1a( )A .都不大于-2B .都不小于-2C .至少有一个不大于-2D .至少有一个不小于-2 答案 C解析 假设a +1b ,b +1c ,c +1a 都大于-2,即a +1b >-2,b +1c>-2,c +1a>-2,将三式相加,得a +1b +b +1c +c +1a>-6,又因为a +1a ≤-2,b +1b ≤-2,c +1c≤-2,所以a +1b +b +1c +c +1a≤-6,所以假设不成立,故选C.3.正弦函数是奇函数,f (x )=sin(x 2+1)是正弦函数,因此f (x )=sin(x 2+1)是奇函数,以上推理( ) A .结论正确 B .大前提不正确 C .小前提不正确 D .全不正确答案 C解析 因为f (x )=sin(x 2+1)不是正弦函数,所以小前提不正确.4.某珠宝店丢了一件珍贵珠宝,以下四人中只有一个人说了真话,只有一人偷了珠宝.甲:我没有偷;乙:丙是小偷;丙:丁是小偷;丁:我没有偷.根据以上条件,可以判断偷珠宝的人是( )A .甲B .乙C .丙D .丁 答案 A解析 假如甲说了真话,则乙、丙、丁都说了假话,那么丙不是小偷,丁不是小偷,丁偷了珠宝,显然矛盾,故甲说了假话,即甲是小偷,故选A. 5.设a ,b ∈R ,定义:M (a ,b )=a +b +|a -b |2,m (a ,b )=a +b -|a -b |2,则下列式子错误的是( )A .M (a ,b )+m (a ,b )=a +bB .m (|a +b |,|a -b |)=|a |-|b |C .M (|a +b |,|a -b |)=|a |+|b |D .m (M (a ,b ),m (a ,b ))=m (a ,b ) 答案 B解析 ∵M (a ,b )=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,m (a ,b )=⎩⎪⎨⎪⎧b ,a ≥b ,a ,a <b ,∴m (M (a ,b ),m (a ,b ))=m (a ,b ),D 正确;M (a ,b )+m (a ,b )=a +b ,A 正确;m (|a +b |,|a -b |)=min{|a +b |2,|a -b |2}=⎩⎪⎨⎪⎧|a +b |, ab <0,|a -b |, ab ≥0,B 错误;M (|a +b |,|a -b |)=max{|a +b |2,|a -b |2}=⎩⎪⎨⎪⎧|a +b |=|a |+|b |,ab ≥0,|a -b |=|a |+|b |,ab <0,C 正确.故选B.6.对于任意的两个实数对(x 1,y 1)和(x 2,y 2),规定:(x 1,y 1)=(x 2,y 2),当且仅当⎩⎪⎨⎪⎧x 1=x 2,y 1=y 2;运算“⊗”为(x 1,y 1)⊗(x 2,y 2)=(x 1x 2-y 1y 2,y 1x 2+x 1y 2);运算“ ”为(x 1,y 1) (x 2,y 2)=(x 1+x 2,y 1+y 2).设k ,n ∈R ,若(1,2)⊗(k ,n )=(3,1),则(1,2) (k ,n )=________. 答案 (2,1)解析 由(1,2)⊗(k ,n )=(3,1),得⎩⎪⎨⎪⎧k -2n =3,2k +n =1, 解得⎩⎪⎨⎪⎧k =1,n =-1.所以(1,2) (k ,n )=(1,2) (1,-1)=(2,1).7.宋元时期杰出的数学家朱世杰在其数学巨著《四元玉鉴》卷中“茭草形段”第一个问题“今有茭草六百八十束,欲令‘落一形’埵(同垛)之.问底子(每层三角形边茭草束数,等价于层数)几何?”中探讨了“垛枳术”中的落一形垛(“落一形”即是指顶上1束,下一层3束,再下一层6束,……,成三角锥的堆垛,故也称三角垛,如图,表示第二层开始的每层茭草束数),则本问题中三角垛底层茭草总束数为________.答案 120解析 由题意,第n 层茭草束数为 1+2+…+n =n n +12, ∴1+3+6+…+n n +12=680,即为12[16n (n +1)(2n +1)+12n (n +1)]=16n (n +1)(n +2)=680, 即有n (n +1)(n +2)=15×16×17,∴n =15,∴n n +12=120.8.如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f x 1 +f x 2 +…+f x n n ≤f (x 1+x 2+…+x nn).若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________. 答案332解析 由题意知,凸函数满足f x 1 +f x 2 +…+f x n n ≤f (x 1+x 2+…+x nn),又y =sin x 在区间(0,π)上是凸函数, 则sin A +sin B +sin C ≤3sinA +B +C3=3sin π3=332.9.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin 13°cos 17°; ②sin 215°+cos 215°-sin 15°cos 15°; ③sin 218°+cos 212°-sin 18°cos 12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos 48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. 解 方法一 (1)选择②式,计算如下: sin 215°+cos 215°-sin 15°cos 15° =1-12sin 30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34.方法二 (1)同方法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos 2α2+1+cos 60°-2α2-sin α(cos 30°cos α+sin 30°sin α) =12-12cos 2α+12+12(cos 60°cos 2α+sin 60°sin 2α)-32sin αcos α-12sin 2α =12-12cos 2α+12+14cos 2α+34sin 2α-34sin 2α-14(1-cos 2α) =1-14cos 2α-14+14cos 2α=34.10.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b2+1-2m =0.(1)求证:1a 2+4b2≥9a 2+b 2; (2)求证:m ≥72.证明 (1)(分析法)要证1a 2+4b2≥9a 2+b 2成立, 只需证(1a 2+4b2)(a 2+b 2)≥9,即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b2≥4.根据基本不等式,有b 2a 2+4a 2b2≥2b 2a 2·4a 2b 2=4成立, 所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b2=2m -1,由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0, 解得m ≤-1或m ≥72.又因为a 2+b 2=m -2>0.所以m >2,故m ≤-1舍去,所以m ≥72.B 组 能力提高11.已知正方形ABCD 的边长是a ,依次连接正方形ABCD 各边中点得到一个新的正方形,再依次连接新正方形各边中点又得到一个新的正方形,由此规律,依次得到一系列的正方形,如图所示.现有一只小虫从A 点出发,沿正方形的边逆时针方向爬行,每遇到新正方形的顶点时,沿这个正方形的边逆时针方向爬行,如此下去,爬行了10条线段.则这10条线段长度的平方和是()A.1 0232 048a 2B.1 023768a 2C.5111 024a 2D.2 0474 096a 2答案 A解析 由题意可知,这只小虫爬行的第一条线段长度的平方为a 21=(12a )2=14a 2,第二条线段长度的平方为a 22=(24a )2=18a 2,第三条线段长度的平方为a 23=(14a )2=116a 2,…,从而可知,小虫爬行的线段长度的平方可以构成以a 21=14a 2为首项,12为公比的等比数列,所以该数列的前10项和为S 10=14a 2[1- 12 10]1-12=1 023a22 048.故选A.12.对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23⎩⎪⎨⎪⎧35,33⎩⎪⎨⎪⎧7911,43⎩⎪⎨⎪⎧13151719,….仿此,若m 3的“分裂数”中有一个是59,则m 的值为________.答案 8解析 由已知可观察出m 3可分裂为m 个连续奇数,最小的一个为(m -1)m +1.当m =8时,最小的数为57,第二个便是59.∴m =8.13.如图(1),已知O 是△ABC 内任意一点,连接AO ,BO ,CO 并延长交对边分别于点A ′,B ′,C ′,则OA ′AA ′+OB ′BB ′+OC ′CC ′=1.这是平面几何中的一道题,其证明常采用“面积法”:OA ′AA ′+OB ′BB ′+OC ′CC ′=S △OBC S △ABC +S △OCA S △ABC +S △OAB S △ABC =S △ABC S △ABC=1.请运用类比思想,如图(2)所示,在空间四面体V —BCD 中,任取一点O ,连接VO ,DO ,BO ,CO 并延长分别交四个面于点E ,F ,G ,H ,用“体积法”可得的类似结论为________________.答案OE VE +OF DF +OG BG +OH CH=1 解析 利用类比推理,面积类比体积.14.蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图.其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f (n )表示第n 个图的蜂巢总数.(1)试给出f (4),f (5)的值,并求f (n )的表达式(不要求证明); (2)证明:1f 1 +1f 2 +1f 3 +…+1f n <43. (1)解 f (4)=37,f (5)=61. 由于f (2)-f (1)=7-1=6,f (3)-f (2)=19-7=2×6, f (4)-f (3)=37-19=3×6, f (5)-f (4)=61-37=4×6,…因此,当n ≥2时,有f (n )-f (n -1)=6(n -1),所以f (n )=[f (n )-f (n -1)]+[f (n -1)-f (n -2)]+…+[f (2)-f (1)]+f (1) =6[(n -1)+(n +2)+…+2+1]+1=3n 2-3n +1. 又f (1)=1=3×12-3×1+1,所以f (n )=3n 2-3n +1. (2)证明 当k ≥2时,1f k =13k 2-3k +1<13k 2-3k =13(1k -1-1k ). 所以1f 1 +1f 2 +1f 3 +…+1f n <1+13[(1-12)+(12-13)+…+(1n -1-1n)] =1+13(1-1n )<1+13=43.。