高考数学专题122推理与证明文
- 格式:pdf
- 大小:635.68 KB
- 文档页数:22
高中数学推理与证明高中数学推理知识点1、归纳推理:顾名思义,一个归纳的过程。
比如,一个篮子里有苹果梨葡萄草莓等等,那么你发现苹果是水果、梨是水果、葡萄是水果、草莓是水果,然后你猜想:篮子里装的是水果。
这个推理是由特殊推到一般的过程,可能正确也可能不正确,如果篮子里确实都是水果,那么你就猜对了;如果篮子里有一根胡萝卜,那你就猜错了。
所以才会有证明。
2、类比推理:同样顾名思义,一个类比的过程。
例如,你知道苹果水分多又甜、梨水分多又甜、葡萄水分多又甜,所以你推理出同样作为水果,香蕉水分多又甜,那这个结论显然是不对的,香蕉并没有什么水分。
但如果你推导出荔枝水分多又甜,这就是正确的。
(这个例子中指的都是正常水果)显然,这个推理方式是一个由特殊推特殊的过程,也不一定正确。
3、演绎推理:一般推特殊,一定对。
例如,f(x)=1,那么f(1)=1高中数学证明知识点1、综合法:即我们正常的证明过程,由条件一直往下推。
例如,1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量,证明:2菠萝重量=160葡萄重量。
证明:因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量____________所以1菠萝的重量=4*20葡萄重量=80葡萄重量____________所以2菠萝重量=160葡萄重量。
2、分析法:由结论推出等价结论,去证明这个等价结论成立。
同样上面的例子的证明:要证明2菠萝重量=160葡萄重量,即证明2*1菠萝重量=2*80葡萄重量,即证明1菠萝重量=80葡萄重量。
因为1菠萝的重量=4苹果重量,1苹果重量=20葡萄重量所以1菠萝的重量=4*20葡萄重量=80葡萄重量,原式即证。
3、反证法:先假设结论相反,然后根据已知推导,最后发现和已知不符,收!这是一个战胜自己的过程!4、数学归纳法:解题过程:A.命题在n=1(或n0)时成立,这是递推的基础;B.假设在n=k时命题成立;C.证明n=k+1时命题也成立高中数学推理与证明一、公理、定理、推论、逆定理:1.公认的真命题叫做公理。
第23课时 推理与证明一、基础练习:1、设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,f(n)表示这n 条直线交点的个数,则f(4)=_________;当n>4时,f(n)=___________(用n 表示)2、由图(1)有面积关系:''''PA B PAB S PA PB S PA PB∆∆=⋅,则由图(2)有体积关系:'''P A B C P ABCV V --=__________3、用反证法证明“形如4k+3(k ∈N*)的数不能化为两个整数的平方和”时,开始假设结论的反面成立应写成___________。
4、凡自然数是整数,4是自然数,所以4是整数。
以上三段论推理A 、正确B 、推理形式不正确C 、两个“自然数”概念不一致D 、“两个整数”概念不一致5、如图所示,面积为S 的平面凸四边形的第i 条边的边长记为a i (i=1,2,3,4),此四边形内任一点P 到i 条边的距离记为h i (i=1,2,3,4),若31241234a a a a k ====,则412()i i S ih k ==∑,类比以上性质,体积为V 的三棱锥的第i 个面的面积记为S i =(i=1,2,3,4),此三棱锥内任一点Q到第i 个面的距离记为H i (i=1,2,3,4),若31241234S S S S K ====,则41()i i iH =∑=__________ 二、例题析解 例1:设有椭圆221259x y +=,F 1,F 2是其两个焦点,点M 在椭圆上。
(1)若∠F 1MF 2=90°,求△F 1MF 2的面积。
(2)若∠F 1MF 2=60°,△F 1MF 2的面积是多少?若∠F 1MF 2=45°,△F 1MF 2的面积又是多少?(3)观察以上计算结果,你能看出随∠F 1MF 2的变化,△F 1MF 2的面积将怎样变化吗?试证明你的结论。
【高中数学】数学《推理与证明》高考复习知识点一、选择题1.在《中华好诗词大学季》的决赛赛场上,由南京师范大学郦波老师、中南大学杨雨老师、著名历史学者纪连海和知名电视节目主持人赵忠祥四位大学士分别带领的四支大学生团队进行了角逐.将这四支大学生团队分别记作甲、乙、丙、丁,且比赛结果只有一支队伍获得冠军,现有小张、小王、小李、小赵四位同学对这四支参赛团队的获奖结果预测如下:小张说:“甲或乙团队获得冠军”;小王说:“丁团队获得冠军”;小李说“乙、丙两个团队均未获得冠军”;小赵说:“甲团队获得冠军”.若这四位同学中只有两位预测结果是对的,则获得冠军的团队是( ) A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】对甲、乙、丙、丁分别获得冠军进行分类讨论,结合四人的说法进行推理,进而可得出结论. 【详解】若甲获得冠军,则小张、小李、小赵的预测都正确,与题意不符; 若乙获得冠军,则小王、小李、小赵的预测不正确,与题意不符; 若丙获得冠军,则四个人的预测都不正确,与题意不符;若丁获得冠军,则小王、小李的预测都正确,小张和小赵预测的都不正确,与题意相符. 故选:D . 【点睛】本题考查合情推理,考查分类讨论思想的应用,属于中等题.2.下面几种推理中是演绎推理的为( )A .由金、银、铜、铁可导电,猜想:金属都可导电B .猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+ C .半径为r 的圆的面积2S r π=,则单位圆的面积S π=D .由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-= 【答案】C 【解析】 【分析】根据合情推理与演绎推理的概念,得到A 是归纳推理,B 是归纳推理,C 是演绎推理,D 是类比推理,即可求解. 【详解】根据合情推理与演绎推理的概念,可得:对于A 中, 由金、银、铜、铁可导电,猜想:金属都可导电,属于归纳推理;对于B 中, 猜想数列111122334⋯⋯⨯⨯⨯,,,的通项公式为1()(1)n a n N n n *=∈+,属于归纳推理,不是演绎推理;对于C 中,半径为r 的圆的面积2S r π=,则单位圆的面积S π=,属于演绎推理; 对于D 中, 由平面直角坐标系中圆的方程为222()()x a y b r -+-=,推测空间直角坐标系中球的方程为2222()()()x a y b z c r -+-+-=,属于类比推理, 综上,可演绎推理的C 项,故选C . 【点睛】本题主要考查了合情推理与演绎推理的概念及判定,其中解答中熟记合情推理和演绎推理的概念,以及推理的规则是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.3.平面内的一条直线将平面分成2部分,两条相交直线将平面分成4部分,三条两两相交且不共点的直线将平面分成7部分,…则平面内的六条两两相交且任意三条不共点的直线将平面分成的部分数为( ) A .20 B .21C .22D .23【答案】C 【解析】 【分析】一条直线可以把平面分成两部分,两条直线最多可以把平面分成4部分,三条直线最多可以把平面分成7部分,四条直线最多可以把平面分成11部分,可以发现,两条直线时多了2部分,三条直线比原来多了3部分,四条直线时比原来多了4部分,即可求得答案. 【详解】设画n 条直线,最多可将面分成()f n 个部分,1,(1)112n f ==+=Q ;2,(2)(1)24n f f ==+=; 3,(3)(2)37n f f ==+=;, 4,(4)(3)411n f f ==+=; ,5,(5)(4)516n f f ==+=; 6,(6)(5)622n f f ==+=.故选:C. 【点睛】本题解题关键是掌握根据题意能写出函数递推关系,在求解中寻找规律,考查了分析能力和推理能力,属于中档题.4.我国南宋数学家杨家辉所著的《详解九章算法》一书中记录了一个由正整数构成的三角形数表,我们通常称之为杨辉三角.以下数表的构造思路就来源于杨辉三角.( )从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数a ,则a 的值为( )A .100820182⨯B .100920182⨯C .100820202⨯D .100920202⨯【答案】C 【解析】 【分析】根据每一行的第一个数的变化规律即可得到结果. 【详解】解:第一行第一个数为:0112=⨯; 第二行第一个数为:1422=⨯; 第三行第一个数为:21232=⨯; 第四行第一个数为:33242=⨯;L L ,第n 行第一个数为:1n 2n n a -=⨯;一共有1010行,∴第1010行仅有一个数:10091008a 1010220202=⨯=⨯; 故选C . 【点睛】本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.5.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28 B .76C .123D .199【答案】C 【解析】 【分析】 【详解】 由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=, 294776,4776123+=+=,即1010123a b +=,故选C.考点:观察和归纳推理能力.6.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾, 假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.7.若数列{}n a 是等差数列,则数列12nn a a a b n++⋯+=也为等差数列.类比这一性质可知,若正项数列{}n c 是等比数列,且n d 也是等比数列,则n d 的表达式应为( ) A .12nn c c c d n++⋯+=B .12nn c c c d n⋅⋅⋯⋅=C .n d =D .n d =【答案】D 【解析】 【分析】利用等差数列的求和公式,等比数列的通项公式,即可得到结论. 【详解】解:Q 数列{}n a 是等差数列,则()12112n n na a a a d n -++⋯++=,∴数列12112n n a a a n b a d n ++⋯+-==+也为等差数列Q 正项数列{}n c 是等比数列,设首项为1c ,公比为q ,则()112121111n n nn n c c c c c q c q c q--⋅⋅⋯⋅⋅⋅⋯==⋅∴112121111n n n n n n d c c c c c q c q c q--=⋅⋅⋯⋅=⋅⋅⋯⋅=∴12n n n d c c c =⋅⋅⋯⋅是等比数列故选:D . 【点睛】本题考查类比推理,解题的关键是掌握好类比推理的定义及等差等比数列之间的共性,由此得出类比的结论即可.8.用“算筹”表示数是我国古代计数方法之一,计数形式有纵式和横式两种,如图1所示.金元时期的数学家李冶在《测圆海镜》中记载:用“天元术”列方程,就是用算筹来表示方程中各项的系数.所谓“天元术”,即是一种用数学符号列方程的方法,“立天元一为某某”,意即“设x 为某某”.如图2所示的天元式表示方程10110n n n n a x a x a x a --++⋅⋅⋅++=,其中0a ,1a ,…,1n a -,n a 表示方程各项的系数,均为筹算数码,在常数项旁边记一“太”字或在一次项旁边记一“元”字,“太”或“元”向上每层减少一次幂,向下每层增加一次幂.试根据上述数学史料,判断图3天元式表示的方程是( ) A .228617430x x ++=B .4227841630x x x +++=C .2174328610x x ++=D .43163842710x x x +++=【答案】C 【解析】 【分析】根据“算筹”法表示数可得题图3中从上至下三个数字分别为1,286,1743,结合“天元术”列方程的特征即可得结果. 【详解】由题意可得,题图3中从上至下三个数字分别为1,286,1743, 由“元”向上每层减少一次幂,向下每层增加一次幂.可得天元式表示的方程为2174328610x x ++=.故选:C. 【点睛】本题主要是以数学文化为背景,考查数学阅读及理解能力,充分理解“算筹”法表示数和“天元术”列方程的概念是解题的关键,属于中档题.9.现有甲、乙、丙、丁四人参加数学竞赛,其中只有一位获奖. 有人走访了四人,甲说:“乙、丁都未获奖”,乙说:“是甲或丙获奖”,丙说:“是甲获奖”,丁说:“是乙获奖”,四人所说话中只有一位是真话,则获奖的人是( ) A .甲 B .乙C .丙D .丁【答案】B 【解析】 【分析】结合题意分类讨论甲乙丙丁获奖的情况,然后考查说真话的人的个数即可确定获奖的人. 【详解】结合题意分类讨论:若甲获奖,则说真话的人为:甲乙丙,说假话的人为:丁,不合题意; 若乙获奖,则说真话的人为:丁,说假话的人为:甲乙丙,符合题意; 若丙获奖,则说真话的人为:甲乙,说假话的人为:丙丁,不合题意; 若丁获奖,则说假话的人为:甲乙丙丁,不合题意; 综上可得,获奖人为乙. 故选:B. 【点睛】本题主要考查数学推理的方法,分类讨论的数学思想,属于中等题.10.甲、乙、丙三人中,一人是工人,一人是农民,一人是知识分子.已知:丙的年龄比知识分子大;甲的年龄和农民不同;农民的年龄比乙小.根据以上情况,下列判断正确的是( )A .甲是工人,乙是知识分子,丙是农民B .甲是知识分子,乙是农民,丙是工人C .甲是知识分子,乙是工人,丙是农民D .甲是农民,乙是知识分子,丙是工人 【答案】C 【解析】“甲的年龄和农民不同”和“农民的年龄比乙小”可以推得丙是农民,所以丙的年龄比乙小;再由“丙的年龄比知识分子大”,可知甲是知识分子,故乙是工人,故选C.11.明代朱载堉创造了音乐学上极为重要的“等程律”.在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法.比如,若已知黄钟、大吕、太簇、夹钟四个音律值成等比数列,则有大吕大吕太簇数列{}n a 中,k a =( )A .n -B .n -C .D .【答案】C 【解析】 【分析】根据题意可得三项等比数列的中项可由首项和末项表示,四项等比数列的第2、第3项均可由首项和末项表示,从而类比出正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示. 【详解】因为三项等比数列的中项可由首项和末项表示, 四项等比数列的第2、第3项均可由首项和末项表示, 所以正项等比数列{}n a 中的k a 可由首项1a 和末项n a 表示,因为11n n a a q -=,所以=q所以11=k k a a -⎛ ⎝1111=k n n a a a --⎛⎫ ⎪⎝⎭1111=n k k n n na a ----⋅=故选:C. 【点睛】本题以数学文化为背景,考查类比推理能力和逻辑推理能力,求解时要先读懂题目的文化背景,再利用等比数列的通项公式进行等价变形求解.12.数学家托勒密从公元127年到151年在亚历山大城从事天文观测,在编制三角函数表过程中发现了很多重要的定理和结论,如图便是托勒密推导倍角公式“2212cos a sin a =-”所用的几何图形,已知点,B C 在以线段AC 为直径的圆上,D 为弧BC 的中点,点E 在线段AC 上且,AE AB =点F 为EC 的中点.设2,AC r =,DAC a ∠=那么下列结论:2,DC rcosa =① 22,AB rcos a =②()12,FC r cos a =-③ ()22DC r r AB =-④.其中正确的是( ) A .②③ B .②④C .①③④D .②③④【答案】D 【解析】 【分析】在Rt ADC ∆中,可判断①,Rt ABC ∆中,可判断②,利用ADB ∆与ADE ∆全等及ADC ∆与DFC ∆相似即可判断③④. 【详解】在Rt ADC ∆中,2sin ,DC r a =故①不正确; 因为 ,BD DC =所以2,BAC a ∠=在Rt ABC ∆中,2cos2AB r a =,故②正确; 因为AE AB BD DC ==,,易知ADB ∆与ADE ∆全等,故DE BD DC DF EC ==⊥,,所以()1cos22ABFC r r a =-=-, 又CC ACD FC D =,所以()22DC AC FC r r AB =⋅=-,故③④正确, 由2sin 2cos2DC r a AB r a ==,,()22DC r r AB =-,可得()()22sin 22cos2r a r r r a =-,即22sin 1cos2a a =-.故选:D. 【点睛】本题考查推理与证明,考查学生在圆中利用三角形边长证明倍角公式的背景下,判断所需的边长是否正确,是一道中档题.13.将从1开始的连续奇数排成如图所示的塔形数表,表中位于第i 行,第j 列的数记为ij a ,例如329a =,4215a =,5423a =,若2019ij a =,则i j -=( )A .71B .72C .20D .19【答案】D 【解析】 【分析】先确定奇数2019为第1010个奇数,根据规律可得从第1行到第i 行末共有()11+2+3++=2i i i +⋅⋅⋅个奇数,可确定2019位于第45行,进而确定2019所在的列,即可得解. 【详解】奇数2019为第1010个奇数,由题意按照蛇形排列,从第1行到第i 行末共有()11+2+3++=2i i i +⋅⋅⋅个奇数,则从第1行到第44行末共有990个奇数,从第1行到第45行末共有1035个奇数, 则2019位于第45行,而第45行时从右往左递增,且共有45个奇数, 故2019位于第45行,从右往左第20列, 则45i =,26j =,故19i j -=. 故选:D. 【点睛】本题考查了归纳推理的应用,考查了逻辑思维能力和推理能力,属于中档题.14.甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第三名的是 A .甲 B .乙C .丙D .无法预测【答案】A 【解析】 【分析】若甲的预测正确,则乙、丙的预测错误,推出矛盾!若乙的预测正确,甲、丙的预测错误,推出矛盾!若丙的预测正确,甲、乙的预测错误,可推出三个人的名次。
第十二章 推理与证明挖命题【真题典例】【考情探究】5年考情考点内容解读考题示例考向关联考点预测热度2017课标全国Ⅱ,9,5分合情推理逻辑推理2016课标全国Ⅱ,16,5分合情推理逻辑推理合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用;②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行简单的推理;③了解合情推理和演绎推理之间的联系和差异2014课标Ⅰ,14,5分合情推理逻辑推理★★☆2018江苏,20,16分直接证明转化,推理直接证明与间接证明①了解直接证明的两种基本方法:分析法与综合法,并了解分析法和综合法的思考过程、特点;②了解间接证明的一种基本方法:反证法,并了解反证法的思考过程、特点2014天津,20,14分直接证明转化,推理★★☆分析解读 本部分在高考中主要考查以下几个方面:1.归纳推理与类比推理以选择题、填空题的形式出现,考查学生的逻辑推理能力,而演绎推理多出现在立体几何的证明中;2.直接证明与间接证明作为证明和推理数学命题的方法,常以不等式、立体几何、解析几何、函数为载体,考查综合法、分析法及反证法.本节内容在高考中的分值分配:①归纳推理与类比推理分值为5分左右,属于中档题;②证明问题以解答题形式出现,分值为12分左右,属于中高档题.【考点集训】考点一 合情推理与演绎推理1.(2018安徽安庆二模,11)对于大于1的自然数的三次幂可以分解成几个奇数的和,比如23=3+5,33=7+9+11,43=13+15+17+19,……,以此规律,453的分解和式中一定不含有( ) A.2 069B.2 039C.2 009D.1 979答案 D2.(2017江西鹰潭一模,2)用三段论推理:“任何实数的绝对值大于0,因为a 是实数,所以a 的绝对值大于0”,你认为这个推理( )A.大前提错误B.小前提错误C.推理形式错误D.是正确的答案 A3.(2017陕西渭南一模,4)古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图中的1,3,6,10,…,由于这些数能够表示成三角形,故将其称为三角形数,由以上规律,知这些三角形数从小到大形成一个数列{a n },那么a 10的值为( )A.45 B.55 C.65 D.66答案 B 考点二 直接证明与间接证明1.(2018湖北普通高中联考,7)分析法又叫执果索因法,若使用分析法证明:设a<b<c,且a+b+c=0,求证:b 2-ac<3c 2,则证明的依据应是( )A.c-b>0 B.c-a>0C.(c-b)(c-a)>0D.(c-b)(c-a)<0答案 C 2.(2017山西大学附中第二次模拟,17)在等比数列{a n }中,a 3=,S 3=.3292(1)求数列{a n }的通项公式;(2)设b n =log 2,且{b n }为递增数列,若c n =,求证:c 1+c 2+c 3+…+c n <.6a2n +11b n ·b n +114解析 (1)设{a n }的公比为q(q ≠0).∵a 3=,S 3=,3292∴⇒或{S 3-a 3=a 1+a 2=a 1(1+q)=3,a 3=a 1·q 2=32{q =1,a 1=32{q =-12,a 1=6,∴a n =或a n =6.32(-12)n -1(2)证明:由题意知b n =log 2=log 2=log 222n =2n,6a2n +166(-12)2n∴c n ===,1b n ·b n +114n (n +1)14(1n -1n +1)∴c 1+c 2+c 3+…+c n ===-<.14(1-12+12-13+…+1n -1n +1)14(1-1n +1)1414(n +1)14【方法集训】方法 归纳推理与类比推理的应用1.(2018广东肇庆一模,14)观察下列不等式:1+<,1++<,1+++<,……,照此规律,第五个不等式122321221325312213214274为 . 答案 1+++++<1221321421521621162.(2017上海浦东期中联考,12)在Rt △ABC 中,两直角边长分别为a 、b,设h 为斜边上的高,则=+,由此类比:三棱锥P-ABC 中1ℎ21a21b2的三条侧棱PA 、PB 、PC 两两垂直,且长度分别为a 、b 、c,设棱锥底面△ABC 上的高为h,则 . 答案 =++1ℎ21a21b 21c2过专题【五年高考】A 组 统一命题·课标卷题组1.(2016课标全国Ⅱ,16,5分)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 . 答案 1和32.(2014课标Ⅰ,14,5分)甲、乙、丙三位同学被问到是否去过A,B,C 三个城市时,甲说:我去过的城市比乙多,但没去过B 城市;乙说:我没去过C 城市;丙说:我们三人去过同一城市.由此可判断乙去过的城市为 . 答案 AB 组 自主命题·省(区、市)卷题组考点一 合情推理与演绎推理1.(2015陕西,16,5分)观察下列等式1-=12121-+-=+12131413141-+-+-=++1213141516141516……据此规律,第n 个等式可为 . 答案 1-+-+…+-=++…+12131412n -112n 1n +11n +212n2.(2016山东,12,5分)观察下列等式:+=×1×2;(sin π3)-2(sin 2π3)-243+++=×2×3;(sin π5)-2(sin 2π5)-2(sin 3π5)-2(sin 4π5)-243+++…+=×3×4;(sin π7)-2(sin 2π7)-2(sin 3π7)-2(sin 6π7)-243+++…+=×4×5;(sin π9)-2(sin 2π9)-2(sin 3π9)-2(sin 8π9)-243……照此规律,+++…+= . (sin π2n +1)-2(sin 2π2n +1)-2(sin 3π2n +1)-2(sin 2nπ2n +1)-2答案 4n (n +1)33.(2017北京,14,5分)某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为 ; ②该小组人数的最小值为 . 答案 ①6 ②12考点二 直接证明与间接证明1.(2018江苏,20,16分)设{a n }是首项为a 1,公差为d 的等差数列,{b n }是首项为b 1,公比为q 的等比数列.(1)设a 1=0,b 1=1,q=2,若|a n -b n |≤b 1对n=1,2,3,4均成立,求d 的取值范围;(2)若a 1=b 1>0,m ∈N *,q ∈(1,],证明:存在d ∈R ,使得|a n -b n |≤b 1对n=2,3,…,m+1均成立,并求d 的取值范围(用b 1,m,q 表示).m2解析 (1)由条件知a n =(n-1)d,b n =2n-1.因为|a n -b n |≤b 1对n=1,2,3,4均成立,即|(n-1)d-2n-1|≤1对n=1,2,3,4均成立.即1≤1,1≤d ≤3,3≤2d ≤5,7≤3d ≤9,得≤d ≤.7352因此,d 的取值范围为.[73,52](2)由条件知:a n =b 1+(n-1)d,b n =b 1q n-1.若存在d ∈R ,使得|a n -b n |≤b 1(n=2,3,…,m+1)均成立,即|b 1+(n-1)d-b 1q n-1|≤b 1(n=2,3,…,m+1).即当n=2,3,…,m+1时,d 满足b 1≤d ≤b 1.qn -1-2n -1qn -1n -1因为q ∈(1,],m2所以1<q n-1≤q m ≤2,从而b 1≤0,b 1>0,对n=2,3,…,m+1均成立.qn -1-2n -1qn -1n -1因此,取d=0时,|a n -b n |≤b 1对n=2,3,…,m+1均成立.下面讨论数列的最大值和数列的最小值(n=2,3,…,m+1).{qn -1-2n -1}{qn -1n -1}①当2≤n ≤m 时,-==,q n-2n q n -1-2n -1nq n-q n-n q n -1+2n (n -1)n (q n-q n -1)-q n+2n (n -1)当1<q ≤时,有q n ≤q m ≤2,21m从而n(q n -q n-1)-q n +2>0.因此,当2≤n ≤m+1时, 数列单调递增,{qn -1-2n -1}故数列的最大值为.{qn -1-2n -1}q m-2m ②设f(x)=2x (1-x),当x>0时,f '(x)=(ln 2-1-xln 2)2x <0.所以f(x)单调递减,从而f(x)<f(0)=1.当2≤n ≤m 时,=≤=f <1.q n nqn -1n -1q (n -1)n 21n(1-1n )(1n )因此,当2≤n ≤m+1时,数列单调递减,{qn -1n -1}故数列的最小值为.{qn -1n -1}q mm 因此,d 的取值范围为.[b 1(q m -2)m,b 1qmm ]2.(2014天津,20,14分)已知q 和n 均为给定的大于1的自然数.设集合M={0,1,2,…,q-1},集合A={x|x=x 1+x 2q+…+x n q n-1,x i ∈M,i=1,2,…,n}.(1)当q=2,n=3时,用列举法表示集合A;(2)设s,t ∈A,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,其中a i ,b i ∈M,i=1,2,…,n.证明:若a n <b n ,则s<t.解析 (1)当q=2,n=3时,M={0,1},A={x|x=x 1+x 2·2+x 3·22,x i ∈M,i=1,2,3}.可得,A={0,1,2,3,4,5,6,7}.(2)证明:由s,t ∈A,s=a 1+a 2q+…+a n q n-1,t=b 1+b 2q+…+b n q n-1,a i ,b i ∈M,i=1,2,…,n 及a n <b n ,可得s-t=(a 1-b 1)+(a 2-b 2)q+…+(a n-1-b n-1)q n-2+(a n -b n )q n-1≤(q-1)+(q-1)q+…+(q-1)q n-2-q n-1=-q n-1(q -1)(1-q n -1)1-q=-1<0.所以,s<t.C 组 教师专用题组考点一 合情推理与演绎推理1.(2016北京,8,5分)某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.学生序号12345678910立定跳远(单位:米) 1.96 1.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.6030秒跳绳(单位:次)63a 7560637270a-1b65在这10名学生中,进入立定跳远决赛的有8人,同时进入立定跳远决赛和30秒跳绳决赛的有6人,则( )A.2号学生进入30秒跳绳决赛B.5号学生进入30秒跳绳决赛C.8号学生进入30秒跳绳决赛D.9号学生进入30秒跳绳决赛答案 B 2.(2014陕西,14,5分)已知f(x)=,x ≥0,若f 1(x)=f(x), f n+1(x)=f(f n (x)),n ∈N +,则f 2 014(x)的表达式x1+x 为 . 答案 f 2 014(x)=x1+2 014x3.(2014福建,16,4分)已知集合{a,b,c}={0,1,2},且下列三个关系:①a≠2;②b=2;③c≠0有且只有一个正确,则100a+10b+c 等于 . 答案 2014.(2014江西,21,14分)将连续正整数1,2,…,n(n ∈N *)从小到大排列构成一个数,F(n)为这个数的位数(如n=12时,此数123…n 为123 456 789 101 112,共有15个数字,F(12)=15),现从这个数中随机取一个数字,p(n)为恰好取到0的概率.(1)求p(100);(2)当n ≤2 014时,求F(n)的表达式;(3)令g(n)为这个数中数字0的个数, f(n)为这个数中数字9的个数,h(n)=f(n)-g(n),S={n|h(n)=1,n ≤100,n ∈N *},求当n ∈S 时p(n)的最大值.解析 (1)当n=100时,这个数中总共有192个数字,其中数字0的个数为11,所以恰好取到0的概率为p(100)=.11192(2)F(n)={n , 1≤n ≤9,2n -9,10≤n ≤99,3n -108,100≤n ≤999,4n -1 107,1 000≤n ≤2 014.(3)当n=b(1≤b ≤9,b ∈N *)时,g(n)=0;当n=10k+b(1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N )时,g(n)=k;当n=100时,g(n)=11,即g(n)={0, 1≤n ≤9,k ,n =10k +b,1≤k ≤9,0≤b ≤9,k ∈N *,b ∈N ,11,n =100.同理有f(n)=1≤k ≤8,0≤b ≤9,k ∈N *,b ∈N ,{0, 1≤n ≤8,k ,n =10k +b -1,n -80,89≤n ≤98,20,n =99,100.由h(n)=f(n)-g(n)=1,可知n=9,19,29,39,49,59,69,79,89,90.所以当n ≤100时,S={9,19,29,39,49,59,69,79,89,90}.当n=9时,p(9)=0;当n=90时,p(90)===;g (90)F (90)9171119当n=10k+9(1≤k ≤8,k ∈N *)时,p(n)===,由于y=关于k 单调递增,故当n=10k+9(1≤k ≤8,k ∈N *)时,p(n)的g (n )F (n )k2n -9k20k +9k20k +9最大值为p(89)=.8169又<,所以当n ∈S 时,p(n)的最大值为.8169119119考点二 直接证明与间接证明1.(2016浙江,20,15分)设函数f(x)=x 3+,x ∈[0,1].证明:11+x (1)f(x)≥1-x+x 2;(2)< f(x)≤.3432证明 (1)因为1-x+x 2-x 3==,1-(-x )41-(-x )1-x 41+x 由于x ∈[0,1],有≤,1-x41+x 1x +1即1-x+x 2-x 3≤,1x +1所以f(x)≥1-x+x 2.(2)由0≤x ≤1得x 3≤x,故f(x)=x 3+≤x+=x+-+=+≤,1x +11x +11x +13232(x -1)(2x +1)2(x +1)3232所以f(x)≤.32由(1)得f(x)≥1-x+x 2=+≥,(x -12)23434又因为f =>,(12)192434所以f(x)>.34综上,<f(x)≤.3432疑难突破 (1)将证明f(x)≥1-x+x 2转化为证明1-x+x 2-x 3≤成立,而左边==≤=右边,从而问题得1x +1(1-x +x 2-x 3)(1+x)1+x 1-x41+x 11+x 证.(2)运用放缩思想,由0≤x ≤1⇒x 3≤x,从而f(x)=x 3+≤x+,而x+=x+-+=+≤,由(1)及f =>1x +11x +11x +11x +13232(x -1)(2x +1)2(x +1)3232(12)192434得f(x)>,从而问题得证.342.(2016江苏,20,16分)记U={1,2,…,100}.对数列{a n }(n ∈N *)和U 的子集T,若T=⌀,定义S T =0;若T={t 1,t 2,…,t k },定义S T =a t 1++…+.例如:T={1,3,66}时,S T =a 1+a 3+a 66.现设{a n }(n ∈N *)是公比为3的等比数列,且当T={2,4}时,S T =30.a t 2a t k(1)求数列{a n }的通项公式;(2)对任意正整数k(1≤k ≤100),若T ⊆{1,2,…,k},求证:S T <a k+1;(3)设C ⊆U,D ⊆U,S C ≥S D ,求证:S C +S C ∩D ≥2S D .解析 (1)由已知得a n =a 1·3n-1,n ∈N *.于是当T={2,4}时,S T =a 2+a 4=3a 1+27a 1=30a 1.又S T =30,故30a 1=30,即a 1=1.所以数列{a n }的通项公式为a n =3n-1,n ∈N *.(2)因为T ⊆{1,2,…,k},a n =3n-1>0,n ∈N *,所以S T ≤a 1+a 2+…+a k =1+3+…+3k-1=(3k -1)<3k .12因此,S T <a k+1.(3)下面分三种情况证明.①若D 是C 的子集,则S C +S C ∩D =S C +S D ≥S D +S D =2S D .②若C 是D 的子集,则S C +S C ∩D =S C +S C =2S C ≥2S D .③若D 不是C 的子集,且C 不是D 的子集.令E=C ∩∁U D,F=D ∩∁U C,则E ≠⌀,F ≠⌀,E ∩F=⌀.于是S C =S E +S C ∩D ,S D =S F +S C ∩D ,进而由S C ≥S D 得S E ≥S F .设k 为E 中的最大数,l 为F 中的最大数,则k ≥1,l ≥1,k ≠l.由(2)知,S E <a k+1.于是3l-1=a l ≤S F ≤S E <a k+1=3k ,所以l-1<k,即l ≤k.又k ≠l,故l ≤k-1.从而S F ≤a 1+a 2+…+a l =1+3+…+3l-1=≤=≤,3l -123k -1-12a k -12S E -12故S E ≥2S F +1,所以S C -S C ∩D ≥2(S D -S C ∩D )+1,即S C +S C ∩D ≥2S D +1.综合①②③得,S C +S C ∩D ≥2S D .【三年模拟】时间:45分钟 分值:55分一、选择题(每小题5分,共35分)1.(2018广东六校第三次联考,10)自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟.调查某高中学校学生自主招生报考的情况,得到如下结果:①报考“北约”联盟的学生,都没报考“华约”联盟;②报考“华约”联盟的学生,也报考了“京派”联盟;③报考“卓越”联盟的学生,都没报考“京派”联盟;④不报考“卓越”联盟的学生,就报考“华约”联盟.根据上述调查结果,下列结论错误的是( )A.没有同时报考“华约”和“卓越”联盟的学生B.报考“华约”和“京派”联盟的考生一样多C.报考“北约”联盟的考生也报考了“卓越”联盟D.报考“京派”联盟的考生也报考了“北约”联盟答案 D 2.(2017山东青岛一模,4)中国有句名言“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算的,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放有纵横两种形式,如图,当表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推.例如6 613用算筹表示就是,则8 335用算筹可表示为( )中国古代的算筹数码答案 B 3.(2017江西南昌调研,11)设等比数列{a n }的公比为q,其前n 项和为S n ,前n 项之积为T n ,并且满足条件:a 1>1,a 2 016a 2 017>1,<0,下列结论中正确的是( )a 2 016-1a 2 017-1A.q<0B.a 2 016a 2 018-1>0C.T 2 016是数列{T n }中的最大项D.S 2 016>S 2 017答案 C4.(2019届福建龙岩期中,6)如图,第n 行首尾两数均为n,图中的递推关系类似于杨辉三角,则第19行(n ≥2)第2个数是( )A.170B.172C.174D.176答案 B5.(2019届福建福州期中,6)某次数学考试成绩公布后,甲、乙、丙、丁四人谈论成绩的情况.甲说:“我们四个人的分数都不一样,但我和乙的成绩之和等于丙、丁两人的成绩之和.”乙说:“丙、丁两人中一人分数比我高,一人分数比我低.”丙说:“我的分数不是最高的.”丁说:“我的分数不是最低的.”则四人中成绩最高的是( )A.甲B.乙C.丙D.丁答案 D6.(2019届湖北孝感期中,5)因为余弦函数是偶函数,而f(x)=cos(x 2+1)是余弦函数,所以f(x)=cos(x 2+1)是偶函数,以上推理( )A.结论不正确B.大前提不正确C.小前提不正确D.全不正确答案 C7.(2019届北京朝阳期中,8)将正奇数数列1,3,5,7,9,…依次按两项、三项分组,得到分组序列如下:(1,3),(5,7,9),(11,13),(15,17,19),……,若称(1,3)为第1组,(5,7,9)为第2组,……,依此类推,则原数列中的2 019位于分组序列中的( )A.第404组 B.第405组C.第808组 D.第809组答案 A 二、填空题(每小题5分,共20分)8.(2018江西上饶第二次模拟,13)二维空间中,圆的一维测度(周长)l=2πr,二维测度(面积)S=πr 2;三维空间中,球的二维测度(表面积)S=4πr 2,三维测度(体积)V=πr 3.应用合情推理,若四维空间中,“特级球”的三维测度V=12πr 3,则其四维测度43W= . 答案 3πr 49.(2018河北衡水中学第十次模拟考试,16)观察下列各式:13=1;23=3+5;33=7+9+11;43=13+15+17+19;……若m 3(m ∈N *)按上述规律展开后,发现等式右边含有“2 017”这个数,则m 的值为 . 答案 4510.(2018河北衡水中学模拟,16)数列{a n }满足a n+1=已知a 7=2,{a n }的前7项和的最大值为S,把a 1的所有可{12a n ,a n 是正偶数,3a n +1,a n 是正奇数,能取值按从小到大排成一个新数列{b n },{b n }所有项的和为T,则S-T= . 答案 6411.(2018豫南九校第六次质量考评,15)已知函数f(x)=++,由f(x-1)=++是奇函数,可得函数f(x)的图象关于1x 1x +11x +21x -11x 1x +1点(-1,0)对称,类比这一结论,可得函数g(x)=++…+的图象关于点 对称. x +2x +1x +3x +2x +7x +6答案 (-72,6)。
1.合情推理与演绎推理(1)归纳和类比都是合情推理,前者是由特殊到一般,部分到整体的推理,后者是由特殊到特殊的推理,但二者都能由已知推测未知,都能用于猜想,推理的结论不一定为真,有待进一步证明.(2)演绎推理与合情推理不同,是由一般到特殊的推理,是数学中证明的基本推理形式.也是公理化体系所采用的推理形式,另一方面,合情推理与演绎推理又是相辅相成的,前者是后者的前提,后者论证前者的可靠性.2.直接证明与间接证明直接证明和间接证明是数学证明的两类基本证明方法.直接证明的两类基本方法是综合法和分析法:综合法是从已知条件推导出结论的证明方法;分析法是由结论追溯到条件的证明方法,在解决数学问题时,常把它们结合起来使用,间接证法的一种方法是反证法,反证法是从结论反面成立出发,推出矛盾的证明方法.思考反证法通常适用于哪些问题?答案反证法是高中数学的一种重要的证明方法,在不等式和立体几何的证明中经常用到,它所反映出的“正难则反”的解决问题的思想方法更为重要.反证法主要证明:否定性、唯一性命题;至多、至少型问题;几何问题.3.数学归纳法数学归纳法主要用于解决与正整数有关的数学问题.证明时,它的两个步骤缺一不可.它的第一步(归纳奠基)n=n0时结论成立.第二步(归纳递推)假设n=k时,结论成立,推得n=k+1时结论也成立.数学归纳法原理建立在归纳公理的基础上,它可用有限的步骤(两步)证明出无限的命题成立.思考何为探索性命题?其解题思路是什么?答案探索性命题是试题中经常出现的一种题型,此类问题未给出问题结论,需要由特殊情况入手,猜想、证明一般结论的问题称为探求规律性问题,它的解题思想是:从给出的条件出发,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.题型一合情推理及应用例1观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10等于()A.28B.76C.123D.199答案 C解析记a n+b n=f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n-1)+f(n-2)(n∈N*,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a10+b10=123.反思与感悟归纳推理和类比推理是常用的合情推理,两种推理的结论“合情”但不一定“合理”,其正确性都有待严格证明.尽管如此,合情推理在探索新知识方面有着极其重要的作用.运用合情推理时,要认识到观察、归纳、类比、猜想、证明是相互联系的.在解决问题时,可以先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳、类比的方法进行探索、猜想,最后用逻辑推理方法进行验证.跟踪训练1自然数按下表的规律排列则上起第2 014行,左起第2 015列的数为()A.2 0142B.2 0152C.2 013×2 014D.2 014×2 015答案 D解析 经观察可得这个自然数表的排列特点:①第一列的每个数都是完全平方数,并且恰好等于它所在行数的平方,即第n 行的第1个数为n 2;②第一行第n 个数为(n -1)2+1;③第n 行从第1个数至第n 个数依次递减1; ④第n 列从第1个数至第n 个数依次递增1.故上起第2 014行,左起第2 015列的数,应是第2 015列的第2 014个数,即为[(2 015-1)2+1]+2 013=2 014×2 015. 题型二 直接证明与间接证明例2 已知a >b >0,求证(a -b )28a <a +b 2-ab <(a -b )28b .证明 欲证(a -b )28a <a +b 2-ab <(a -b )28b ,只需证(a -b )28a <(a -b )22<(a -b )28b ,∵a >b >0,∴只需证a -b 22a <a -b 2<a -b22b ,即a +b 2a <1<a +b2b, 欲证a +b 2a <1,只需证a +b <2a ,即b <a ,该式显然成立.欲证1<a +b2b,只需证2b <a +b ,即b <a ,该式显然成立. ∴a +b 2a <1<a +b2b成立. ∴(a -b )28a <a +b 2-ab <(a -b )28b成立.反思与感悟 直接证明方法可具体分为比较法、代换法、放缩法、判别式法、构造函数法等,应用综合法证明问题时,必须首先想到从哪里开始起步,分析法就可以帮助我们克服这种困难,在实际证明问题时,应当把分析法和综合法结合起来使用. 跟踪训练2 已知等差数列{a n }中,首项a 1>0,公差d >0. (1)若a 1=1,d =2,且1a 21,1a 24,1a 2m 成等比数列,求正整数m 的值;(2)求证对任意正整数n ,1a 2n ,1a 2n +1,1a 2n +2都不成等差数列.(1)解 ∵{a n }是等差数列,a 1=1,d =2, ∴a 4=7,a m =2m -1.∵1a 21,1a 24,1a 2m 成等比数列, ∴1492=1(2m -1)2, 即2m -1=49.∴m =25.(2)证明 假设存在n ∈N *,使1a 2n ,1a 2n +1,1a 2n +2成等差数列,即2a 2n +1=1a 2n +1a 2n +2, ∴2a 2n +1=1(a n +1-d )2+1(a n +1+d )2=2a 2n +1+2d2(a 2n +1-d 2)2, 化简得d 2=3a 2n +1.(*)又∵a 1>0,d >0,∴a n +1=a 1+nd >d ,∴3a 2n +1>3d 2>d 2,与(*)式矛盾,因此假设不成立,故命题得证. 题型三 数学归纳法及应用例3 已知a i >0(i =1,2,…,n ),考察: ①a 1·1a 1≥1;②(a 1+a 2)⎝⎛⎭⎫1a 1+1a 2≥4;③(a 1+a 2+a 3)⎝⎛⎭⎫1a 1+1a 2+1a 3≥9.归纳出对a 1,a 2,…,a n 都成立的类似不等式,并用数学归纳法加以证明.解 结论:(a 1+a 2+…+a n )·⎝⎛⎭⎫1a 1+1a2+…+1a n≥n 2(n ∈N *). 证明:①当n =1时,显然成立. ②假设当n =k 时,不等式成立,即(a 1+a 2+…+a k )·⎝⎛⎭⎫1a 1+1a2+…+1a k≥k 2. 当n =k +1时,(a 1+a 2+…+a k +a k +1)·⎝⎛⎭⎫1a 1+1a 2+…+1a k+1ak +1=(a 1+a 2+…+a k )⎝⎛⎭⎫1a 1+1a 2+…+1a k +a k +1·⎝⎛⎭⎫1a 1+1a 2+…+1a k +1a k +1(a 1+a 2+…+a k )+1 ≥k 2+⎝ ⎛⎭⎪⎫a k +1a 1+a 1a k +1+⎝ ⎛⎭⎪⎫a k +1a 2+a 2a k +1+…+⎝ ⎛⎭⎪⎫a k +1a k +a k a k +1+1 ≥k 2+2k +1=(k +1)2.由①②可知,不等式对任意正整数n 都成立.反思与感悟 数学归纳法是推理逻辑,它的第一步称为奠基步骤,是论证的基础保证,即通过验证落实传递的起点,这个基础必须真实可靠;它的第二步称为递推步骤,是命题具有后继传递性的保证,两步合在一起为完全归纳步骤,这两步缺一不可,第二步中证明“当n =k +1时结论正确”的过程中,必须用“归纳假设”,否则就是错误的. 跟踪训练3 数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2)证明(1)中的猜想.(1)解 当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74;当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4, ∴a 4=158.由此猜想a n =2n -12n 1(n ∈N *).(2)证明 ①当n =1时,a 1=1,结论成立. ②假设n =k (k ≥1且k ∈N *)时,结论成立, 即a k =2k -12k -1,那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1, ∴2a k +1=2+a k .∴a k +1=2+a k 2=2+2k -12k -12=2k +1-12k .所以当n =k +1时,结论成立. 由①②知猜想a n =2n -12n -1(n ∈N *)成立.应用反证法证明问题时,因对结论否定不正确致误例4 已知x ,y ∈R ,且x 2+y 2=0,求证x ,y 全为0. 错解 假设结论不成立,则x ,y 全不为0,即x ≠0且y ≠0,∴x 2+y 2>0,与x 2+y 2=0矛盾,故x ,y 全为0.错因分析 x ,y 全为0的否定应为x ,y 不全为0,即至少有一个不是0,得x 2+y 2>0与已知矛盾.正解 假设x ,y 不全为0,则有以下三种可能: ①x =0,y ≠0,得x 2+y 2>0,与x 2+y 2=0矛盾; ②x ≠0,y =0,得x 2+y 2>0, 与x 2+y 2=0矛盾; ③x ≠0,y ≠0,得x 2+y 2>0,与x 2+y 2=0矛盾. ∴假设是错误的, ∴x ,y 全为0.防范措施 应用反证法证明问题时,首先要否定结论,假设结论的反面成立,当结论的反面呈现多样性时,需罗列出各种可能情形,否定一定要彻底.1.下列推理正确的是( )A.把a (b +c )与log a (x +y )类比,则log a (x +y )=log a x +log a yB.把a (b +c )与sin(x +y )类比,则sin(x +y )=sin x +sin yC.把(ab )n 与(x +y )n 类比,则(x +y )n =x n +y nD.把(a +b )+c 与(xy )z 类比,则(xy )z =x (yz ) 答案 D2.在△ABC 中,若sin A sin C >cos A cos C ,则△ABC 一定是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不确定答案 D解析 由sin A sin C >cos A cos C ,得cos(A +C )<0,即cos B >0, 所以B 为锐角,但并不能确定角A 和C 的情况,故选D.3.猜想数列12×4,14×6,16×8,18×10,…的通项公式是____________________.答案 a n =12n (2n +2)(n ∈N *)解析 分析式子12×4,14×6,16×8,18×10,…的规律,可得分子均为1,分母为连续相邻的两个偶数的乘积.4.如图是由花盆摆成的图案,根据图中花盆摆放的规律,第n 个图形中的花盆数a n =__________.答案 3n 2-3n +1解析 观察知每一个图案中间一行的花盆数为1,3,5,…,其中第n 个图案中间一行的花盆数为2n -1,往上一侧花盆数依次是2n -2,2n -3,…,它们的和为n (2n -1+n )2=n (3n -1)2,往下一侧(含中间一行)花盆数为n (3n -1)2,所以a n =2·n (3n -1)2-(2n -1)=3n 2-3n +1.5.函数列{f n (x )}满足f 1(x )=x1+x 2(x >0),f n +1(x )=f 1(f n (x )). (1)求f 2(x ),f 3(x );(2)猜想f n (x )的表达式,并证明. 解 (1)f 1(x )=x1+x 2(x >0), f 2(x )=x 1+x 21+x 21+x 2=x1+2x 2, f 3(x )=x 1+2x 21+x 21+2x 2=x 1+2x 2+x 2=x1+3x 2. (2)猜想f n (x )=x 1+nx 2(n ∈N *), 下面用数学归纳法证明: ①当n =1时,命题显然成立; ②假设当n =k (k ∈N *)时,f k (x )=x1+kx 2, 那么f k +1(x )=x 1+kx 21+x 21+kx 2=x 1+kx 2+x 2=x1+(k +1)x 2.这就是说当n =k +1时命题也成立. 由①②可知,f n (x )=x 1+nx2对所有n ∈N *均成立.故f n (x )=x 1+nx2(n ∈N *).转化与化归的思想方法是数学最基本的思想方法,数学中一切问题的解决都离不开转化与化归,转化与化归是数学思想方法的灵魂.在本章中,合情推理与演绎推理体现的是一般与特殊的转化,数学归纳法体现的是一般与特殊、有限与无限的转化,反证法体现的是对立与统一的转化.从特殊到一般的思想方法即由特殊情况入手,通过观察、试验、归纳、猜想,探索出结论,然后再对归纳、猜想的结论进行证明.与正整数n 有关的命题,经常要用到归纳猜想,然后用数学归纳法证明,这体现了从特殊到一般的探求规律的思想.一、选择题1.古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,…这些数叫做三角形数,因为这些数(除1外)对应的点可以排成一个正三角形,如图所示,则第n 个三角形数为( )A.nB.n (n +1)2C.n 2-1D.n (n -1)2答案 B解析 观察图形可知,这些三角形数的特点是第n 个三角形数是在前一个三角形数的基础上加上n ,于是第n 个三角形数为1+2+…+n =n (n +1)2.2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,是因为( ) A.大前提错误 B.小前提错误 C.推理形式错误 D.非以上错误 答案 C解析 演绎推理的一般模式是三段论,大前提是已知的一般性原理,小前提是研究的特殊情况,结论是得出的判断.本题中并非所有的有理数都是真分数,所以推理形式错误.3.如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (c,0),当AB →⊥FB →时,由b 2=ac 得其离心率为5-12,此类椭圆称为“黄金椭圆”.类比“黄金椭圆”,在“黄金双曲线”x 2a 21-y 2b 21=1中,由b 21=a 1c 1(c 1为黄金双曲线的半焦距)可推出“黄金双曲线”的离心率为( )A.5+12 B.3+12 C.5+13D.7-12答案 A 解析 b 21=a 1c 1,c 21-a 21=b 21=a 1c 1,∴c 21a 21-1=c 1a 1,∴e 2-e -1=0,∴e =5+12(∵e >1).故选A.4.设函数f (x )=2x +1x -1(x <0),则f (x )( )A.有最大值B.有最小值C.为增函数D.为减函数答案 A解析 ∵x <0,∴-x >0,则 (-2x )+⎝⎛⎭⎫-1x ≥2(-2x )⎝⎛⎭⎫-1x =22, ∴-⎣⎡⎦⎤(-2x )+⎝⎛⎭⎫-1x ≤-2 2. ∴f (x )=-⎣⎡⎦⎤(-2x )+⎝⎛⎭⎫-1x -1≤-22-1. 当且仅当-2x =-1x ,即x =-22时取最大值.故选A.5.设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算为:A i A j =A k ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3.则满足关系式(x x A 2=A 0的x (x ∈S )的个数为( )A.1B.2C.3D.4 答案 B解析 当x =A 0时,(x xA 2=A 2≠A 0,当x =A 1时,(x xA 2=A 2A 2=A 0,成立;当x =A 2时,(x xA 2=A 0A 2=A 2≠A 0;当x =A 3时,(x xA 2=A 2A 2=A 0,成立.故选B.6.O 是平面上一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A.外心 B.内心 C.重心 D.垂心 答案 B解析 如图,AB →|AB →|为AB →上的单位向量,AC →|AC →|为AC →上的单位向量,则AB →|AB →|+AC→|AC →|的方向为∠BAC的角平分线AD 的方向.又λ∈[0,+∞),∴λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|的方向与AB →|AB →|+AC →|AC →|的方向相同.而OP →=OA →+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,∴点P 在AD 上移动,∴P 的轨迹一定通过△ABC 的内心. 二、填空题7.已知p =a +1a -2(a >2),q =2-a 2+4a -2(a >2),则p ,q 的大小关系为______.答案 p >q解析 p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q <22=4≤p .8.α,β是两个不同的平面,m ,n 是平面α及平面β外两条不同的直线,给出下列四个论断: ①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出一个你认为正确的命题__________. 答案 ②③④⇒①(或①③④⇒②)9.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是__________. 答案 ⎝⎛⎭⎫-3,32 解析 方法一(补集法):令⎩⎪⎨⎪⎧f (-1)≤0,f (1)≤0即⎩⎪⎨⎪⎧ -2p 2+p +1≤0,-2p 2-3p +9≤0即⎩⎨⎧ p ≤-12或p ≥1,p ≤-3或p ≥32.∴p ≤-3或p ≥32,符合题意的解是-3<p <32. 方法二(直接法):依题意,有f (-1)>0或f (1)>0,即2p 2-p -1<0或2p 2+3p -9<0,∴-12<p <1或-3<p <32,∴-3<p <32. 10.设函数y =f (x )在(0,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤K ,K ,f (x )>K ,若函数f (x )=ln x +1e x,且恒有f K (x )=f (x ),则K 的最小值为______________. 答案 1e解析 由于f (x )=ln x +1e x ,所以f ′(x )=1x -ln x -1e x ,令g (x )=1x-ln x -1,则g ′(x )=-x -2-1x<0,所以g (x )在(0,+∞)上单调递减,而g (1)=0,所以当x ∈(0,1)时,g (x )>0,此时,f ′(x )>0,当x ∈(1,+∞)时,g (x )<0,此时f ′(x )<0,所以f (x )在(0,1)上单调递增,f (x )在(1,+∞)上单调递减,故f (x )max =f (1)=1e ,又函数f (x )=ln x +1e x,且恒有f K (x )=f (x ),结合新定义可知,K 的最小值为1e. 三、解答题11.如图所示,设在四面体P ABC 中,∠ABC =90°,P A =PB =PC ,D 是AC 的中点,求证:PD ⊥平面ABC .证明 要证明PD ⊥平面ABC ,只需证明PD 与平面ABC 内的两条相交直线垂直即可,由于已知△ACP 为等腰三角形,AP =PC ,D 为AC 的中点,故PD ⊥AC ,从而有△P AD 为直角三角形,且AD =BD ,PD =PD ,AP =PB ,于是△APD ≌△BPD .因此∠PDA =∠PDB =90°,∴PD ⊥BD .又知AC 交BD 于D ,可知PD ⊥平面ABC .12.求证:不论x ,y 取何非零实数,等式1x +1y =1x +y总不成立.证明 假设存在非零实数x ,y 使得等式1x +1y =1x +y成立. 于是有y (x +y )+x (x +y )=xy ,即x 2+y 2+xy =0,即⎝⎛⎭⎫x +y 22+34y 2=0. 由y ≠0,得34y 2>0. 又⎝⎛⎭⎫x +y 22≥0, 所以⎝⎛⎭⎫x +y 22+34y 2>0. 与x 2+y 2+xy =0矛盾,故原命题成立.13.在数列{a n },{b n }中,a 1=2,b 1=4,且a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列(n ∈N *).(1)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测{a n },{b n }的通项公式,并证明你的结论;(2)求证1a 1+b 1+1a 2+b 2+…+1a n +b n <512. (1)解 由条件得2b n =a n +a n +1,a 2n +1=b n b n +1,a 1=2,b 1=4.由此可得a 2=6,b 2=9,a 3=12,b 3=16,a 4=20,b 4=25.猜测a n =n (n +1),b n =(n +1)2.用数学归纳法证明:①当n =1时,由上可得结论成立.②假设当n =k (k ≥1,k ∈N *)时,结论成立,即a k =k (k +1),b k =(k +1)2,那么,当n =k +1时,a k +1=2b k -a k =2(k +1)2-k (k +1)=(k +1)(k +2),b k +1=a 2k +1b k=(k +2)2. ∴当n =k +1时,结论也成立.由①②可知a n =n (n +1),b n =(n +1)2对一切正整数n 都成立.(2)证明 当n =1时,1a 1+b 1=16<512. n ≥2时,由(1)知a n +b n =(n +1)(2n +1)>2(n +1)n .∴1a n +b n <12⎝⎛⎭⎫1n -1n +1, ∴1a 1+b 1+1a 2+b 2+…+1a n +b n<16+12⎝⎛⎭⎫12-13+13-14+…+1n -1n +1 =16+12⎝⎛⎭⎫12-1n +1<16+14=512.综上,对n ∈N *,1a 1+b 1+1a 2+b 2+…+1a n +b n <512成立.。
新数学《推理与证明》专题解析(1)一、选择题1.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .5050【答案】C 【解析】 【分析】因为幻方的每行、每列、每条对角线上的数的和相等,可得2123()n f n n+++⋅⋅⋅+=,即得解. 【详解】因为幻方的每行、每列、每条对角线上的数的和相等,所以n 阶幻方对角线上数的和()f n 就等于每行(或每列)的数的和,又n 阶幻方有n 行(或n 列),因此,2123()n f n n+++⋅⋅⋅+=,于是12399100(10)50510f +++⋅⋅⋅++==.故选:C 【点睛】本题考查了数阵问题,考查了学生逻辑推理,数学运算的能力,属于中档题.2.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28 B .76C .123D .199【答案】C 【解析】 【分析】 【详解】 由题观察可发现,347,4711,71118+=+=+=,111829,182947+=+=,294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.3.甲、乙、丙、丁四个孩子踢球打碎了玻璃.甲说:“是丙或丁打碎的.”乙说:“是丁打碎的.”丙说:“我没有打碎玻璃.”丁说:“不是我打碎的.”他们中只有一人说了谎,请问是( )打碎了玻璃. A .甲 B .乙C .丙D .丁【答案】D 【解析】 【分析】假设其中一个人说了谎,针对其他的回答逐个判断对错即可,正确答案为丁. 【详解】假设甲打碎玻璃,甲、乙说了谎,矛盾, 假设乙打碎了玻璃,甲、乙说了谎,矛盾, 假设丙打碎了玻璃,丙、乙说了谎,矛盾, 假设丁打碎了玻璃,只有丁说了谎,符合题意, 所以是丁打碎了玻璃; 故选:D 【点睛】本题考查了进行简单的合情推理,采用逐一检验的方法解题,属基础题.4.观察下图:12343456745678910LL则第 行的各数之和等于22017( ) A .2017 B .1009C .1010D .1011【答案】B 【解析】 【分析】由图可得:第n 行的第一个数为n ,有21n -个数,且这21n -个数成公差为1的等差数列,利用等差数列求和公式算出即可 【详解】由图可得:第n 行的第一个数为n ,有21n -个数 且这21n -个数成公差为1的等差数列 所以第n 行的各数之和为:()()()()22122211212n n n n n ---+⨯=-令212017n -=,得1009n = 故选:B 【点睛】本题考查的是推理和等差数列的知识,较简单.5.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n =及3n =时,如图:记n S 为每个序列中最后一列数之和,则6S 为( ) A .147 B .294C .882D .1764【答案】A 【解析】 【分析】根据题目所给的步骤进行计算,由此求得6S 的值. 【详解】 依题意列表如下:上列乘6 上列乘5 上列乘2 16 30 60 1231530132 10 20所以6603020151210147S =+++++=.故选:A 【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.6.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了 【答案】C 【解析】 【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.7.小正方形按照下图中的规律排列,每个图形中的小正方形的个数构成数列{}n a 有以下结论:①515a =;②{}n a 是一个等差数列;③数列{}n a 是一个等比数列;④数列{}n a 的递堆公式11(),n n a a n n N *+=++∈其中正确的是( )A .①②④B .①③④C .①②D .①④【答案】D 【解析】由图形可得:a 1=1,a 2=1+2,… ∴()1122n n n a n +=++⋯+=.所以①a 5=15; 正确;②an −a n −1= n ,所以数列{a n }不是一个等差数列;故②错误; ③数列{an }不是一个等比数列;③错误; ④数列{a n }的递推关系是a n +1=a n +n +1(n ∈N ∗).正确; 本题选择D 选项.点睛: 数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项.8.用数学归纳法证明 11151236n n n ++⋅⋅⋅+≥++时,从n k =到1n k =+,不等式左边需添加的项是( ) A .111313233k k k +++++ B .112313233k k k +-+++ C .11331k k -++ D .133k + 【答案】B 【解析】分析:分析n k =,1n k =+时,左边起始项与终止项,比较差距,得结果. 详解:n k =时,左边为111123k k k++⋅⋅⋅+++, 1n k =+时,左边为111111233313233k k k k k k ++⋅⋅⋅++++++++++, 所以左边需添加的项是11111123132331313233k k k k k k k ++-=+-+++++++,选B. 点睛:研究n k =到1n k =+项的变化,实质是研究式子变化的规律,起始项与终止项是什么,中间项是如何变化的.9.观察下列等式:332123+=,33321236++=,33332123410+++=,记()3333123f n n =+++⋅⋅⋅+.根据上述规律,若()225f n =,则正整数n 的值为( )A .8B .7C .6D .5【答案】D 【解析】 【分析】由规律得()()()22211234n n f n n +=+++⋅⋅⋅+=再解方程即可 【详解】由已知等式的规律可知()()()22211234n n f n n +=+++⋅⋅⋅+=,当()225f n =时,可得5n =. 故选:D 【点睛】本题考查归纳推理,熟记等差数列求和公式是关键,考查观察转化能力,是基础题10.学校艺术节对同一类的A 、B 、C 、D 四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下: 甲说:“是C 或D 作品获得一等奖” 乙说:“B 作品获得一等奖” 丙说:“A 、D 两项作品未获得一等奖” 丁说:“是C 作品获得一等奖” 若这四位同学中只有两位说的话是对的,则获得一等奖的作品为( ) A .C 作品 B .D 作品 C .B 作品 D .A 作品 【答案】C【解析】分析:根据学校艺术节对同一类的A ,B ,C ,D 四项参赛作品,只评一项一等奖,故假设A ,B ,C ,D 分别为一等奖,判断甲、乙、丙、丁的说法的正确性,即可判断.详解:若A 为一等奖,则甲,丙,丁的说法均错误,故不满足题意, 若B 为一等奖,则乙,丙说法正确,甲,丁的说法错误,故满足题意, 若C 为一等奖,则甲,丙,丁的说法均正确,故不满足题意, 若D 为一等奖,则只有甲的说法正确,故不合题意,故若这四位同学中只有两位说的话是对的,则获得一等奖的作品是B 故答案为:C.点睛:本题考查推理的应用,意在考查学生的分析、推理能力.这类题的特点是:通过几组命题来创设问题情景,依据题目提供的信息,联系所学的知识和方法,实现信息的迁移,达到灵活解题的目的.对于逻辑推理问题,应耐心读题,找准突破点,一般可以通过假设前提依次验证即可.11.用数学归纳法证明“l+2+3+…+n 3=632n n +,n ∈N*”,则当n=k+1时,应当在n=k 时对应的等式左边加上( ) A .k 3+1 B .(k 3+1)+(k 3+2)+…+(k+1)3C .(k+1)3D .63(1)(1)2k k +++【答案】B 【解析】分析:当项数从n k =到1n k =+时,等式左边变化的项可利用两个式子相减得到。
数学推理中学数学中的推理与证明方法数学是一门追求逻辑性与推理能力的学科,其中数学推理是数学思维的核心。
在数学的学习中,我们需要通过推理与证明方法,来解决问题、构建数学知识体系。
本文将介绍中学数学中的推理与证明方法,帮助读者更好地理解和应用数学推理。
一、直接证明法直接证明法是最常用的证明方法之一,根据已知条件与引理或公理,通过推导出结论来证明一个命题的真实性。
这种方法通过逻辑推理的方式,展示了结论的正确性。
直接证明法通常使用数学运算和逻辑推理的原则,以步骤清晰、推理严密的方式,逐步证明命题。
举例来说,我们可以通过直接证明法证明“对任意自然数n,如果n为偶数,那么n的平方也是偶数”。
二、反证法反证法是一种推理方法,通过假设命题的否定,然后通过逻辑推理来得出矛盾,从而证明原命题的真实性。
反证法的思想是通过推理方法展示了命题的否定无法成立,从而证明了原命题的真实性。
举例来说,我们可以通过反证法证明“根号2是一个无理数”。
三、归纳法归纳法是通过具体的实例推理来证明命题的方法。
归纳法一般分为弱数学归纳法和强数学归纳法。
弱数学归纳法是基于命题的n=1的情况成立,并且当n=k的情况成立时,推导出n=k+1的情况也成立。
而强数学归纳法则是基于命题的n=1的情况成立,并且当n≤k的情况成立时,推导出n=k+1的情况也成立。
归纳法常用于证明一些递推公式或者数列的结论。
四、等价推理法等价推理法是通过等式、不等式和联结词来进行推理的方法。
通过等价推理法,将一个命题转化为另一个等价的命题,从而得出结论。
等价推理法常用于解决方程、不等式等问题。
五、逆否命题证明法逆否命题证明法是通过证明一个命题的逆否命题的真实性来证明原命题的真实性。
逆否命题是将原命题的假设与结论取反,通过逻辑推理来得出结论。
逆否命题证明法常用于证明条件语句的真实性。
综上所述,中学数学中的推理与证明方法有直接证明法、反证法、归纳法、等价推理法和逆否命题证明法等。
高考数学(理)真题专题汇编:推理与证明一、选择题1.【来源】2017年高考真题——理科数学(全国Ⅱ卷)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 2.【来源】2014年高考真题理科数学(山东卷)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根 (C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根3.【来源】2013年普通高等学校招生全国统一考试(广东卷)数学(理科) 设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈4.【来源】辽宁省大连24中2012届高三模拟考试理科数学 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线:已知直线bα平面,直线a α⊂平面,直线b ∥平面α,则b ∥a ”的结论显然是错误的,这是因为 A .大前提错误 B .小前提错误C .推理形式错误D .非以上错误5.【来源】2012年高考真题——理科数学(江西卷)观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=则1010a b+=A.28 B.76 C.123 D.1996.【来源】2012年高考真题——理科数学(湖北卷)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式316 9d V≈.人们还用过一些类似的近似公式. 根据π =3.14159判断,下列近似公式中最精确的一个是A.316 9d V≈ B.32d V≈ C.3300 157d V≈ D.321 11d V≈7.【来源】2012年高考真题——理科数学(全国卷)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73.动点P从E出发沿直线喜爱那个F运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为(A)16(B)14(C)12(D)108.【来源】2011年高考数学理(江西)如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点。
高中数学不等式、推理与证明、复数(含高考真题及解析)1.【2022年全国甲卷】若z=1+i.则|i z+3z̅|=()A.4√5B.4√2C.2√5D.2√2【答案】D【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为z=1+i,所以i z+3z̅=i(1+i)+3(1−i)=2−2i,所以|i z+3z̅|=√4+4=2√2.故选:D.2.【2022年全国甲卷】若z=−1+√3i,则zzz̅−1=()A.−1+√3i B.−1−√3i C.−13+√33iD.−13−√33i【答案】C【解析】【分析】由共轭复数的概念及复数的运算即可得解.【详解】z̅=−1−√3i,zz̅=(−1+√3i)(−1−√3i)=1+3=4.z zz̅−1=−1+√3i3=−13+√33i故选:C3.【2022年全国乙卷】设(1+2i)a+b=2i,其中a,b为实数,则()A.a=1,b=−1B.a=1,b=1C.a=−1,b=1D.a=−1,b=−1【答案】A【解析】【分析】根据复数代数形式的运算法则以及复数相等的概念即可解出.因为a,b∈R,(a+b)+2a i=2i,所以a+b=0,2a=2,解得:a=1,b=−1.故选:A.4.【2022年全国乙卷】若x,y满足约束条件{x+y⩾2,x+2y⩽4,y⩾0,则z=2x−y的最大值是()A.−2B.4C.8D.12【答案】C【解析】【分析】作出可行域,数形结合即可得解.【详解】由题意作出可行域,如图阴影部分所示,转化目标函数z=2x−y为y=2x−z,上下平移直线y=2x−z,可得当直线过点(4,0)时,直线截距最小,z最大,所以z max=2×4−0=8.故选:C.5.【2022年全国乙卷】已知z=1−2i,且z+az̅+b=0,其中a,b为实数,则()A.a=1,b=−2B.a=−1,b=2C.a=1,b=2D.a=−1,b=−2【答案】A【解析】先算出z̅,再代入计算,实部与虚部都为零解方程组即可 【详解】z̅=1+2iz +az̅+b =1−2i +a(1+2i )+b =(1+a +b)+(2a −2)i由z +az̅+b =0,得{1+a +b =02a −2=0 ,即{a =1b =−2 故选:A6.【2022年新高考1卷】若i (1−z)=1,则z +z̅=( ) A .−2 B .−1 C .1 D .2【答案】D 【解析】 【分析】利用复数的除法可求z ,从而可求z +z̅. 【详解】由题设有1−z =1i =i i2=−i ,故z =1+i ,故z +z̅=(1+i )+(1−i )=2,故选:D7.【2022年新高考2卷】(2+2i )(1−2i )=( ) A .−2+4i B .−2−4iC .6+2iD .6−2i【答案】D 【解析】 【分析】利用复数的乘法可求(2+2i )(1−2i ). 【详解】(2+2i )(1−2i )=2+4−4i +2i =6−2i , 故选:D.8.【2022年北京】若复数z 满足i ⋅z =3−4i ,则|z |=( ) A .1 B .5C .7D .25【答案】B 【解析】利用复数四则运算,先求出z,再计算复数的模.【详解】由题意有z=3−4ii =(3−4i)(−i)i⋅(−i)=−4−3i,故|z|=√(−4)2+(−3)2=5.故选:B.9.【2022年浙江】已知a,b∈R,a+3i=(b+i)i(i为虚数单位),则()A.a=1,b=−3B.a=−1,b=3C.a=−1,b=−3D.a=1,b=3【答案】B【解析】【分析】利用复数相等的条件可求a,b.【详解】a+3i=−1+b i,而a,b为实数,故a=−1,b=3,故选:B.10.【2022年浙江】若实数x,y满足约束条件{x−2≥0,2x+y−7≤0,x−y−2≤0,则z=3x+4y的最大值是()A.20B.18C.13D.6【答案】B【解析】【分析】在平面直角坐标系中画出可行域,平移动直线z=3x+4y后可求最大值.【详解】不等式组对应的可行域如图所示:当动直线3x +4y −z =0过A 时z 有最大值. 由{x =22x +y −7=0可得{x =2y =3,故A(2,3), 故z max =3×2+4×3=18, 故选:B.11.【2022年浙江】已知a,b ∈R ,若对任意x ∈R,a|x −b|+|x −4|−|2x −5|≥0,则( ) A .a ≤1,b ≥3 B .a ≤1,b ≤3 C .a ≥1,b ≥3 D .a ≥1,b ≤3【答案】D 【解析】 【分析】将问题转换为a|x −b|≥|2x −5|−|x −4|,再结合画图求解. 【详解】由题意有:对任意的x ∈R ,有a|x −b|≥|2x −5|−|x −4|恒成立.设f(x)=a|x −b|,g(x)=|2x −5|−|x −4|={1−x,x ≤523x −9,52<x <4x −1,x ≥4,即f(x)的图像恒在g(x)的上方(可重合),如下图所示:由图可知,a≥3,1≤b≤3,或1≤a<3,1≤b≤4−3a≤3,故选:D.12.【2022年新高考2卷】(多选)若x,y满足x2+y2−xy=1,则()A.x+y≤1B.x+y≥−2C.x2+y2≤2D.x2+y2≥1【答案】BC【解析】【分析】根据基本不等式或者取特值即可判断各选项的真假.【详解】因为ab≤(a+b2)2≤a2+b22(a,b∈R),由x2+y2−xy=1可变形为,(x+y)2−1=3xy≤3(x+y2)2,解得−2≤x+y≤2,当且仅当x=y=−1时,x+y=−2,当且仅当x=y=1时,x+y=2,所以A错误,B正确;由x2+y2−xy=1可变形为(x2+y2)−1=xy≤x2+y22,解得x2+y2≤2,当且仅当x=y =±1时取等号,所以C正确;因为x2+y2−xy=1变形可得(x−y2)2+34y2=1,设x−y2=cosθ,√32y=sinθ,所以x=cosθ+√3y=√3,因此x2+y2=cos2θ+53sin2θ√3=1+√3−13cos2θ+13=43+23sin(2θ−π6)∈[23,2],所以当x=√33,y=−√33时满足等式,但是x2+y2≥1不成立,所以D错误.故选:BC .1.(2022·北京四中三模)在复平面内,复数12iiz -=对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】C 【解析】 【分析】根据复数的除法运算法则求复数z 的代数形式,根据复数的几何意义确定对应点的象限. 【详解】()()()12i i 12i 2i i i i z -⋅--===--⋅-, 所以复数z 在复平面上的对应点为()2,1--,该点在第三象限. 故选:C.2.(2022·湖南·长沙一中模拟预测)已知复数23i i i 1iz ++=+,z 是z 的共轭复数,则z z ⋅=( )A .0B .12C .1D .2【答案】B 【解析】 【分析】利用复数的除法可求z ,进而可求z z ⋅. 【详解】∵()()23i i i 11i 11i 1i 1i 1i 1i 22z ++--+====-++++-, 所以1111111i i =2222442z z ⎛⎫⎛⎫⋅=---++= ⎪⎪⎝⎭⎝⎭.故选:B .3.(2022·内蒙古·满洲里市教研培训中心三模(文))复数z 满足()12i 3i z +=-,则z 的虚部为( ) A .75-B .7i 5-C .7i 5D .15【答案】A 【解析】 【分析】化简方程求出复数z 的代数形式,结合复数虚部的定义确定其虚部. 【详解】因为()12i 3i z +=-,所以()()()()3i 12i 3i 17i 17i 12i 12i 12i 555z ----====-++-, 所以复数z 的虚部为75-,故选:A.4.(2022·黑龙江·哈九中模拟预测(文))观察下列等式,3211=,332123+=,33321236++=,33332123410+++=,根据上述规律,3333333123456n ++++++⋅⋅⋅+=( ) A .43224n n n ++B .43224n n n ++C .43224n n n -+D .43224n n n -+【答案】B 【解析】 【分析】根据3211=,23()212=+,26()2123=++,210()21234=+++,观察其规律,可得3333333123456n ++++++⋅⋅⋅+=()21234n +++++.【详解】3211=,332123+=()212=+,33321236++=()2123=++, 33332123410+++=()21234=+++,根据上述规律,得3333333123456n ++++++⋅⋅⋅+=()21234n +++++2(1)2n n +⎛⎫= ⎪⎝⎭=43224n n n++. 故选:B.5.(2022·江苏·南京市天印高级中学模拟预测)若复数z 满足1i 1i z -=+() ,则z =( ) A .i - B .i C .1 D .1-【答案】A 【解析】 【分析】根据复数的除法运算求得复数z ,继而可得其共轭复数. 【详解】由题意1i 1i z -=+(),得21i (1i)i 1i 2z ++===-, 故i z =-, 故选:A6.(2022·四川眉山·三模(文))由若干个完全一样的小正方体无空隙地堆砌(每相邻两层堆砌的规律都相同)成一个几何体,几何体部分如图所示.用下面公式不能计算出该几何体三视图中所看到的小正方体或全部小正方体个数的是( )A .()1122n n n +++⋅⋅⋅+=B .()21321n n ++⋅⋅⋅+-=C .()()222121126n n n n ++++⋅⋅⋅+=D .()223331124n n n +++⋅⋅⋅+=【答案】D 【解析】 【分析】计算正视图或左视图看到的小正方形的个数是相同的,再计算俯视图中看到的小正方形的个数和几何体的全部小正方体个数即可. 【详解】从正视图或左视图可以看出小正方形的个数为()1122n n n +++⋅⋅⋅+= 从俯视图可以看到小正方形的个数为()21321n n ++⋅⋅⋅+-=几何体的全部小正方体个数为()()222121126n n n n ++++⋅⋅⋅+=故选:D.7.(2022·北京·北大附中三模)已知0a b >>,下列不等式中正确的是( ) A .c ca b> B .2ab b < C .12a b a b-+≥- D .1111a b <-- 【答案】C 【解析】 【分析】由0a b >>,结合不等式的性质及基本不等式即可判断出结论. 【详解】解:对于选项A ,因为110,0a b a b>><<,而c 的正负不确定,故A 错误; 对于选项B ,因为0a b >>,所以2ab b >,故B 错误;对于选项C ,依题意0a b >>,所以10,0a b a b ->>-,所以12a b a b-+≥=-,故C 正确;对于选项D ,因为10,111,1a b a b a >>->->--与11b -正负不确定,故大小不确定,故D 错误; 故选:C.8.(2022·山东泰安·模拟预测)已知42244921x x y y ++=,则2253x y +的最小值是( )A .2B .127 C .52D .3【答案】A 【解析】 【分析】对原式因式分解得()()2222421x y x y ++=,然后利用基本不等式即可求解. 【详解】由42244921x x y y ++=,得()()222222222222425342122x y x y x y x y x y ⎛⎫⎛⎫++++++=≤= ⎪ ⎪⎝⎭⎝⎭,即()222453x y ≤+,所以22532x y +≥,当且仅当222242x y x y +=+,即22337y x ==时,等号成立,所以2253x y +的最小值是2. 故选:A.9.(2022·辽宁实验中学模拟预测)已知实数a ,b 满足()2log 1,01a a b a +=<<,则21log 4b a a -的最小值为( ) A .0 B .1- C .1 D .不存在【答案】A 【解析】 【分析】由题设条件可得2log 1a b a =-,从而利用换底公式的推论可得21log 1b a a =-,代入要求最小值的代数式中,消元,利用均值不等式求最值 【详解】2log 1a a b +=2log 1a b a ⇒=-21log 1b a a ⇒=- 又01a <<,则2011a <-<()()22211log 11441b a a a a -=+---10≥=当且仅当()221141a a =--即a = 故选:A10.(2022·全国·模拟预测)已知正实数x ,y 满足()21x y =,则2x y+的最小值为( ) A .1 B .2C .4D .32【答案】B【解析】 【分析】将已知的式子12x y ==()f t t =0t >,的单调性,从而可得12x y =,即21xy =,再利用基本不等式可求得结果 【详解】因为()21x y =,所以12x y ==设()f t t =0t >,易知()f t t =()0,∞+上单调递增,故12x y =,即21xy =,又0x >,0y >,所以22x y +≥=, 当且仅当2x y =时取等号, 所以2x y +的最小值为2. 故选:B . 【点睛】关键点点睛:此题考查函数单调性的应用,考查基本不等式的应用,解题的关键是将已知等式转化为等式两边结构相同的形式,然后构造函数判断其单调性,从而可得21xy =,再利用基本不等式可求得结果,考查数学转化思想,属于较难题11.(2022·北京·101中学三模)设m 为实数,复数1212i,3i z z m =+=+(这里i 为虚数单位),若12z z ⋅为纯虚数,则12z z +的值为______.【答案】【解析】 【分析】先根据12z z ⋅为纯虚数计算出m 的值,再计算12z z + ,最后计算12z z +的值 【详解】1212i,3i z z m =+=+,23i z m ∴=-12(12i)(3i)3i 2i 6(6)(23)i z z m m m m m ⋅=+-=-++=++-∴ 12z z ⋅为纯虚数 606m m ∴+=⇒=-12(12i)(63i)55i z z ∴+=++-+=-+12z z ∴+故答案为:12.(2022·全国·模拟预测)已知正数a ,b 满足21a b +=,则2221a b ab++的最小值为______.【答案】4##4+【解析】 【分析】根据题意得()222222221a b a b a b ab ab+++++=,再化简整理利用基本不等式求解即可. 【详解】()22222222221246a b a b a b a ab b ab ab ab+++++++==26444a b b a =++≥=,当且仅当2621a bba ab ⎧=⎪⎨⎪+=⎩,即3a =,2b =故答案为:4.13.(2022·浙江·杭师大附中模拟预测)已知正数,,a b c ,则2222ab bca b c +++的最大值为_________.【解析】 【分析】将分母变为222212233a b b c ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,分别利用基本不等式即可求得最大值.【详解】2222222122233abbc ab bca b ca b b c++=≤++⎛⎫⎛⎫+++⎪ ⎪⎝⎭⎝⎭(当且仅当=c=时取等号),2222ab bca b c+∴++14.(2022·宁夏·吴忠中学三模(理))在第24届北京冬奥会开幕式上,一朵朵六角雪花飘拂在国家体育场上空,畅想着“一起向未来”的美好愿景.如图是“雪花曲线”的一种形成过程:图1,正三角形的边长为1,在各边取两个三等分点,往外再作一个正三角形,得到图2中的图形;对图2中的各边作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形,记第n个图形(图1为第一个图形)中的所有外围线段长的和为n c,则满足12381nc c c c++++>的最小正整数n的值为______.(参考数据:lg20.3010≈,lg30.4771≈)【答案】9【解析】【分析】根据图形变化规律分析出n c的通项公式,然后求和确定.【详解】由图形变化规律可得11231643,4,,,3()33nnc c c c-===⋅⋅⋅=⨯,12343(1())439(()1)814313nnnc c c c-++++==->-,则有441()10lg()lg108.006332lg2lg3n n n>⇒>⇒>=-,所以最小正整数n的值为9.故答案为:9.15.(2022·江苏·扬中市第二高级中学模拟预测)若i为虚数单位,复数z满足11iz≤++≤则1i z --的最大值为_______.【答案】【解析】 【分析】利用复数的几何意义知复数z 对应的点Z 到点(1,1)C --的距离d 满足1d ≤≤1i z --表示复数z 对应的点Z 到点(1,1)P 的距离,数形结合可求得结果. 【详解】复数z 满足11z i ≤++()11i z ≤---≤即复数z 对应的点Z 到点(1,1)C --的距离d 满足1d ≤设(1,1)P ,1i z --表示复数z 对应的点Z 到点(1,1)P 的距离数形结合可知1i z --的最大值||||AP CP ==故答案为:。
高中数学第二章推理与证明本章整合新人教B版选修2-2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第二章推理与证明本章整合新人教B版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第二章推理与证明本章整合新人教B版选修2-2的全部内容。
高中数学第二章推理与证明本章整合新人教B版选修2-2知识网络专题探究专题一合情推理与演绎推理1.归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进行归纳,然后提出猜想的推理,我们统称为合情推理.合情推理常常能为我们提供证明的思路和方向.归纳推理的思维过程大致如下:错误!→错误!→错误!类比推理的思维过程大致如下:错误!→错误!→错误!2.演绎推理是由一般到特殊的推理,又叫逻辑推理.其中三段论推理是演绎推理的主要形式.演绎推理具有如下特点:(1)演绎的前提是一般性原理,演绎所得的结论完全蕴涵于前提之中.(2)演绎推理中,前提与结论之间存在必然的联系,演绎推理是数学中严格证明的工具.(3)演绎推理是一种收敛性的思维方法,它创造性较少,但却具有条理清晰、令人佩服的论证作用,有助于科学的理论化和系统化.【例1】证明下列各等式,并从中归纳出一个一般性的结论.2cos π4=2,2cos错误!=错误!,2cos错误!=错误!.证明:2cos错误!=2×错误!=错误!,2cos错误!=2×错误!=2×错误!=错误!,2cos错误!=2×错误!=2×错误!=错误!.……从以上各式归纳可得一般性的结论如下:2cos错误!=错误! (n∈N+,n≥1).【例2】已知椭圆具有性质:若M,N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM,PN的斜率都存在,并记为k PM,k PN时,那么k PM与k PN之积是与点P的位置无关的定值.试对双曲线错误!-错误!=1写出具有类似特性的性质,并加以证明.解:类似的性质为:若M,N是双曲线错误!-错误!=1上关于原点对称的两个点,点P是双曲线上任意一点,当直线PM,PN的斜率都存在,并记为k PM,k PN时,那么k PM与k PN之积是与点P的位置无关的定值.证明:设点M,P的坐标为(m,n),(x,y),则N(-m,-n).因为点M(m,n)在已知双曲线上,所以n2=b2a2m2-b2.同理y2=错误!x2-b2.因为k PM·k PN=错误!·错误!=错误!=错误!·错误!=错误!(定值),所以k PM与k PN之积是与点P的位置无关的定值.专题二直接证明与间接证明1.直接证明的两种基本方法是综合法与分析法.综合法与分析法的区别与联系:分析法的特点是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件.综合法的特点是:从“已知”看“可知”,逐步推向“未知",其逐步推理,实际上是寻找它的必要条件.分析法与综合法各有其特点.有些具体的问题,用分析法或综合法都可以证明出来,人们往往选择比较简单的一种.在解决问题时,我们经常把综合法和分析法结合起来使用.根据条件的结构特点去转化结论,得到中间结论Q;根据结论的结构特点去转化条件,得到中间结论P。
推理与证明M1合情推理与演绎推理图1-317.M1[2022·湖北卷] 在平面直角坐标系中,若点a{A i,a i+1},所以a i+1=A i+1>A i≥a i 从而a1,a2,…,a n-1是递增数列,因此A i=a i i=1,2,…,n-1.又因为B1=A1-d1=a1-d14m2错误!未定义书签。
a∨b=错误!若正数a,b,c,d满足ab≥4,c+d≤4,则A.a∧b≥2,c∧d≤2 B.a∧b≥2,c∨d≥2C.a∨b≥2,c∧d≤2 D.a∨b≥2,c∨d≥210.C [解析] 从定义知,a∧b=mina,b,即求a,b中的最小值;a∨b=maa,b,即求a,b中的最大值;假设02,d>2,则c+d>4,与已知c+d≤4相矛盾,则假设不成立,故mina,b≤2,即c∧d≤M3数学归纳法M4单元综合1.[2022·陕西安康模拟] 已知f1=co ,f2=f1′,f3=f2′,f4=f3′,…,f n=f n-1′,则f2022=A.in B.-inC.co D.-co1.D [解析] 由已知,有f1=co ,f2=-in ,f3=-co ,f4=in ,f5=co ,…,可以归纳出:f4n=in ,f4n+1=co ,f4n+2=-in ,f4n+3=-co n∈N*.所以f2 011=f3=-co2.[2022·诸城模拟] 如图K41-1所示将若干个点摆成三角形图案,每条边色括两个端点有nn>,n∈N*个点,相应的图案中总的点数记为a n,则错误!+错误!+错误!+…+错误!=图 12.B [解析] 由图案的点数可知a2=3,a3=6,a4=9,a5=12,所以a n=3n-3,n≥2,所以错误!=错误!=错误!=错误!-错误!,所以错误!+错误!+错误!+…+错误!=1-错误!+错误!-错误!+…+错误!-错误!=错误!,选B3.[2022·绍兴模拟] 已知1+2·3+3·32+4·33+…+n·3n-1=3n na-b+c对一切n∈N*都成立,那么a,b,c的值分别为A.a=错误!,b=c=错误!B.a=b=c=错误!C.a=0,b=c=错误!D.不存在这样的a,b,c3.A [解析] 令n=1,2,3,得错误!所以a=错误!,b=c=错误!4.[2022·广东汕头模拟] 已知错误!=2 错误!,错误!=3 错误!,错误!=4 错误!,若错误!=6 错误!a,t均为正实数,类比以上等式,可推测a,t的值,则a-t=________.4.-29 [解析] 类比等式可推测a=6,t=35,则a-t=-295.[2022·江门联考] 已知等差数列{a n}中,有错误!=错误!,则在等比数列{b n}中,会有类似的结论:________________________________________________________________________ =错误![解析] 由等比数列的性质可知,b1b30=b2b29=b11b20,所以错误!=错误!6.[2022·福州模拟] 已知点A1,a1,B2,a2是函数=aa>1的图像上任意不同两点,依据图像可知,线段AB总是位于A,B两点之间函数图像的上方,因此有结论错误!>a错误!成立.运用类比思想方法可知,若点A1,in 1,B2,in 2是函数=in ∈0,π的图像上的不同两点,则类似地有________成立.<in错误![解析] 在函数=in ,∈0,π的图像上任意取不同两点,依据图像可知,线段AB总是位于A,B两点之间函数图像的下方,所以错误!<in错误!。