探索相似三角形的条件2
- 格式:ppt
- 大小:909.00 KB
- 文档页数:22
第四章相似图形6.探索三角形相似的条件(二)一、学生知识状况分析学生知识技能基础:学生的知识技能基础:学生在七年级下册第五章《三角形》里,已学习过三角形的基础知识掌握了基本的概念;在本章前面几节课中,又学习了线段的比,黄金分割,形状相同的图形,相似多边形,相似三角形,并理解了它们的概念;现已具有了初步的平面图形知识,本节课是要在以前学习的基础上加深相似三角形部分的知识。
本节知识的难点在于对两个相似三角形相似上的判定,本节课需要在上一节课的基础上增加“三边对应成比例的两个三角形相似”及“两边对应成比例且夹角相等的两个三角形相似”这两条判定定理,在教学方法上建议采用学生自主探索、分组讨论、总结,教师参与讨论并最后点评总结的方法。
学生活动经验基础:学生在上节课学习的基础上,进一步探索相似三角形的条件,已经有一定的探索经验;因此,本课时对学生来说,难度不是很大,关键是老师要用正确的方法,启发学生进行探索,做到师生互动,教师参加学生讨论并充分调动学生的学习积极性。
使学生能充分的理解和掌握三角形的相似的判定方法,并能结合本节知识点,进行一些问题的解决,以巩固所学知识的运用。
二、教学任务分析在复习上一节课所学的判定方法的基础上进一步学习三角形相似的条件,增加“三边对应成比例的两个三角形相似”及“两边对应成比例且夹角相等的两个三角形相似”这两条判定定理,并对所学的各种三角形相似的判定方法进行梳理;使学生能掌握和综合利用相似三角形的判定条件和性质来判定两个三角形的相似,让学生结合实际再次体会数学中的几何图形在生活中广泛存在并起到重要的作用;在教学中再辅以适量的练习使学生对所学的知识加深印象和增加解决问题的能力。
教学内容:三角形相似的条件(2)教学目标:1、知识与技能:理解并掌握三角形相似的判定定理:“三边对应成比例的两个三角形相似”及“两边对应成比例且夹角相等的两个三角形相似”。
2、过程与方法:以问题的形式引入,创设一个有利于学生动手和探究的情景,师生互动,从而达到掌握相似三角形判定的方法的目的。
《探索三角形相似的条件》教案1教学目标知识与技能1.探索两个三角形相似的条件(2),掌握用“如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似”的判定方法来判定两个三角形相似.2.能运用这个判定条件解决相关问题. 数学思考与问题解决类比全等三角形的条件(SAS ),经历猜想结论、画图探究、多种方法验证(度量和推理),由此探究得到相似三角形的判定定理,在此基础上进一步了解类似于判定三角形全等没有“边边角”,相似三角形的判定方法中也没有“边边角”.情感与态度1.通过与相似多边形和三角形全等的条件类比,渗透类比的数学思想.2.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步培养学生猜想经验,激发学生探索知识的兴趣.重点难点重点掌握如果两个三角形的两组对边对应成比例,并且夹角相等,那么这两个三角形相似的判定定理,会运用判定定理判定两个三角形相似.难点1.探究三角形相似的条件.2.运用三角形相似的判定定理解决问题.教学设计一、情境引入类比全等三角形的条件(SAS ),如果一个三角形的两条边与另一个三角形的两条边对应边的比相等,并且相应的夹角相等,那么这两个三角形一定相似吗?如下图,若满足以下条件:2AB ACA B A C =='''', ∠A =∠A ′,请比较∠B 与∠B ′,∠C 与∠C ′的大小,试判断△ABC 与△A ′B ′C ′相似吗?教师出示投影,让学生通过类比展开联想,猜想得出结论,引人新课. 二、自主探究 (一)探究发现利用刻度尺和量角器画△ABC 和△A ′B ′C ′,使∠A =∠A ′,AB A B ''和ACA C ''都等于给定的值k ,量出它们的第三组对应边BC 和B ′C ′的长,它们的比等于k 吗?另外两组对应角∠B 与∠B ′,∠C 与∠C ′是否相等?教师提出画图要求,巡视,给予个别指导.改变∠A 或k 值的大小,再试一试,是否有同样的结论?结论:如果两个三角形的两组对应边成比例,并且夹角相等,那么这两个三角形相似.这个判定定理的几何格式为:AB ACk A B A C=='''',∠A =∠A ′. △ABC ∽△A ′B ′C ′.教师根据学生讨论情况,适时给予引导:度量第三组对应边的长,它们的比等于A 吗?另外两组对应角相等吗?论证结论:(与“两角法”相类似)已知:如下图△ABC 和△A ′B ′C ′中,∠A =∠A ′,AB ACA B A C =''''. 求证:△ABC ∽△A ′B ′C ′.教师引导学生改变∠A 或是的大小再试试. 教师要求学生独立完成定理的证明. (二)思考对于△ABC 和△A ′B ′C ′,如果AB ACA B A C ='''',∠B =∠B ′,这两个三角形一定相似吗?试着画画看.教师要求学生独立思考,再进行小组交流,寻找问题的答案,并集中展示反例.教师引导:类比全等三角形中SSA条件下的三角形的不确定性.(三)讨论在△ABC和△A′B′C′中,∠B=∠B′,要使△ABC∽△A′B′C′,还需要添加什么条件?答案:∠A=∠A′或∠C=∠C′或AB BCA B B C=''''.毫无疑问,只有一个角对应相等的二角形一般是不可能相似的,利用学过的判定条件去添加.(四)例题教学1:根据下列条件,判断△ABC与△A′B′C′是否相似,并说明理由:(1)∠A=120°,AB=7cm,AC=14cm.∠A′=120°,A′B′=3cm,A′C′=6cm;(2)AB=4cm.BC=6cm,AC=8cm,A′B′=12cm,B′C′=18cm,A′C′=21cm.分析:这类题目有两层意思:一是正确的加以证明;二是要对不正确的题目说明理由或举出反例.教师让学生独立完成,然后与同伴交流,待学生做完后,选两名学生的推理过程实物投影,师生共评.三、总结提高(一)师生小结(1)通过本节课的学习,你有哪些收获?还有什么疑惑?说给老师或同学听听.(2)教师与同学聆听部分同学的收获,解决部分同学的疑惑.教师聆听同学的收获,解决同学的疑惑.(二)作业布置必做题:教材59页练习第3题.习题6.4第9题.选做题:习题6.4第12题.教师布置,分层要求.《探索三角形相似的条件》教案2教学目标知识与技能1.探索3角形相似的条件(3),掌握用“如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似”判定三角形相似的方法.2.运用该判定条件解决相关问题,了解重心的定义.数学思考与问题解决通过相似三角形的类比及全等三角形的条件(SSS)判定方法的类比,体会特殊与一般和全等与相似的关系,探究三角形相似的条件(3).并在此基础上进一步地掌握相似三角形的判定方法.情感与态度1.经历两个三角形相似的探索过程,体验分析归纳得出数学学结论的过程,进一步发展学生的探究、交流能力.2.通过和三角形全等的条件类比,渗透类比的数学思想,并领会特殊与一般的关系.重点难点重点掌握三角形相似的判定方法(3),会运用该判定定理判定两个三角形相似.难点会准确地运用三角形相似的判定定理(3)来判定三角形是否相似.教学设计一、复习引人1.相似三角形的主要特征是什么?2.若△ABC和△A′B′C′相似,需具备怎样的条件?3.两个全等三角形一定相似吗?如果相似,相似比是多少?反过来两个相似三角形一定全等吗?4.除了我们已学过的判定三角形相似的方法外,类比判定两个三角形全等的方法,猜想判定两个三角形相似还有什么方法?教师用多媒体出示问题,由问题3知两个三角形全等相似比为1,反过来两个三角形相似不—定全等,但对应边一定成比例.由“三边对应相等的两个三角形全等”能否引出“三边对应成比例的两个三角形相似”呢?二、新知探究活动一:操作——观察——探索 (1)操作:如图,已知△ABC . ①画△A ′B ′C ′,使得=2AB BC CAA B B C C A ==''''''. ②比较∠A =∠A ′,∠B 与∠B ′,∠C 与∠C ′的大小. ⑵观察:△ABC 与△A ′B ′C ′相似吗?用多媒体显示操作内容.提出问题,学生动手在教材图6-22操作,或在练习本上画出△A ′B ′C ′,分别测量∠A =∠A ′,或∠B 与∠B ′,∠C 与∠C ′的大小,同学之间相互比较,探究结论.(3)探索:试说明△ABC 与△A ′B ′C ′相似的理由,设=AB BC CAk A B B C C A==''''''. 若改变k 值的大小,还相似吗?试一试. 教师个别指导学生画三角形的方法.活动二:说明△ABC ∽△A ′B ′C ′的理由.如果在△ABC 与△A ′B ′C ′中,=AB BC CAA B B C C A='''''',则△ABC ∽△A ′B ′C ′.理由陈述:(此处略.见教材第59〜60页)教师投影显示,提示学生运用探索三角形相似的条件(2)类似的方法,构造一个全等三角形,而这个全等三角形与△ABC 相似,利用相似三角形的传递性可证.结论:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.学生独立思考,操作探究也可分组讨论,相互交流举手发言,师生共同进行归纳总结. 活动三:验证应用如图,△ABC 和△DEF 的顶点都在边长为1的小正方形的顶点上,△ABC 与△DEF 相似吗?为什么?教师引导:相似三角形的判定方法,由三种判定方法,得出用三边成比例证. 学生先用勾股定理求出三边的长,然后证明.教师在学生完成的基础上板书解题过程. 活动四:练习巩固 教材第61页练习第1,2题.教师提出要求并巡回检査,学生独立完成,然后班内交流. 三、综合应用如图,在△ABC 中,AB =AC ,∠A =36°,BD 是△ABC 的角平分线. (1)△ABC 与△BDC 相似吗?为什么?(2)判断点D 是否是AC 的黄金分割点,并说明理由.引导学生找出已有的相似三角形的条件,然后选择判定方法.最后学生完成(1)(可让两学生板演).对于(2)让学生回顾黄金分割的定义,得出要证的结论就是证AD 2=CD ·AC ,可借助相似三角形对应边成比例证.根据学生板演情况讲解,最后投影解题过程. 完成后教师给出黄金三角形的定义及作法. 练习:教材第64页练习第1题. 四、拓展提升如图(1),BE 、CF 是△ABC 的中线,且相交于O . 求证:=2GB GCGE FG教师介绍求比例式的方法,找出(或构造)四条线段所在的相似三角形,利用三边对应成比例证.学生完成证明过程,教师板书解题. (1)这四条线段在哪两个三角形中?(2)作怎样的辅助线,就可构造出它们所在的相似三角形?学生在教师的引导下,得出连接EF ,利用三角形中位线定理,证△BGC ∽△EGF 即可. 思考:1.如图(2),如果AD 是△ABC 的另一条中线,AD 与BE 相交于点G ,=2BG AG G E DG''=''吗?对图(2),可连接DE ,仿图(1)证明△G ′DE ∽△C ′AB 可得.2.如果在一个三角形中,画出△ABC 的三条中线,这三条中线有什么关系?为什么? 3.归纳:三角形的三条中线相交于一点,这点叫三角形的重心,重心与一边中点的连线长是对应中线长的13. 学生独立完成(1),讨论完成(2)并交流.最后教师归纳得出三角形重心的定义及性质. 五、总结提高通过本节课的学习,你有哪些收获?还有什么不明白的地方? 主要内容:三边成比例的三角形相似;三角形的重心. 方法:(1)证明三角形相似的方法(共四种). (2)证明比例式或等积式的方法. 学生归纳、总结发言,体会、反思. 六、作业1.教材习题6.4第14题. 2.教材第61页练习第3题. 3.教材第64页练习第2题. 选作:4.教材习题6.4第15题.教师布置作业,分层提出要求主,学生独立完成.。
10.4 探索三角形相似的条件第二课时[教学目标]1.探索三角形相似的条件,会运用三角形相似的条件解决有关问题.2.经历“操作一观察一探索一说理”的数学活动过程,发展合情推理和有条理的表达能力.[教学过程]1.情境创设当两个三角形的两条边及其夹角对应相等时,这两个三角形全等.相应地,你认为判定两个三角形相似,应满足怎样的条件?2.探索活动活动一 操作一观察一探索.活动分为2个层次.第一层次:通过操作、观察活动,比较图中∠B 与∠B ’的大小.这样,根据图中的已知条件∠A=∠A ’及操作,探索出的条件∠B=∠B ’,可以判定△ABC ∽△A ’B ’C ’.理由是:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.第二层次:设k AC C A AB B A =='''',改变k 值的大小(∠A=∠A ’,的条件不变),画出两个三角形,比较所画的两个三角形中∠B 与∠B ’,的大小.这样,通过操作、观察、探索等合情推理活动,使学生感悟到:两个三角形中,如果它们的两边对应成比例,并且夹角相等,那么这两个三角形相似.活动二 说明△ABC ∽△A ’B ’C ’的理由.课本通过“在AB 上取AB ”,过点B ”作B ”C ”∥BC ,交AC 于点C ””的作图,将所要说明的问题转化:(1)将两个已知三角形联系在同一个三角形之中;(2)通过说明△A ’B ’C ’∽△A ”B ”C ”,将问题转化为说明△ABC ∽△A ”B ”C ”.教学中,要注意发挥学生的主体作用,给学生较为充分的思考、交流的时间.同时,对该说理过程,重要的是让学生感受到“判定三角形相似的条件(2)”还可以通过“说理”的方法来探索,并感悟其中的思想方法,但不能要求学生去死记硬背.活动三 通过合情推理和说理,归纳判定三角形相似的条件(2)。
活动四 组织讨论、交流活动.课本中给出2个讨论题.由于这2个问题都具有开放性,教学中,要注意引导学生分析、探索使结论成立的条件.3.小结(1)探索三角形相似的条件(2),并运用这一条件解决有关问题;(2)经历“操作一观察一探索一说理”的数学活动过程,发展合情推理和有条理的表达能力.。
探索三角形相似的条件(一)教案徐州13中周海燕 221006教前小记:2006年3月江苏省教育学会在徐州市举行了数学优质课评比,我的讲课内容是“探索三角形相似的条件(一)”,当时我们的教学进度是反比例函数,第十章10.1图上距离与实际距离和10.2黄金分割以及10.3相似图形还没有涉及,为了知识的连贯性,我在教学中对于一些问题的提出和解决进行了较大的调整。
教学目标1、经历“直观感觉――动手感知――理性思维――逻辑推理”的活动过程,探索两个三角形相似的条件,进一步发展学生的探究、合作交流能力,以及动手、动脑和谐一致的习惯;2、初步掌握“两角对应相等的两个三角形相似和两边对应成比例且夹角相等的两个三角形相似”的判定;3、能够运用三角形相似的条件解决简单问题,进一步发展合情推理能力和初步的逻辑推理能力。
教学重点、难点经历“直观感觉――动手感知――理性思维――逻辑推理”的活动过程,加强知识发生发展过程和渗透数学思想方法的教学,掌握“两角对应相等的两个三角形相似和两边对应成比例且夹角相等的两个三角形相似”的判定,并能够运用三角形相似的条件解决简单问题。
教学过程:一、谈话揭题同学们,今天我们学习的内容是“探索三角形相似的条件”。
(开门见山,揭题、揭趣――提出本堂课要研究的问明确学习目标)我们通过自己学习知道了二、数学小实验师:同学们,你能求出C ∠和C '∠的度数吗?这说明什么? 生:“C ∠=C '∠ =75,对应角相等!”度量结果' 1.45AB A B =' 1.45AC A C =''1.45BCB C =''师:(用几何画板做以上效果)请一名同学用鼠标拖拽B ',请同学们观察一下对应边的长度与比值的变化学生活动:一名同学到多媒体讲台进行操作(慢慢拖拽鼠标,让A B C '''∆三边的长度改变,几何画板具有计算功能,能显示各边的长度和比值……)“对应边的比值相等!”“对应边成比例!”(学生们观察A B C '''∆的变化和对应三边的比值变化,很容易得到上述结论,大家在观察中自己得到了结果,很乐意大声地回答,调动了课堂气氛.) 师:ABC ∆和A B C '''∆相似吗?为什么?生:“ABC ∆和A B C '''∆相似,它符合三角形相似的定义:各角对应相等,各边对应成比例” 师:通过我们自己动手操作、计算、推理,得到了一个更加简单、直观的判定两个三角形相似的方法判定方法1:如果一个三角形的两个角与另一个三角形的两个叫对应相等,那么这两个三角形相似。
§4.6.2 探索三角形相似的条件(二)教学目标(一)教学知识点1.掌握三角形相似的判定方法2、3.2.会用相似三角形的判定方法2、3来判断、证明及计算.(二)能力训练要求1.通过自己动手并总结推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力.2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.(三)情感与价值观要求1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.教学重点相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用.教学难点判定方法的推导及运用教学过程一.创设问题情境,引入新课如图,AF ∥CD ,∠1=∠2,∠B =∠D ,你能找出图中几对相似三角形?并逐一说明相似的理由.请大家观察图形,运用我们学过的判定方法,讨论得出结果.有四对相似三角形,它们是△AEF ∽△DEC ,△AFB ∽△ACD ,△AEB ∽△CED ,△AEF ∽△EBA .他们相似的理由都是用相似三角形的判定方法1.现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题.二.讲授新课相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS 公理.大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?三边对应成比例的两个三角形相似.下面我们就来验证一下.1.相似三角形的判定方法2:三边对应成比例的两个三角形相似.画△ABC 与△A ′B ′C ′,使B A AB ''、C B BC ''和AC CA ''都等于给定的值k .(1)设法比较∠A 与∠A ′的大小、∠B 与∠B ′的大小、∠C 与∠C ′的大小.(2)△ABC 与△A ′B ′C ′相似吗?说说你的理由.改变k 值的大小,再试一试.大家可以按照上面的步骤进行,这里的k 由自己定,为了节约时间,请大家一个组取一个相同的k 值,不同的组取不同的k 值,好吗?经过大家的亲身参与体会,你们得出的结论是什么呢?结论为∠A =∠A ′,∠B =∠B ′,∠C =∠C ′△ABC ∽△A ′B ′C ′,理由是:∠A =∠A ′,∠B =∠B ′,∠C =∠C ′ B A AB ''=C B BC ''=A C CA '' 根据相似三角形的定义可知:△ABC ∽△A ′B ′C ′.经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.2.相似三角形的判定方法3.前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA ,SAS ,AAS ,其中ASA 、AAS 我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS ,大家还是先猜想,然后再验证.两边对应成比例且夹角相等的两个三角形相似.画△ABC 与△A ′B ′C ′,使∠A =∠A ′,B A AB ''和C A AC ''都等于给定的值k .设法比较 ∠B 与∠B ′的大小(或∠C 与∠C ′的大小)、△ABC 与△A ′B ′C ′相似吗?(2)改变k 值的大小,再试一试.请大家按照上面的步骤进行,同时还要采取不同的组取不同的k 值法.按照要求作出的△ABC 与△A ′B ′C ′中,有∠B =∠B ′,∠C =∠C ′,因此根据判定方法1可知,△ABC ∽△A ′B ′C ′.我们又探索出一个相似三角形的判定方法,即两边对应成比例且夹角相等的两个三角形相似.3.想一想下面验证SSA ,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗? 在全等三角形的判定中SSA 就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.4.做一做在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.第一种:对应角相等,对应边成比例的两个三角形相似.即定义法.第二种:即判定方法1两角对应相等的两个三角形相似.第三种:即判定方法2三边对应成比例的两个三角形相似.第四种:即判定方法3两边对应成比例且夹角相等的两个三角形相似.5.议一议如图,△ABC 与△A ′B ′C ′相似吗?你有哪些判断方法?解:△ABC ∽△A ′B ′C ′.判断方法有.1.三边对应成比例的两个三角形相似.2.两角对应相等的两个三角形相似.3.两边对应成比例且夹角相等.4.定义法.三.课堂练习下面每组的两个三角形是否相似?为什么?解:(1)△ABC ∽△DEF ∵EFBC DF AC DE AB ===2 ∴△ABC ∽△DEF(2)在△ABC 中AB =2,AC =6 ∵2163,21===AC AF AB AE ∴=AB AE ACAF ∵∠A =∠A ∴△ABC ∽△AEF补充练习依据下列各组条件,判定△ABC 与△A ′B ′C ′是不是相似,并说明为什么.(1)∠A =120°,AB =7 cm,AC =14 cm,∠A ′=120°,A ′B ′=3 cm,A ′C ′=6 cm,(2)AB =4 cm,BC =6 cm,AC =8 cm,A ′B ′=12 cm,B ′C ′=18 cm,A ′C ′=24 cm.解:(1)∵C A AC B A AB ''='',37=37614= ∴C A AC B A AB ''='' 又∵∠A =∠A ′∴△ABC ∽△A ′B ′C ′(两边对应成比例且夹角相等,两三角形相似)(2)∵B A AB ''=124= 31,C B BC ''=186= 31,C A AC ''=248= 31 ∴B A AB ''=C B BC ''=C A AC '' ∴△ABC ∽△A ′B ′C ′(三边对应成比例,两三角形相似)四.课时小结本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两个三角形相似.五、作业:习题4.8六、活动与探究要做两个形状相同的三角形框架,其中一个三角形框架的三边的长分别为4、5、6,另一个三角形框架的一边长为2,怎样选料可使这两个三角形相似?你选的木料唯一吗?解:选法不唯一.因为另一个三角形的一边长2究竟对应哪一条边,在已知条件中并没有规定,因此2有可能对应每一条边,即2对应4,2对应5,2对应6,所以有三种情况.设另一个三角形中两边长为x 、y .当2对应4时,有2∶4=x ∶5=y ∶6解,得x =25,y =3 当2对应5时,有2∶5=x ∶4=y ∶6解,得x =58,y =512 当2对应6时,有2∶6=x ∶4=y ∶5解,得x =34,y =35. 所以框的另两边长可选25、3或58、512,或34、35.。