初中数学分式练习题2014.12.15
- 格式:doc
- 大小:379.24 KB
- 文档页数:6
分式练习题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):1.下列运算正确的是( )A.x 10÷x 5=x 2B.x -4·x=x -3C.x 3·x 2=x 6D.(2x -2)-3=-8x 62. 一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要( )小时.A. B. C. D.11a b +1ab 1a b +ab a b+3.化简等于( )a b a b a b --+A. B. C. D.2222a b a b +-222()a b a b +-2222a b a b -+222()a b a b +-4.若分式的值为零,则x 的值是( )2242x x x ---A.2或-2 B.2 C.-2 D.45.不改变分式的值,把分子、分母中各项系数化为整数,结果是( )52223x y x y -+A. B. C. D.2154x y x y -+4523x y x y -+61542x y x y -+121546x y x y-+6.分式:①,②,③,④中,最简分式有( )223a a ++22a b a b --412()a a b -12x -A.1个 B.2个 C.3个 D.4个7.计算的结果是( )4222x x x x x x ⎛⎫-÷⎪-+-⎝⎭A. - B. C.-1 D.112x +12x +8.若关于x 的方程 有解,则必须满足条件( )x a c b x d-=-A. a≠b ,c≠d B. a≠b ,c≠-d C.a≠-b , c≠d C.a≠-b , c≠-d9.若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( )A.a<3B.a>3C.a≥3D.a≤310.解分式方程,分以下四步,其中,错误的一步是( )2236111x x x +=+--A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上 .(1)-3x ;(2);(3);(4)-;(5) ; (6);(7)-; (8)y x 22732xy y x -x 8135+y 112--x x π-12m .5.023+m 12.当a 时,分式有意义.321+-a a13.若-1,则x+x -1=__________.14.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.15.计算的结果是_________.1201(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭16.已知u=(u≠0),则t=___________.121s s t --17.当m=______时,方程会产生增根.233x m x x =---18.用科学记数法表示:12.5毫克=________吨.19.当x 时,分式的值为负数.xx --2320.计算(x+y)· =____________.2222x y x y y x+--三、计算题:(每小题6分,共12分)21.; 22..23651x x x x x+----2424422x y x y x x y x y x y x y ⋅-÷-+-+四、解方程:(6分)23.。
人教版初二数学分式练习题初中数学分式练习题分式是初中数学中的一个重要知识点,它在解决各种实际问题中具有广泛的应用。
下面,我们来练习一些人教版初二数学分式练习题,提高我们的分式运算能力。
1. 计算下列各式的值:(1)$\frac{3}{5}+\frac{1}{10}$;(2)$\frac{5}{8}-\frac{1}{6}$;(3)$\frac{3}{4}\times\frac{2}{5}$;(4)$\frac{2}{3}\div\frac{5}{6}$。
解答:(1)$\frac{3}{5}+\frac{1}{10}=\frac{6}{10}+\frac{1}{10}=\frac{7}{10}$;(2)$\frac{5}{8}-\frac{1}{6}=\frac{15}{24}-\frac{4}{24}=\frac{11}{24}$;(3)$\frac{3}{4}\times\frac{2}{5}=\frac{3\times2}{4\times5}=\frac{6}{20}=\f rac{3}{10}$;$\frac{2}{3}\div\frac{5}{6}=\frac{2}{3}\times\frac{6}{5}=\frac{2\times6 }{3\times5}=\frac{12}{15}=\frac{4}{5}$。
2. 化简下列各式:(1)$\frac{\frac{2}{3}+\frac{4}{5}}{\frac{1}{6}}$;(2)$\frac{\frac{2}{7}-\frac{1}{8}}{\frac{3}{14}+\frac{1}{4}}$。
解答:(1)$\frac{\frac{2}{3}+\frac{4}{5}}{\frac{1}{6}}=\frac{\frac{10}{15}+\frac{ 12}{15}}{\frac{1}{6}}=\frac{\frac{10+12}{15}}{\frac{1}{6}}=\frac{\frac {22}{15}}{\frac{1}{6}}=\frac{22}{15}\times\frac{6}{1}=\frac{22\times6 }{15}=8\frac{2}{5}$;(2)$\frac{\frac{2}{7}-\frac{1}{8}}{\frac{3}{14}+\frac{1}{4}}=\frac{\frac{16}{56}-\frac{7}{56}}{\frac{6}{28}+\frac{7}{28}}=\frac{\frac{16-7}{56}}{\frac{6+7}{28}}=\frac{\frac{9}{56}}{\frac{13}{28}}=\frac{9}{5 6}\div\frac{13}{28}=\frac{9}{56}\times\frac{28}{13}=\frac{9\times28}{5 6\times13}=\frac{252}{728}=\frac{9}{26}$。
数学初二分式的运算练习题下面是一个关于数学初二分式的运算练习题的文章,请参考:数学初二分式的运算练习题在初二数学学习中,分式是一个重要的概念,它对我们理解和解决各种数学问题起着关键的作用。
为了帮助同学们更好地掌握分式的运算方法,下面将介绍一些常见的分式运算练习题。
1. 简化分式a) 将分式$\frac{12x^2y^3}{6xy}$简化为最简形式。
解析:首先,我们可以将分子和分母都分解为质因数的乘积。
分子$12x^2y^3$可以分解为$2^2\cdot3\cdot{x^2}\cdot{y^3}$,分母$6xy$可以分解为$2\cdot3\cdot{x}\cdot{y}$。
然后,我们可以消去相同的因数,最后得到简化后的分式$\frac{2xy^2}{1}$。
b) 将分式$\frac{15ab^2c}{10abc}$简化为最简形式。
解析:与上一题类似,我们可以将分子和分母都分解为质因数的乘积。
分子$15ab^2c$可以分解为$3\cdot5\cdot{a}\cdot{b^2}\cdot{c}$,分母$10abc$可以分解为$2\cdot5\cdot{a}\cdot{b}\cdot{c}$。
然后,我们可以消去相同的因数,最后得到简化后的分式$\frac{3b}{2}$。
2. 分式加减a) 计算$\frac{1}{2}+\frac{3}{4}$。
解析:首先,我们需要找到两个分式的最小公倍数(LCM)。
在本题中,最小公倍数是4。
然后,我们将每个分式的分子乘以LCM除以原分母,得到$\frac{2}{4}+\frac{3}{4}$。
最后,我们将两个分式的结果相加,得到$\frac{5}{4}$。
b) 计算$\frac{5}{6}-\frac{2}{3}$。
解析:在本题中,两个分式的分母相同,因此我们可以直接将分子相减,得到$\frac{5}{6}-\frac{2}{3}=\frac{5-4}{6}=\frac{1}{6}$。
分式练习题及答案分式是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
在学习分式的过程中,练习题是不可或缺的一部分。
通过练习题,我们可以巩固对分式的理解,提高解题能力。
本文将给大家介绍一些常见的分式练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算:$\frac{3}{4}+\frac{2}{5}$解答:首先找到两个分式的公共分母,这里是20。
然后将两个分式的分子相加,保持分母不变。
计算得到:$\frac{15}{20}+\frac{8}{20}=\frac{23}{20}$2. 计算:$\frac{5}{6}-\frac{1}{3}$解答:同样地,找到两个分式的公共分母,这里是6。
然后将两个分式的分子相减,保持分母不变。
计算得到:$\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$3. 计算:$\frac{2}{3}\times\frac{3}{4}$解答:将两个分式的分子相乘,分母相乘,得到:$\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}=\frac{1}{2}$4. 计算:$\frac{2}{3}\div\frac{5}{6}$解答:将除法转化为乘法,即将第二个分式的分子与分母互换位置,然后进行乘法运算。
得到:$\frac{2}{3}\div\frac{5}{6}=\frac{2}{3}\times\frac{6}{5}=\frac{12}{15}=\frac{4}{5}$二、应用练习题1. 甲、乙两个水管一起工作可以在3小时内将一个水池填满。
如果甲单独工作需要4小时,乙单独工作需要多少小时?解答:设乙单独工作需要x小时。
根据工作时间和工作效率的关系,可以得到以下分式:$\frac{1}{4}+\frac{1}{x}=\frac{1}{3}$。
将分式转化为方程,解方程得到:$x=12$。
初二数学分式练习题及答案分式是数学中的重要概念,也是初中数学的基础知识之一。
在初中数学学习中,分式的运算是一个关键的内容。
为了帮助同学们更好地掌握分式的运算,以下将提供一些初二数学分式练习题及答案。
一、基础练习题1. 计算下列分式的值:(1) $\frac{2}{3}+\frac{1}{6}$(2) $\frac{5}{7}-\frac{2}{7}$(3) $\frac{3}{4}\times\frac{2}{5}$(4) $\frac{6}{13}\div\frac{2}{3}$2. 按照要求变换下列分式:(1) 化简:$\frac{4x^2-2x}{2x}$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$3. 求解方程:(1) $\frac{7}{10}x=\frac{35}{4}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$二、提高练习题1. 小明在旅行中用一辆摩托车以每小时40千米的速度行驶,计划经过$\frac{2}{5}$小时后休息10分钟,然后以每小时50千米的速度行驶到终点。
求小明旅行一段的总时间。
2. 甲,乙两个工程队共同进行一项工程,甲队完成全工程的$\frac{2}{5}$,乙队完成剩下的部分。
如果两队同时施工,还需6天可以完成全工程;如果只由甲队自行施工,需要10天完成全工程。
请问乙队自行施工需要多少天才能完成全工程?3. 甲、乙两人一起做一件工作,甲独立完成全工作需要8小时,乙独立完成全工作需要12小时。
他们两人合作完成全工作,需要多少小时?三、答案基础练习题答案:1.(1) $\frac{2}{3}+\frac{1}{6}=\frac{4}{6}+\frac{1}{6}=\frac{5}{6}$(2) $\frac{5}{7}-\frac{2}{7}=\frac{3}{7}$(3)$\frac{3}{4}\times\frac{2}{5}=\frac{3\times2}{4\times5}=\frac{3}{10}$(4)$\frac{6}{13}\div\frac{2}{3}=\frac{6}{13}\times\frac{3}{2}=\frac{6}{13 }\times\frac{3}{2}=\frac{9}{13}$2.(1) 化简:$\frac{4x^2-2x}{2x} = \frac{2x(2x-1)}{2x}=2x-1$(2) 分解:$\frac{5}{xy}-\frac{7}{yx}=\frac{5}{xy}-\frac{7}{xy}=\frac{5-7}{xy}=-\frac{2}{xy}$(3) 合并:$\frac{a}{b}\times\frac{b}{c}=\frac{a\times b}{b\timesc}=\frac{a}{c}$(4) 变形:$\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}$ 通过分数的通分,两边同乘以$xy$得到等式$\frac{xy}{x}+\frac{xy}{y}=x+y$,化简得到$x+y=x+y$3.(1) $\frac{7}{10}x=\frac{35}{4}$,两边同乘以$\frac{10}{7}$得到等式$x=\frac{35}{4}\times\frac{10}{7}=\frac{25}{2}$(2) $\frac{5}{6}+\frac{x}{4}=\frac{7}{8}$,先通分得到等式$\frac{10}{12}+\frac{3x}{12}=\frac{7}{8}$,化简得到$\frac{10+3x}{12}=\frac{7}{8}$,两边同乘以12得到$10+3x=12\times\frac{7}{8}$,解方程得到$x=\frac{63}{8}$(3) $\frac{3}{x}-\frac{2}{x-1}=\frac{5}{x(x-1)}$,先通分得到等式$\frac{3(x-1)-2x}{x(x-1)}=\frac{5}{x(x-1)}$,化简得到$\frac{3x-3-2x}{x(x-1)}=\frac{5}{x(x-1)}$,整理得到$\frac{x-3}{x(x-1)}=\frac{5}{x(x-1)}$,可以得到方程$x-3=5$,解方程得到$x=8$。
初中分式练习题精选及答案在初中阶段,分式是一个非常重要的数学知识点。
学生们需要学会如何简化分式、加减乘除分式等基本运算。
下面是一些初中分式练习题的精选及答案,希望对大家有所帮助。
1. 将 $\frac{2}{5}$ 和 $\frac{4}{7}$ 相加,将结果化简为最简分数。
解:首先将两个分式的分母乘起来,得到分母为 $5 \times 7 = 35$。
然后将两个分式的分子按照相同的比例乘上对应的数,得到$\frac{2 \times 7}{5 \times 7} + \frac{4 \times 5}{5 \times 7} =\frac{14}{35} + \frac{20}{35}$。
将这两个分式相加可以得到$\frac{34}{35}$,化简后为 $\frac{2}{5}$。
2. 将 $\frac{3}{4}$ 和 $\frac{5}{6}$ 相减,将结果化简为最简分数。
解:同样是将两个分式的分母相乘,得到 $4 \times 6 = 24$。
然后将两个分式的分子按照相同的比例乘上对应的数,得到 $\frac{3 \times 6}{4 \times 6} - \frac{5 \times 4}{4 \times 6} = \frac{18}{24} -\frac{20}{24}$。
将这两个分式相减得到 $\frac{-2}{24}$,化简后为 $\frac{-1}{12}$。
3. 将 $\frac{3}{8}$ 和 $\frac{2}{5}$ 相乘,将结果化简为最简分数。
解:将两个分式相乘,得到 $\frac{3 \times 2}{8 \times 5} =\frac{6}{40}$。
将这个分式化简为最简分数,可以将分子和分母同时除以它们的最大公约数,即 2。
得到 $\frac{3}{20}$。
4. 将 $\frac{11}{12}$ 除以 $\frac{3}{8}$,将结果化简为最简分数。
初二分式练习题及答案初二分式练习题及答案初二是学生们学习生涯中的一个重要阶段,也是他们逐渐进入高中阶段的过渡期。
为了帮助初二学生提高数学能力,下面将提供一些分式练习题及答案。
练习题一:1. 计算:$\frac{2}{3} + \frac{3}{4}$。
2. 计算:$\frac{5}{6} - \frac{1}{3}$。
3. 计算:$\frac{2}{5} \times \frac{3}{4}$。
4. 计算:$\frac{7}{8} \div \frac{2}{3}$。
5. 计算:$\frac{2}{3} + \frac{4}{5} - \frac{1}{2}$。
答案一:1. $\frac{17}{12}$2. $\frac{1}{2}$3. $\frac{3}{10}$4. $\frac{21}{16}$5. $\frac{11}{30}$练习题二:1. 计算:$\frac{3}{5} + \frac{2}{7}$。
2. 计算:$\frac{1}{2} - \frac{1}{4}$。
3. 计算:$\frac{2}{3} \times \frac{3}{4}$。
4. 计算:$\frac{5}{6} \div \frac{2}{3}$。
5. 计算:$\frac{1}{2} + \frac{3}{4} - \frac{1}{3}$。
答案二:1. $\frac{29}{35}$2. $\frac{1}{4}$3. $\frac{1}{2}$4. $\frac{5}{4}$5. $\frac{7}{12}$练习题三:1. 计算:$\frac{4}{5} + \frac{3}{8}$。
2. 计算:$\frac{2}{3} - \frac{1}{6}$。
3. 计算:$\frac{1}{4} \times \frac{3}{5}$。
4. 计算:$\frac{5}{6} \div \frac{1}{2}$。
5. 计算:$\frac{2}{3} + \frac{1}{4} - \frac{1}{6}$。
初二数学题分式练习题分式是初中数学中的重要知识点之一,掌握好分式的概念和运算方法对于学生提高数学成绩至关重要。
本文将提供一些初二数学分式练习题,帮助学生加深对分式的理解和运用能力。
练习题一:1. 计算:$\frac{1}{2}+\frac{3}{4}$。
2. 计算:$\frac{4}{5}-\frac{1}{3}$。
3. 计算:$2-\frac{1}{2}$。
4. 将$\frac{2}{3}$转化为百分数形式。
5. 计算:$\frac{2}{3} \times \frac{3}{5}$。
练习题二:1. 将$\frac{1}{5}$和$\frac{3}{20}$化为相同分母的分式。
2. 计算:$\frac{2}{3}+\frac{5}{6}+\frac{7}{12}$。
3. 计算:$\frac{3}{4} \div \frac{1}{2}$。
4. 判断下列各分式大小:$\frac{3}{4}$、$\frac{2}{3}$、$\frac{5}{6}$。
练习题三:1. 计算:$1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}$。
2. 计算:$2\frac{3}{5}+\frac{1}{5}$。
3. 将$\frac{2}{9}$化为小数形式。
4. 计算:$\frac{5}{6} \times \frac{1}{3}$。
练习题四:1. 计算:$(\frac{1}{3}+\frac{2}{5})\times \frac{3}{4}$。
2. 计算:$\frac{2}{3} \div (\frac{3}{4}-\frac{1}{6})$。
3. 将$\frac{4}{7}$化为百分数形式。
4. 判断下列各分式大小:$\frac{5}{6}$、$\frac{8}{9}$、$\frac{11}{12}$。
以上是一些初二数学分式练习题,希望能帮助同学们更好地掌握分式的概念和运算方法。
在做题过程中,同学们要注意以下几点:1. 分式的加减法:要找到相同的分母后进行运算。
初中数学分式计算题及答案分式计算题精选1.计算$x+y$的积。
2.化简$\dfrac{(a+2)^2}{a^2-4}$,其结果是$\dfrac{a+4}{a-2}$。
3.化简$\dfrac{3}{4}\div \dfrac{4}{5}$,其结果是$\dfrac{15}{16}$。
4.化简$\dfrac{5x+10}{2x+4}-\dfrac{3x+6}{x+2}$,其结果是$\dfrac{2x+2}{x+2}$。
5.化简$\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+1}}}$,其结果是$\dfrac{3}{5}$。
6.计算$\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}$,其结果是$\dfrac{25}{12}$。
7.化简$\dfrac{a^2+3a+2}{a^2-1}-\dfrac{a^2-a-2}{a^2+2a+1}$,其结果是$\dfrac{4a+3}{(a+1)(a-1)}$。
8.化简$\dfrac{x^2-4}{x-2}+\dfrac{x^2-1}{x+1}$,其结果是$\dfrac{2x^3+3x^2-10x-5}{(x-2)(x+1)}$。
9.化简$\dfrac{1}{\sqrt{3}+\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{3-2\sqrt{6}}$,其结果是$\dfrac{5\sqrt{2}-2\sqrt{3}}{4}$。
10.计算$\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+1}}}+\dfrac{1}{1+\dfrac {1}{1+\dfrac{1}{1+1}}+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+1 }}}}$,其结果是$\dfrac{23}{15}$。
11.计算$\dfrac{1}{\sqrt{2}+\sqrt{3}}+\dfrac{1}{\sqrt{3}+\sqrt{4}}+\dfr ac{1}{\sqrt{4}+\sqrt{5}}$,其结果是$\dfrac{\sqrt{2}-\sqrt{5}}{2}$。
分式练习题及答案一、计算下列分式的值:1. $\dfrac{3}{4} - \dfrac{1}{6} + \dfrac{2}{5}$解:将所有分式的分母通分,得到:$\dfrac{9}{12} - \dfrac{2}{12}+ \dfrac{4}{12} = \dfrac{11}{12}$2. $\dfrac{5}{6} \div \dfrac{2}{3}$解:将除法转换成乘法,并将除数取倒数,得到:$\dfrac{5}{6}\cdot \dfrac{3}{2} = \dfrac{15}{12} = \dfrac{5}{4}$3. $\dfrac{2}{3} \times \dfrac{3}{4} \div \dfrac{1}{2}$解:先进行分式的乘法运算,得到:$\dfrac{2}{3} \times\dfrac{3}{4} = \dfrac{6}{12} = \dfrac{1}{2}$,然后将乘法转换成除法,得到:$\dfrac{1}{2} \div \dfrac{1}{2} = 1$二、判断下列分式的大小关系,用“<”、“>”或“=”表示:1. $\dfrac{2}{3}$ ____ $\dfrac{4}{5}$解:通分后比较分子的大小,得到:$\dfrac{10}{15}$ <$\dfrac{12}{15}$,即 $\dfrac{2}{3}$ < $\dfrac{4}{5}$2. $\dfrac{7}{8}$ ____ $\dfrac{7}{9}$解:通分后比较分子的大小,得到:$\dfrac{63}{72}$ >$\dfrac{56}{72}$,即 $\dfrac{7}{8}$ > $\dfrac{7}{9}$3. $\dfrac{5}{6}$ ____ $\dfrac{5}{8}$解:通分后比较分子的大小,得到:$\dfrac{40}{48}$ =$\dfrac{30}{48}$,即 $\dfrac{5}{6}$ = $\dfrac{5}{8}$三、将下列分数化成最简分数形式:1. $\dfrac{12}{15}$解:可以约分,分子分母同时除以3,得到:$\dfrac{4}{5}$2. $\dfrac{18}{24}$解:可以约分,分子分母同时除以6,得到:$\dfrac{3}{4}$3. $\dfrac{40}{48}$解:可以约分,分子分母同时除以8,得到:$\dfrac{5}{6}$四、计算下列混合数的值:1. $2 \dfrac{1}{2} + 3 \dfrac{2}{3}$解:先将混合数转换成带分数的形式,得到:$2 \dfrac{1}{2} =\dfrac{5}{2}$,$3 \dfrac{2}{3} = \dfrac{11}{3}$,然后进行分数的加法运算,得到:$\dfrac{5}{2} + \dfrac{11}{3} = \dfrac{15}{6} +\dfrac{22}{6} = \dfrac{37}{6}$2. $4 \dfrac{3}{4} - 3 \dfrac{1}{2}$解:先将混合数转换成带分数的形式,得到:$4 \dfrac{3}{4} =\dfrac{19}{4}$,$3 \dfrac{1}{2} = \dfrac{7}{2}$,然后进行分数的减法运算,得到:$\dfrac{19}{4} - \dfrac{7}{2} = \dfrac{19}{4} -\dfrac{14}{4} = \dfrac{5}{4}$3. $1 \dfrac{2}{3} \times 2 \dfrac{1}{2}$解:先将混合数转换成带分数的形式,得到:$1 \dfrac{2}{3} =\dfrac{5}{3}$,$2 \dfrac{1}{2} = \dfrac{5}{2}$,然后进行分数的乘法运算,得到:$\dfrac{5}{3} \times \dfrac{5}{2} = \dfrac{25}{6}$总结:本文介绍了分式的基本计算,包括求值、大小关系比较、最简形式化简以及混合数的计算。
分式练习2014.12.15
1、(1)当x 为何值时,分式2
122---x x x 有意义? (2)当x 为何值时,分式2
122---x x x 的值为零? 2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x
x x x x x 2421212-+÷⎪⎭⎫ ⎝⎛-+-+
(4)x y x y x x
y x y x x -÷⎥⎦⎤⎢
⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111x x x x ++++++-
3、计算(1)已知211222-=-x x ,求⎪⎭
⎫ ⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值.
(2)当()00130sin 4--=x 、0
60tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xy x -++ 的值.
(3)已知0232
2=-+y xy x (x ≠0,y ≠0),求xy y x x y y x 2
2+--的值. (提示:将条件因式分解)
(4)已知0132
=+-a a ,求142
+a a 的值.
4、已知a 、b 、c 为实数,且满足()()
02)3(432222=---+-+-c b c b a ,求c
b b a -+-11的值.
5、解下列分式方程: (1)x x x x --=-+222; (2)41)1(31122=+++++x x x x (3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝
⎛+x x x x
(4)3124122=---x x x x (5)解方程组:1113112+9
x y x y ⎧-=⎪⎪⎨⎪=⎪⎩
6、已知方程1
1122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由.
7、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50
盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.
8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥
官的一段对话:
9、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。
小明提出把房间的窗户和地面都增加相同的面积a ,以改善采光条件。
他这样做能达到目的吗?
10、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由
于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?
通过这段对话,请你求出该地驻军原来每天加固的米数.
答案
1、分析:①判断分式有无意义,必须对原分式进行讨论而不能讨论化简后的分式;②在分式
B A 中,若B =0,则分式B A 无意义;若B ≠0,则分式
B A 有意义;③分式B A 的值为零的条件是A =0且B ≠0,两者缺一不可。
答案:(1)x ≠2且x ≠-1;
(2)x =1 2、分析:(1)题是分式的乘除混合运算,应先把除法化为乘法,再进行约分,有乘方的要先算乘方,若分式的分子、分母是多项式,应先把多项式分解因式;(2)题把()2+-x 当作整体进行计算较为简便;(3)题是分式的混合运算,须按运算顺序进行,结果要化为最简分式或整式。
对于特殊题型,可根据题目特点,选择适当的方法,使问题简化。
(4)题可以将y x --看作一个整体()y x +-,然后用分配律进行计算;(5)题可采用逐步通分的方法,即先算
x x ++-1111,用其结果再与212x
+相加,依次类推。
答案:(1)
21-a ;(2)24-x ;(3)12---x x (4)y x x -2;(5)818x - 3、分析:分式的化简求值,应先分别把条件及所求式子化简,再把化简后的条件代入化简后的式子求值。
略解:(1)原式=22x - ∵2
11222-=-x x ∴21222-=-x x ∴21212-=-x ∴222-=-x
∴原式=2- (2)∵()1130sin 400=--=x ,360tan 0==y
∴原式=133
1312+=--=--y x y x 分析:分式的化简求值,适当运用整体代换及因式分解可使问题简化。
略解:(3)原式=x
y 2- ∵02322=-+y xy x ∴()()023=+-y x y x ∴y x 32=或y x -= 当y x 3
2=时,原式=-3;当y x -=时,原式=2 (4)∵0132=+-a a ,a ≠0 ∴31=+a
a ∴142+a a =221a a +=212
-⎪⎭⎫ ⎝⎛+a a =232-=7 4、解:由题设有()()()⎪⎩⎪⎨⎧=-+-+-≠--0
432023222c b a c b ,可解得a =2,3-=b ,c =-2 ∴c b b a -+-11=3
21321-++=3232++-=4 5、分析:(1)题用化整法;(2)(3)题用换元法;分别设1
12++=x x y ,x x y 1+=,解后勿忘检验。
(4)似乎应先去分母,但去分母会使方程两边次数太高,仔细观察可发现x x x x 12122-=-,所以应设x
x y 122-=,用换元法解。
答
案:(1)1-=x (2=x 舍去); (2)1x =0,2x =1,21733+=x ,2
1734-=x (3)211=x ,22=x (4)2611+=x ,2
612-=x ,213=x ,14-=x 6、分析:此题不宜去分母,可设x 1=A ,y 1-=B 得:⎪⎪⎩
⎪⎪⎨⎧-==+9231AB B A ,用根与系数的关系可解出A 、B ,再求x 、y ,解出后仍需要检验。
答案:⎪⎩⎪⎨⎧==32311y x ,⎪⎩
⎪⎨⎧-=-=23322y x 7、略解:存在。
用化整法把原方程化为最简的一元二次方程后,有两种情况可使方程无解:(1)△<0;(2)若此方程的根为增根0、1时。
所以m <4
7或m =2。
8、解:设每盒粽子的进价为x 元,由题意得
20%x ×50-(
x
2400-50)×5=350 化简得x 2-10x -1200=0 解方程得x 1=40,x 2=-30(不合题意舍去)
经检验,x 1=40,x 2=-30都是原方程的解,但x 2=-30不合题意,舍去. 9、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题 意得:1200150010 1.2x x += 解得:5x =
经检验5x =是原方程的解 所以第一次购书为12002405
=(本). 第二次购书为24010250+=(本)
第一次赚钱为240(75)480⨯-=(元)
第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)
所以两次共赚钱48040520+=(元)
10、解:设原来每天加固x 米,根据题意,得
926004800600=-+x
x . 去分母,得 1200+4200=18x (或18x =5400) 解得 300x =. 检验:当300x =时,20x ≠(或分母不等于0).
∴300x =是原方程的解.
11、分析:小明要想达到目的,就要比较改善采光条件前后窗户的面积与地面面积的比值的大小,改善采光条件前窗户的面积与地面面积的比值为,改善采光条件后窗户的面积与地面面积的比值为。
问题就转化为
比较与的大小,比较两个分式的大小,我们可以运用以下结论:若,则;若,则;若,则。
此题就转化为分式的加减运算问题。
解:
因为所以即
所以小明能达到目的。
12、(1)
11
,
1113(21)(21)
n n
⨯-+
.(2)分式减法,对消
(3)解析:将分式方程变形为1111113 33366218 x x x x x x
⎛⎫
-+-+=
⎪
+++++⎝⎭
整理得119
92(9)
x x x
-=
++
,方程两边都乘以2x(x+9),得2(x+9)-2x=9x,解得x=2.
经检验,x=2是原分式方程的根.
点评:此方程若用常规方法来解,显然很难,这种先拆分分式化简后再解分式方程的方法不失是一种技巧.。