第四讲 包壳材料
- 格式:ppt
- 大小:4.10 MB
- 文档页数:69
可食用胶作用机理化学作用:食品胶大分子中含有羟基、羧基、烷氧基、糖苷键中的氧原子和肽键中的氮原子外层均含有sp3杂化轨道,轨道中未共用的孤电子对可与水分子带部分正电荷的氢离子结合形成氢键,氢键的键合力极强,当大于食品胶分子链间内聚力时,食品胶分子链舒展,食品胶分子与水结合形成长分子链,且溶解分散在水中,形成热力学稳定体系。
食品胶分子舒展使多种基团充分暴露,各极性基团与极性水分子以氢键或偶极作用力相互制约形成内层水膜,内层水再与外层水作用发生缔合,体积极大的溶胶分子作为骨架,大量的水被束缚,介质的自由移动受到阻碍而产生层流间的阻力,表现出黏稠性。
食用胶(hydrocolloid )也称亲水胶体、水溶胶,是能溶解或分散于水中,并在一定条件下,其分子中的亲水基团,如羧基、羟基、氨基和羧酸根等,能与水分子发生水化作用形成黏稠、滑腻的溶液或凝胶。
在食品加工中起到增稠、增黏、黏附力、凝胶形成力、硬度、脆性、紧密度、稳定乳化、悬浊体等作用,使食品获得所需要各种形状和硬、软、脆、黏、稠等各种口感,故也常称作食品增稠剂、增黏剂、胶凝剂、稳定剂、悬浮剂、胶质等。
种类主要品种植物胶瓜尔豆胶、槐豆胶、罗望子胶、亚麻籽胶、皂荚豆胶△阿拉伯胶、黄蓍胶、印度树胶、刺梧桐胶、桃胶△△果胶、魔芋胶、印度芦荟提取液、菊糖、仙草多糖动物胶明胶、干酪素、酪蛋白酸钠、甲壳素、壳聚糖、乳清分离蛋白、乳清浓缩蛋白、鱼胶微生物胶黄原胶、结冷胶、茁霉多糖、凝结多糖、酵母多糖海藻胶琼脂、卡拉胶、海藻酸(盐)、海藻酸丙二醇酯、红藻胶、褐藻盐藻聚糖化学改性胶羧甲基纤维素钠、羟乙基纤维素、微晶纤维素、甲基纤维素、羟丙基甲基纤维素、羟丙基纤维素、变性淀粉、聚丙烯酸钠、聚乙烯吡咯烷酮被膜剂和胶囊作用食品胶用作被膜剂,可覆盖于食品表面,形成一层保护性薄膜,保护食品不与氧气、微生物接触,起保质、保鲜、保香或上光等作用,也可被制作可食性膜。
此外,还可用作包装食品的外胶囊,主要利用两种含有不同正负电荷的离子化食品胶反应形成复杂化合物,同时形成微细胞膜包覆在芯材表面,被包覆固定的芯材物质在食品中可通过物理压力、pH值或温度变化而释放出来。
打包材料化学知识点总结一、包装材料的基本分类1. 金属材料:铁、铝、锡、铜等金属制品,如罐头盒、铁桶等2. 塑料材料:聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚对苯二甲酸乙二醇酯(PET)等3. 纸张、纸板、纸质复合材料4. 玻璃材料5. 包装辅助材料:胶带、标签、印刷油墨、胶水、涂料等二、包装材料的性能1. 物理性能:包括材料的强度、硬度、韧性、透明度、拉伸性、耐磨性、密度等2. 化学性能:材料的耐酸碱、耐腐蚀、耐氧化、耐温度的性能3. 吸湿性、透气性、不透光性等特性三、包装材料的加工工艺1. 塑料材料的成型工艺:挤出、压延、注塑、吹塑、挤塑等2. 金属材料的成型工艺:冲压、拉伸、成型、焊接、表面处理等3. 纸张的加工工艺:印刷、覆膜、模切、折叠、胶合等四、包装材料的特殊性能1. 防腐蚀性能:一些食品包装材料需要抗菌、防霉、防腐蚀的性能2. 隔热性能:一些特殊包装材料需要具备隔热保温的特性3. 透明度和透气性:一些特定包装材料需要具备一定的透明度和透气性4. 抗静电性能:一些电子产品的包装材料需要具有抗静电的特性五、包装材料的环保性能1. 循环利用材料:能够回收和再生利用的包装材料2. 生物降解材料:能够在自然环境中被微生物降解的包装材料3. 低碳材料:减少二氧化碳排放量的包装材料4. 无污染材料:不含对人体和环境有害的物质的包装材料六、包装材料的质量检测1. 物理性能测试:包括拉伸测试、压缩测试、冲击测试等2. 化学性能测试:包括耐酸碱性能测试、耐氧化性能测试、耐温度性能测试等3. 生物降解性能测试:包括土壤培养法、培养基法等4. 包装材料的环保标志检测:包括可回收标志、环保认证标志等七、包装材料的应用领域1. 食品包装:包括塑料食品袋、铁罐头盒、玻璃瓶等2. 医药包装:包括塑料药瓶、药盒、药盖等3. 日用品包装:包括洗发水瓶、洗衣粉包装袋、洗衣液盒等4. 电子产品包装:包括泡沫箱、塑料盒、纸箱等综上所述,包装材料是现代生活中不可或缺的一部分,它们在保护产品的同时,也需要具备一定的物理性能、化学性能、特殊性能和环保性能。
第九章燃料元件包壳材料燃料元件是反应堆中核裂变源的核心部件,因此包容燃料芯体和裂变产物的元件包壳是反应堆中工况最苛刻的重要部件。
它面临核燃料,承受着高温、高压和强烈的中子辐照,同时包壳内壁受到裂变气体压力、腐蚀和燃料肿胀以及吸氢致脆和包壳与芯块的相互作用等危害;包壳外壁受到冷却剂压力。
冲刷、振动和腐蚀以及氢脆等威胁。
当燃耗增大和功率剧增时,这些隐患也随之增大,而元件包壳壁又很薄,一旦破损,整个回路将被裂变产物所污染。
因此减小元件破损率、保证元件包壳的完整性是提高元件燃耗,保证反应堆正常、高效和经济运行的重要前提和主要制约因素。
所以对包壳材料的各项性能要求,尤其是核性能要求,比堆内其它结构材料都严格。
9.1 锆合金以锆为基加入其它合金元素组成的合金称为锆合金。
常加的元素有Sn及Nb和Fe,Cr,Ni等。
锆合金比不锈钢的熔点高300-400o C,热膨胀系数小2/3,导热率高18%,热中子吸收截面小一个量级,并对300-4000C的高温高压水和蒸汽具有良好的耐蚀性,适中的相容性好且容易冷加工等。
因此,60年力学性能,与UO2代末锆合金取代了AISI304不锈钢,被广泛用作水冷动力堆的元件包壳及堆芯结构材料并使燃料利用率得到了明显提高。
锆合金的腐蚀、织构、吸氢和应力腐蚀以及芯块与包壳的相互作用等对力学性能危害较大,它们是限制锆合金使用寿命的重要影响因素。
1. 锆合金分类及合金化原理1)分类(1)锆锡合金:Zr-2,Zr-4(2)锆铌合金:Zr-1Nb,Zr-2.5Nb(3)锆锡铌合金:ZIRLO,E635等2)锆合金化目的是为了抵消锆中杂质,尤其是氮的有害影响,以使锆合金保持纯锆的优良耐蚀性能和提高它的强度。
试验表明,锆中加Sn和/或Nb,并配合少量Fe,Cr,Ni能达到上述目的。
(如果Zr 中含氮,N3-能置换氧化物晶格中的氧离子,产生附加空位,故增加了Zr的腐蚀速度。
加入Sn后,N3-及氧离子力图停留在Sn3+离子附近,三者可动性差,空位迁移率低,降低腐蚀速度。