高中数学必修三教案:2.2.3 茎叶图
- 格式:doc
- 大小:175.26 KB
- 文档页数:4
高中数学茎叶图教案【教学目标】1.了解什么是茎叶图,并掌握其绘制方法。
2.能够通过茎叶图快速获取数据的统计特征。
3.能够运用茎叶图解决实际问题。
【教学重点】1.理解茎叶图的概念和作用。
2.掌握茎叶图的绘制方法。
3.能够根据茎叶图进行数据分析。
【教学难点】1.如何根据原始数据绘制茎叶图。
2.如何通过茎叶图快速获取数据的统计特征。
【教学准备】1.教师准备:茎叶图的相关知识、茎叶图的绘制工具。
2.学生准备:笔、纸、计算器。
【教学过程】一、导入新知识教师用一些实际例子引导学生了解茎叶图的作用,并和学生一起讨论茎叶图的概念。
二、讲解茎叶图的绘制方法1.给出一组原始数据,教师引导学生讨论如何通过茎叶图来展示这组数据。
2.讲解茎叶图的绘制步骤:分别提取数据的十位和个位数字,以十位数字为茎,个位数字为叶,绘制出茎叶图。
3.通过实例演示绘制茎叶图的过程,并要求学生跟着一起绘制。
三、练习茎叶图的绘制1.教师给出几组数据,要求学生用之前学习的方法绘制茎叶图。
2.学生相互交流,纠正彼此的错误,共同提高绘制茎叶图的能力。
四、数据分析1.通过观察茎叶图,让学生发现数据的统计特征,如数据的集中程度、离散程度等。
2.提出一些问题,引导学生根据茎叶图进行数据分析,并得出结论。
【教学反馈】教师对学生绘制的茎叶图进行评价,对学生提出的问题进行解答。
【作业布置】1.完成课堂练习未完成的部分。
2.总结茎叶图的绘制方法。
3.收集一些原始数据,练习绘制茎叶图并分析数据。
【教学拓展】1.了解其他类型的数据图形如直方图、饼图等。
2.通过茎叶图对数据进行进一步分析和研究。
这份高中数学茎叶图教案范本可根据具体情况进行调整和完善。
苏教版高中数学必修3§223 茎叶图※学习目标※1掌握茎叶图的意义及画法;2能在实际问题中用茎叶图进行数据统计※教学重点※茎叶图的意义及画法.※教学难点※茎叶图用数据统计.※教学过程※一、问题情境某篮球运发动在某赛季各场比赛的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50问题1:如何分析该运发动的整体水平及发挥的稳定程度?问题2:初中统计局部曾学过用什么来反映总体的水平?用什么来考察稳定程度?二、建构数学在初中我们学过用平均数、众数和中位数反映总体的水平,用方差考察稳定程度。
我们还有一种简易的方法,就是将这些数据有条理的列出来,从中观察数据的分布情况,这种方法就是我们今天要学习的茎叶图。
探究茎叶图的制作方法:制作茎叶图的注意点:三、数学文化茎叶图〔Stem-and-Leaf dia又称“枝叶图〞,2021早期由英国统计学家阿瑟·鲍利〔Arthur Bowe〕设计,1977年统计学家约翰托奇 John Tue在其著作?探索性数据分析?〔eorator data anai〕中将这种绘图方法介绍给大家,从此这种作图方法变得流行起来。
四、数学运用例5.甲、乙两篮球运发动在上赛季每场比赛的得分如下,试比拟这两位运发动的得分水平.甲 12,15,24,25,31,31,36,36,37,39,44,49,50.乙 8,13,14,16,23,26,28,33,38,39,51五、合作探究问题:用茎叶图刻画数据有何特点?请小组讨论茎叶图的优点与缺乏优点:缺乏:六、当堂检测12021—2021赛季,某球员在NBA一些场次比赛中所得篮板球数为16,6,17,18,16,2021,21,24,23,13,23,请制作这些数据的茎叶图2某蓝队的甲乙两人练习罚球,每人练习10组,每组罚球40个,罚球命中个数的茎叶图如下图,那么罚球命中率较高的是七:课堂小结。
2.2.3 茎叶图3.几种统计图的区别与联系.1.预习交流1茎叶图可以表示三位数数据吗?如何表示?提示:可以,这时茎表示前两位数,叶表示最后一位数. 2.预习交流2茎叶图对重复的数据如何处理? 提示:重复记录,不能遗漏. 预习交流3(1)如图所示的茎叶图表示某城市一台自动售货机的销售额的情况,茎叶图中数字7的意义是表示这台自动售货机的销售额为________________.(2)数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取________________.(3)若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是________________,________________.提示:(1)27 (2)12,13,14,15 (3)91.5 91.5一、茎叶图的绘制下面一组数据是某生产车间30名工人某日加工零件的个数,请设计适当的茎叶图表示这组数据,并由图出发说明一下这个车间这一天的生产情况.134 112 117 126 128 124 122 116 113107 116 132 127 128 126 121 120 118108 110 133 130 124 116 117 123 122120 112 112思路分析:以前两位数为茎,个位数为叶,可以作出相应的茎叶图,从而可据图分析数据的特征.解:茎叶图如图所示.由茎叶图可以看出该生产车间的工人加工零件的个数大多都集中在110到130之间,且分布较对称、集中,说明日生产情况比较稳定.1.数据12,13,15,18,20,23,24,27,28,29用茎叶图来表示时,茎应取__________.答案:1,2解析:因为数据都是两位数,所以“茎”为十位数,即应取1,2.2.如图所示的茎叶图中,“叶”最多的茎为__________.答案:1解析:由茎叶图可知“茎”1上的叶最多.(1)茎叶图的制作步骤:选茎→把茎按从小到大的顺序排好↓添叶→把叶从小到大(或从大到,小)排列在茎的两侧(2)茎叶图的两大优点:①茎叶图上没有原始信息的损失;②在比赛时方便记录,便于统计.二、茎叶图的作用某次运动会甲、乙两名射击运动员的成绩如下:甲:9.4 8.7 7.5 8.4 10.1 10.5 10.7 7.2 7.8 10.8乙:9.1 8.7 7.1 9.8 9.7 8.5 10.1 9.2 10.1 9.1(1)用茎叶图表示甲、乙两人的成绩;(2)根据茎叶图分析甲、乙两人的成绩.思路分析:以各组数据中的整数部分为茎,小数部分为叶,画出茎叶图.解:(1)如图所示,茎表示成绩的整数环数,叶表示小数点后的数字.(2)由茎叶图可看出:乙的成绩大致对称.因此乙发挥稳定性好,甲波动性大.1.如图所示的茎叶图所表示的数据中的众数是__________.答案:22解析:由众数的定义,结合茎叶图知22为众数.2.甲、乙两个小组各10名学生的英语口语测试成绩(单位:分)如下:甲组:76 90 84 86 81 87 86 82 85 83乙组:82 84 85 89 79 80 91 89 79 74用茎叶图表示两个小组的成绩,并判断哪个小组的成绩更整齐一些.解:茎叶图如图所示(中间的茎为十位上的数字):由茎叶图容易看出甲组的成绩较集中,即甲组的成绩更整齐一些.(1)茎叶图的特点:①统计图上没有原始信息的损失;②可随时记录,方便记录与表示;③当样本数据较多时,茎叶图就显得不太方便了.(2)画茎叶图应注意的事项:①将每个数据分为茎(高位)和叶(低位)两部分;②将表示茎的数字按大小顺序由上到下排成一列;③将各个数据的叶按大小顺序写在茎的一侧.(3)绘制茎叶图的关键是分清茎和叶,一般地说数据是两位数时,十位数字为“茎”,个位数字为“叶”;如果是小数的,通常把整数部分作为“茎”,小数部分作为“叶”.解题时要根据数据的特点合理选择茎和叶.三、茎叶图与其他分布图的综合应用在某电脑杂志的一篇文章中,每个句子的字数如下:10,28,31,17,23,27,18,15,26,24,20,19,36,27,14,25,15,22,11,24,27,17.在某报纸的一篇文章中,每个句子的字数如下:27,39,33,24,28,19,32,41,33,27,35,12,36,41,27,13,22,23,18,46,32,22.(1)将这两组数据用茎叶图表示;将这两组数据进行比较分析,得到什么结论?(2)绘制频率分布直方图.思路分析:利用原始数据制作茎叶图,分析得到相关结论,然后列出频率分布表,画出频率分布直方图.解:(1)如图所示为茎叶图:由茎叶图可知,电脑杂志上每个句子的字数集中在10~30之间,中位数为22.5;而报纸上每个句子的字数集中在20~40之间,中位数为27.5.还可以看出电脑杂志上每个句子的平均字数比报纸上每个句子的平均字数要少,说明电脑杂志作为科普读物需要通俗易懂、简洁明了.(2)分别列频率分布表如下:电脑杂志报纸文章1.(2012陕西高考改编)对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是__________.答案:46,45,56解析:由茎叶图可知中位数为46,众数为45,极差为68-12=56. 2.对容量为20的样本数据进行分析后,列出茎叶图如图所示,则数据落在区间[21,25)内的频率为__________.答案:0.2解析:由茎叶图可知在区间[21 ,25)内的数据有21,22,22,22,共4个,∴所求频率为420=0.2.在统计中,茎叶图与其他分布图会经常综合在一起应用.例如,茎叶图可以作为制作频率分布表和频率分布直方图的一个重要步骤.因为经过茎叶图这一步骤,原始样本的数据可以更好地呈现出来,并且从茎叶图中可以得出一些结论,为绘制频率分布表、频率分布直方图打下基础.1.下列茎叶图所表示的数据为____________________.答案:8,11,11,12,21,24,29,50,522.用茎叶图表示一组两位数数据时,数据的个数__________茎叶图中叶的个数.(填大于、小于或等于)答案:等于3.(2012陕西高考改编)从甲、乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示).设甲、乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则x 甲__________x 乙,m 甲__________m 乙(填“>”“<”或“=”).答案:<<解析:由题图可得x甲=34516=21.562 5,m甲=20,x乙=45716=28.562 5,m乙=29,所以x甲<x乙,m甲<m乙.4.在如图所示的茎叶图中,比数据129小的数有__________个.答案:7解析:茎叶图中比129小的数有111,112,115,117,119,121,123共7个数.5.某篮球运动员在某赛季各场得分情况如下(单位:分):12,15,24,25,31,31,36,36,37,39,44,49,50.画出该运动员得分的茎叶图,并分析该运动员的整体水平及发挥的稳定程度.解:根据这些数据,绘制的茎叶图如图所示.从茎叶图可以直观看出该运动员的平均得分及中位数、众数都在20分到40分之间,且分布对称,集中程度高,说明其发挥比较稳定.。
2019-2020学年度最新高中数学苏教版必修3教学案:第2章 2-22-2-3茎叶图-含解析.2.3 茎叶图[新知初探]1.茎叶图的制作步骤(1)将数据分为“茎”“叶”两部分.若数据是两位数,一般将两位数的十位数字作为茎,个位数字作为叶.(2)将所有的茎按大小顺序(一般是由小到大的顺序)自上而下排成一列,茎相同的共用一个茎,即剔除重复的数字,再画上一条竖线作为分界线,区分茎和叶.(3)将各个数据的“叶”按一定顺序在分界线的另一侧对应茎处同行列出. 2.茎叶图刻画数据的优缺点[小试身手]1.下列关于茎叶图的叙述正确的是________.①将数据按位数进行比较,将大小基本不变或变化不大的作为一个主杆(茎),将变化大的位数作为分枝(叶),列在主杆的后面;②茎叶图只可以分析单组数据,不能对两组数据进行比较; ③茎叶图不能表示三位数以上的数据;④画图时茎要按照从小到大的顺序从下向上列出,共茎的叶可以随意同行列出; ⑤对于重复的数据,只算一个. 答案:①2.下面茎叶图中所记录的原始数据有____个. 答案:63.数据101,123,125,143,150,151,152,153的茎叶图中,茎应取________. 答案:10,12,14,15[典例] 某中学高二(2)班甲、乙两名同学自高中以来每场数学考试成绩情况如下: 甲的得分:95,81,75,89,71,65,76,88,94,110,107; 乙的得分:83,86,93,99,88,103,98,114,98,79,101.画出两人数学成绩的茎叶图,请根据茎叶图对两人的成绩进行比较.[解] 用中间的数字表示两位同学得分的十位数字和百位数字,两边的数字分别表示两人每场数学考试成绩的个位数字.甲、乙两人数学成绩的茎叶图如图:从这个茎叶图上可以看出,乙同学的得分情况是大致对称的,集中在90多分;甲同学的得分情况除一个特殊得分外,也大致对称,集中在80多分.因此乙同学发挥比较稳定,总体得分情况比甲同学好.制作茎叶图1.某篮球运动员在某赛季各场比赛的得分情况如下:14,15,15,20,23,23,34,36, 38,45,45,50.试将该组数据制作成茎叶图.解:将所有两位数字的十位作为“茎”,个位数字作为叶,按茎叶图的制作方法可得这组数据的茎叶图为:2.某次运动会甲、乙两名射击运动员射击成绩如下:(单位:环) 甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8 乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1 用茎叶图表示甲、乙二人成绩.解:中间数字表示成绩的整环数,旁边数字表示小数点后的数字.[典例] 林管部门在每年“3·12”植树节前,为保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽取测量了10株树苗的高度,其茎叶图如图.根据茎叶图,下列描述正确的是________.(填序号)①甲种树苗的平均高度大于乙种树苗的平均高度,且甲种树苗比乙种树苗长得整齐; ②甲种树苗的平均高度大于乙种树苗的平均高度,但乙种树苗比甲种树苗长得整齐; ③乙种树苗的平均高度大于甲种树苗的平均高度,且乙种树苗比甲种树苗长得整齐; ④乙种树苗的平均高度大于甲种树苗的平均高度,但甲种树苗比乙种树苗长得整齐. [解析] 从茎叶图的数据可以看出甲种树苗的平均高度为27,乙种树苗的平均高度为28,因此乙种树苗的平均高度大于甲种树苗的平均高度.又从茎叶图分析知道,甲种树苗的茎叶图的综合应用高度集中在20~30之间,因此长势更集中.[答案]④[活学活用]1.面茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为________.解析:根据茎叶图,甲组五名同学成绩从小到大排列为9,12,10+x,24,27.由于这组数据的中位数为15,∴10+x=15,故x=5.又乙组五名同学成绩分别为9,15,10+y,18,24;又这组数据平均数为16.8,∴15(9+15+10+y+18+24)=16.8,解之得y=8.答案:5,82.(湖南高考)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示,若将运动员成绩由好到差编为1~35号,再用系统抽样的方法从中抽取7人,则成绩在区间[139,151]上运动员人数是________.解析:对数据进行分组35÷7=5,因此可将编号为1~35的35个数据分成7组,每组有5个数据,在区间[139,151]上共有20个数据,分在4个小组中,每组1人,共取4人.答案:4层级一学业水平达标1.在茎叶图中比40大的数据有________个.解析:由茎叶图知比40大的有47,48,49,共3个.答案:32.在下面的茎叶图中茎表示数据的整数部分,叶表示数据的小数部分,则比数7.5小的有________个.解析:比7.5小的有6.1,6.2,6.3,7.2,7.3,7.4,共6个.答案:63.某中学高一(1)班甲、乙两同学在高一学年度的考试成绩如下:从茎叶图中可得出________同学成绩比较好.解析:由图中数据可知甲同学的成绩多在80分以上,而乙相对差一些.答案:甲4.在如图所示的茎叶图表示的数据中,众数和中位数分别是________.解析:把这组数据从小到大排列为12,14,20,23,25,26,30,31,31,41,42,43,所以这组数据众数为31,中位数为26+302=28.答案:31,285.为缓解车堵现象,解决车堵问题,交通局调查了甲、乙两个交通站的车流量,在2016年5月随机选取了14天,统计每天上午7:30~9:00间各自的车流量(单位:百辆)得到如图所示的茎叶图,根据茎叶图回答以下问题.(1)甲、乙两个交通站的车流量的中位数分别是多少?(2)甲、乙两个交通站哪个站更繁忙?说明理由. (3)试计算甲、乙两交通站的车流量在[10,40]之间的频率. 解:根据茎叶图中的数据分析并作出判断. (1)甲交通站的车流量的中位数为58+552=56.5.乙交通站的车流量的中位数为36+372=36.5.(2)甲交通站的车流量集中在茎叶图的下方,而乙交通站的车流量集中在茎叶图的上方,从数据的分布情况来看,甲交通站更繁忙.(3)甲站的车流量在[10,40]之间的有4天, 故频率为414=27,乙站的车流量在[10,40]之间的有6天,故频率为614=37.层级二应试能力达标1.数据123,127,131,151,157,135,129,138,147,152,134,121,142,143的茎叶图中,茎应取________.解析:在茎叶图中叶应是数据中的最后一位,从而茎就确定了.答案:12,13,14,152.在如图所示的茎叶图中落在[20,40]上的频数为________.解析:由茎叶图给出了12个数据,知在[20,40]上有8个.答案:83.甲、乙两名同学学业水平考试的9科成绩如茎叶图所示,请你根据茎叶图判断谁的平均分高________.以看出,x甲=19(92解析:由茎叶图可+81+89×2+72+73+78×2+68)=80,x乙=19(91+83+86+88+89+72+75+78+69)≈81.2,x乙>x甲,故乙的平均数大于甲的平均数.答案:乙4.从甲、乙两个品种的棉花中各抽测了25根棉花的纤维长度(单位:mm),结果如下:甲品种:271273280285285287292294295301303303307308310314319323325325328331334337352乙品种:284292295304306307312313315315316318318320322322324327329331333336337343356由以上数据设计了茎叶图如图所示根据以上茎叶图,对甲、乙两品种棉花的纤维长度作比较,写出两个统计结论:①________________________________________________________________________;②________________________________________________________________________.解析:由茎叶图可以看出甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中(大部分集中在312~337之间),还可以看出乙的平均长度应大于310,而甲的平均长度要小于310等,通过分析可以得到答案.答案:①甲棉花纤维的长度比较分散,乙棉花纤维的长度比较集中②甲棉花纤维的长度的平均值小于乙棉花纤维长度的平均值(答案不唯一)5 .某校开展“爱我海西、爱我家乡”摄影比赛,9位评委为参赛作品A给出的分数如茎叶图所示.记分员在去掉一个最高分和一个最低分后,算的平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清.若记分员计算无误,则数字x 应该是________.解析:当x ≥4时,17(89+89+92+93+92+91+94)=6407≠91,∴x <4.∴17(89+89+92+93+92+91+x +90)=91,∴x =1.答案:16.某学校为准备参加市运动会,对本校甲、乙两个田径队中30名跳高运动员进行了测试,并采用茎叶图表示本次测试30人的跳高成绩(单位:cm),跳高成绩在175 cm 以上(包括175 cm)定义为“合格”,跳高成绩在175 cm 以下(不包括175 cm)定义为“不合格”.若用分层抽样的方法从甲、乙两队所有运动员中共抽取5人,则5人中“合格”与“不合格”的人数分别为________.解析:由茎叶图可知,30人中有12人“合格”,有18人“不合格”,用分层抽样的方法,则5人中“合格”与“不合格”的人数分别为2人,3人.答案:2,37.如图是某青年歌手大奖赛上七位评委为甲、乙两选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手的平均分数分别为a 1,a 2,则下列结论成立的是________.(填序号)①a 1>a 2;②a 1<a 2;③a 1=a 2;④a 1,a 2的大小与m 无关.解析:甲去掉的两个分数为70和90+m ,故a 1=80+15(5+4+5+5+1)=84.乙去掉的两个分数为79和93,故a 2=80+15(4+4+6+4+7)=85.故可知②和④正确.答案:②④8.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.解析:x 甲=110×(18+19+20+20+21+22+23+31+31+35)=24,x 乙=110×(11+17+19+21+22+24+24+30+30+32)=23.答案:24 239.有关部门从甲、乙两个城市所有的自动售货机中随机抽取了16台,记录了上午8:00~11:00之间各自的销售情况(单位:元):甲:18,8,10,43,5,30,10,22,6,27,25,58,14,18,30,41; 乙:22,31,32,42,20,27,48,23,28,43,12,34,18,10,34,23.试用两种不同的方法分别表示上面的数据,并简要说明各自的优点.解:法一:从题目中数据不易直接看出各自的分布情况,为此,我们将以上数据用条形统计图表示,如图甲、乙.法二:茎叶图表示,如图.从法一可以看出,条形统计图能直观地反映数据分布的大致情况,并且能够清晰地表示出各个区间的具体数目.从法二可以看出,用茎叶图表示有关数据,不但可以保留有关信息,而且可以随时记录,给数据的记录和表示都带来方便.10.下面茎叶图是某班在一次测验时的成绩,伪代码用来同时统计女生、男生及全班成绩的平均分.试回答下列问题:(1)在伪代码中,“k=0”的含义是什么?横线①处应填什么?(2)执行伪代码,输出S,T,A的值分别是多少?(3)请分析该班男女生的学习情况.解:(1)全班32名学生中,有15名女生,17名男生,在伪代码中,根据“S←S/15,T←T/17”可推知,“k=1”和“k=0”分别代表男生和女生;S,T,A分别代表女生、男生及全班成绩的平均分;横线①处应填“(S+T)/32”.(2)女生、男生以及全班成绩的平均分分别为S=78,T=77,A≈77.47.(3)15名女生成绩的平均分为78,17名男生成绩的平均分为77.从中可以看出女生成绩比较集中.整体水平稍高于男生;男生中的高分段比女生高,低分段比女生多.相比较男生两极分化比较严重.。
2.2.3 茎叶图教学目标(1)掌握茎叶图的意义及画法,并能在实际问题中用茎叶图用数据统计; (2)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计. 教学重点茎叶图的意义及画法. 教学难点茎叶图用数据统计.教学过程 一、复习练习:为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.(1) 第二小组的频率是多少?样本容量是多少? (2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。
解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,因此第二小组的频率为:40.0824171593=+++++又因为频率=第二小组频数样本容量所以 121500.08===第二小组频数样本容量第二小组频率(2)由图可估计该学校高一学生的达标率约为171593100%88%24171593+++⨯=+++++(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组. 二、问题情境1.情境:某篮球运动员在某赛季各场比赛的得分情况如下: 12,15,24,25,31,31,36,36,37,39,44,49,50.2.问题:如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度? 三、建构数学 1.茎叶图的概念:一般地:当数据是一位和两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。
2。
2.3茎叶图整体设计教材分析通过比较甲、乙两个运动员比赛得分情况引入茎叶图,从而得出画茎叶图的步骤,从茎叶图中的枝叶分布情况就可以感受到样本数据的分布特点。
结合实例说明,可根据数据的特点灵活地决定茎叶图中数据的茎和叶的划分.茎叶图,频率分布表和频率分布直方图都是用来描述样本数据的分布情况的。
茎叶图由所有样本数据构成,没有损失任何样本信息,可以在抽样的过程中随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.三维目标1。
通过实例使学生掌握茎叶图的意义及画法,体会分布的意义和作用,在表示样本数据的过程中,进一步学会列频率分布表及画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2。
使学生进一步体会用样本估计总体的思想,会用样本的频率分布估计总体分布。
重点难点教学重点:1。
使学生掌握茎叶图的意义及画法,结合实例体会茎叶图的优点;2.继续掌握如何用样本频率分布估计总体分布。
教学难点:对频率分布直方图的理解和应用.课时安排1课时教学过程导入新课设计思路一:(复习导入)一般地,对于n 个数x 1,x 2,…,x n ,我们把n n x x x n +++...21叫做这n个数的算术平均数,简称平均数。
平均数常用于表示一组数据的平均水平。
计算平均数时,所有数据都参加运算,它能充分利用数据所描述的信息,因此在生活中较为常见,但它易受端点值的影响。
一般地,n 个数根据大小顺序排列后,处于中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数。
由中位数的定义可知,当数据的个数是奇数时最中间的一个数据是中位数;当数据的个数是偶数时,则最中间两个数据的平均数是中位数.中位数受端点值的影响小,但不能充分利用所有数据的信息.众数则是一组数据中出现次数最多的那个数据.为了避开以上缺点,今天学习——茎叶图.因为所有信息都可以从茎叶图中得到体现。
设计思路二:(事例导入)某篮球运动员某赛季各场比赛的得分情况如下:12,15,24,25,31,31,36,36,37,39,44,49,50.如何分析该运动员的整体水平及发挥的稳定程度?推进新课新知探究除了前几天学的图、表以及上面的各种数能帮助我们分析数据外,统计中还有一种用来表示数据的茎叶图(stem and leaf display).顾名思义,茎是指中间的一列数,叶就是指从茎的两旁生长出来的数,中间的数字表示得分的十位数,旁边的数字分别表示两名运动员得分的个位数,像这样用来表示数据,帮助我们理解样本数据的图,我们称为茎叶图.制作茎叶图的方法是:当所给数据为一位数时,可将0作为茎叶较长的茎,而它本身作为叶;当所给数据为两位数时,将所有两位数的十位数字作为“茎”,个位数字作为“叶”;当所给的数据为三位数时,可将百位和十位作为“茎”,而个位数字作为“叶”.茎相同的数据共用一个茎,茎按从小到大的顺序从上到下排列,共用茎的叶一般要按从大到小(也可以从小到大)的顺序同行排出.制作茎叶图时,一般用一个竖线将茎叶隔开,竖线的左边是茎,右边是叶。
2.2.3茎叶图
教学目标:
1.掌握茎叶图的意义及画法,并能在实际问题中用茎叶图用数据统计;
2.通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.
教学重点:
茎叶图的意义及画法.
教学难点:
用茎叶图进行数据统计.
教学方法:
1.通过组织学生观察茎叶图特点,用图形直观的方法引出茎叶图的概念,有利于学生对概念的了解.
2.通过本课的学习,使学生进一步体会观察、比较、归纳、分析等一般科学方法的运用.
教学过程:
一、问题情境
情境:某篮球运动员在某赛季各场比赛的得分情况如下:
12,15,24,25,31,31,36,36, 37,39,44,49,50.
二、学生活动
如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度?
三、建构数学
1.茎叶图的概念:
一般地:当数据是一位和两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图.茎
按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出.
2.茎叶图的特征:
(1)用茎叶图表示数据有两个优点:一是从统计图上没有原始数据信息的损失,所有数据信息都可以从茎叶图中得到;二是茎叶图中的数据可以随时记录, 随时添加,方便记录与表示;
(2)茎叶图只便于表示两位(或一位)有效数字的数据,对位数多的数据不太容易操作;而且茎叶图只方便记录两组的数据,两个以上的数据虽然能够记录,但是没有表示两个记录那么直观,清晰;
(3)茎叶图对重复出现的数据要重复记录,不能遗漏 四、数学运用 1.例题.
例 1 (1)情境中的运动员得分的茎叶图如图:
(2)从这个图可以直观的看出该运动员平均得分及中位数、众数都在20和40之间,且分布较对称,集中程度高,说明其发挥比较稳定.
例2 甲、乙两篮球运动员在上赛季每场比赛的得分如下,试比较这两位运动员的得分水平.
甲 12,15,24,25,31,31,36,36,37,39,44,49,50.
乙 8,13,14,16,23,26,28,33,38,39,51 解:画出两人得分的茎叶图.
从这个茎叶图可以看出甲运动员的得分大致对称平均得分及中位数、众数都是30多分;乙运动员的得分除一个51外,也大致对称,平均得分及中位数、众数都是20多分,因此甲运动员发挥比较稳定,总体得分情况比乙好.
2.练习:
(1) 右面是甲、乙两名运动员某赛季一些场次得分的茎叶图,据图可知
甲
0 1 2 3 乙 8 247 199 36
50
32 875421
( A )
A.甲运动员的成绩好于乙运动员
B.乙运动员的成绩好于甲运动员
C.甲、乙两名运动员的成绩没有明显的差异D.甲运动员的最低得分为0分
(2)课本第61页练习第1,3题.
五、要点归纳与方法小结
1.绘制茎叶图的一般方法;
2.茎叶图的特征.
精美句子
1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。
一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。
一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。