2019届高考数学第二轮知识点强化练习题4
- 格式:doc
- 大小:162.00 KB
- 文档页数:6
1.(2018·高考全国卷Ⅱ)已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间; (2)证明:f (x )只有一个零点.解:(1)当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0; 当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减. (2)证明:由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点, 从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=-6⎝⎛⎭⎫a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点. 综上,f (x )只有一个零点.2.(2018·唐山模拟)已知f (x )=12x 2-a 2ln x ,a >0.(1)若f (x )≥0,求a 的取值范围;(2)若f (x 1)=f (x 2),且x 1≠x 2,证明:x 1+x 2>2a . 解:(1)由题意知,f ′(x )=x -a 2x =(x +a )(x -a )x .当x ∈(0,a )时,f ′(x )<0,f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,f (x )单调递增. 当x =a 时,f (x )取得最小值f (a )=12a 2-a 2ln a .令12a 2-a 2ln a ≥0,解得0<a ≤ e. 故a 的取值范围是(0, e ].(2)证明:由(1)知,f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增, 设0<x 1<a <x 2,则2a -x 1>a .要证x 1+x 2>2a 即x 2>2a -x 1,则只需证f (x 2)>f (2a -x 1). 因f (x 1)=f (x 2),则只需证f (x 1)>f (2a -x 1). 设g (x )=f (x )-f (2a -x ),0<x <a .则g ′(x )=f ′(x )+f ′(2a -x )=x -a 2x +2a -x -a 22a -x =-2a (a -x )2x (2a -x )<0,所以g (x )在(0,a )上单调递减,从而g (x )>g (a )=0. 又由题意得0<x 1<a ,于是g (x 1)=f (x 1)-f (2a -x 1)>0,即f (x 1)>f (2a -x 1). 因此x 1+x 2>2a .3.(2018·石家庄质量检测(二))已知函数f (x )=x +ax ln x (a ∈R ). (1)讨论函数f (x )的单调性;(2)若函数f (x )=x +ax ln x 存在极大值,且极大值点为1,证明:f (x )≤e -x +x 2.解:(1)由题意x >0,f ′(x )=1+a +a ln x .①当a =0时,f (x )=x ,函数f (x )在(0,+∞)上单调递增;②当a >0时,函数f ′(x )=1+a +a ln x 单调递增,f ′(x )=1+a +a ln x =0⇒x =e -1-1>0,故当x ∈(0,e-1-1)时,f ′(x )<0,当x ∈(e -1-1a,+∞)时,f ′(x )>0,所以函数f (x )在(0,e-1-1a)上单调递减,在(e -1-1a,+∞)上单调递增;③当a <0时,函数f ′(x )=1+a +a ln x 单调递减,f ′(x )=1+a +a ln x =0⇒x =e -1-1a>0,故当x ∈(0,e-1-1a)时,f ′(x )>0,当x ∈(e -1-1a,+∞)时,f ′(x )<0,所以函数f (x )在(0,e-1-1a)上单调递增,在(e -1-1a,+∞)上单调递减.(2)证明:由(1)可知若函数f (x )=x +ax ln x 存在极大值,且极大值点为1, 则a <0,且e-1-1a=1,解得a =-1,故此时f (x )=x -x ln x , 要证f (x )≤e -x +x 2,只须证x -x ln x ≤e -x +x 2,即证e -x +x 2-x +x ln x ≥0,设h (x )=e -x +x 2-x +x ln x ,x >0,则h ′(x )=-e -x +2x +ln x .令g (x )=h ′(x ), 则g ′(x )=e -x +2+1x>0,所以函数h ′(x )=-e -x +2x +ln x 在(0,+∞)上单调递增,又h ′⎝⎛⎭⎫1e =-e -1e +2e -1<0,h ′(1)=-1e+2>0, 故h ′(x )=-e -x +2x +ln x 在⎝⎛⎭⎫1e ,1上存在唯一零点x 0,即-e -x 0+2x 0+ln x 0=0.所以当x ∈(0,x 0)时,h ′(x )<0,当x ∈(x 0,+∞)时,h ′(x )>0,所以函数h (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,故h (x )≥h (x 0)=e-x0+x 20-x 0+x 0ln x 0,所以只需证h (x 0)=e -x0+x 20-x 0+x 0ln x 0≥0即可,由-e -x0+2x 0+ln x 0=0,得e-x0=2x 0+ln x 0,所以h (x 0)=(x 0+1)(x 0+ln x 0), 又x 0+1>0,所以只要x 0+ln x 0≥0即可, 当x 0+ln x 0<0时,ln x 0<-x 0⇒x 0<e -x0⇒-e -x0+x 0<0,所以-e-x0+x 0+x 0+ln x 0<0与-e-x0+2x 0+ln x 0=0矛盾;当x 0+ln x 0>0时,ln x 0>-x 0⇒x 0>e -x0⇒-e-x0+x 0>0,所以-e-x0+x 0+x 0+ln x 0>0与-e-x0+2x 0+ln x 0=0矛盾;当x 0+ln x 0=0时,ln x 0=-x 0⇒x 0=e -x0⇒-e-x0+x 0=0,得-e-x0+2x 0+ln x 0=0,故x 0+ln x 0=0成立,得h (x 0)=(x 0+1)(x 0+ln x 0)=0, 所以h (x )≥0,即f (x )≤e -x +x 2.4.(2018·郑州质量检测(二))已知函数f (x )=e x -x 2. (1)求曲线y =f (x )在x =1处的切线方程; (2)求证:当x >0时,e x +(2-e )x -1x ≥ln x +1.解:(1)由题意得,f ′(x )=e x -2x , 则f ′(1)=e -2,f (1)=e -1,所以曲线y =f (x )在x =1处的切线方程为y =(e -2)x +1. (2)证明:f ′(x )=e x -2x ,令h (x )=e x -2x , 则h ′(x )=e x -2,易知f ′(x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增, 所以f ′(x )≥f ′(ln 2)=2-2ln 2>0, 所以f (x )在(0,+∞)上单调递增. 又曲线y =f (x )过点(1,e -1),且曲线y =f (x )在x =1处的切线方程为y =(e -2)x +1,所以可猜测:当x >0,x ≠1时,f (x )的图象恒在切线y =(e -2)x +1的上方. 下证:当x >0时,f (x )≥(e -2)x +1.设g (x )=f (x )-(e -2)x -1=e x -x 2-(e -2)x -1,x >0,则g ′(x )=e x -2x -(e -2),令φ(x )=g ′(x ), 则φ′(x )=e x -2,易知g ′(x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,又g ′(0)=3-e>0,g ′(1)=0,0<ln 2<1,所以g ′(ln 2)<0,所以存在x 0∈(0,ln 2),使得g ′(x 0)=0,所以当x ∈(0,x 0)∪(1,+∞)时,g ′(x )>0;当x ∈(x 0,1)时,g ′(x )<0, 故g (x )在(0,x 0)上单调递增,在(x 0,1)上单调递减,在(1,+∞)上单调递增, 又g (1)=0,所以g (x )=e x -x 2-(e -2)x -1≥0,当且仅当x =1时取等号,故e x +(2-e )x -1x≥x ,x >0.又x ≥ln x +1,所以e x +(2-e )x -1x ≥ln x +1,当且仅当x =1时等号成立.。
平面向量奔驰定理与三角形四心已知O 是ABC ∆内的一点,AOB AOC BOC ∆∆∆,,的面积分别为A S ,B S ,C S ,求证:0=++∙∙∙OC S OB S OA S C B A如图2延长OA 与BC 边相交于点D 则BCCOD ACD BOD ABD COD BOD ACD BD S S DC BD S S S S S S S S A =--===∆∆∆∆∆∆∆图1=OD BC DC OB +BCBDOC =CB BS SS +OB +C B C S S S +OCCB ACOA BOA COD BOD COA COD BOABOD S S S S S S S S S SSOA OD +=++=== 图2∴CB A S S S OD +-=OA∴CB A S S S +-OA =C B BS S S +OB +CB C S S S +OC∴0=++∙∙∙OC S OB S OA S C B A推论O 是ABC ∆内的一点,且0=++∙∙∙OC OB OA z y x ,则z y x S S S AOB COA BOC ::::=∆∆∆OA BCDOA BC有此定理可得三角形四心向量式O 是ABC ∆的重心⇔1:1:1::=∆∆∆AOB COA BOC S S S ⇔0=++OC OB OAO 是ABC ∆的内心⇔c b a S S S AOB COA BOC ::::=∆∆∆⇔0=++∙∙∙OC OB OA c b aO 是ABC ∆的外心⇔C B A S S S AOB COA BOC 2sin :2sin :2sin ::=∆∆∆ ⇔02sin 2sin 2sin =++∙∙∙OCC OB B OA AO 是ABC ∆的垂心⇔C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆ ⇔0tan tan tan =++∙∙∙OC C OB B OA A证明:如图O 为三角形的垂心,DBCDB AD CD A ==tan ,tan ⇒AD DB B A :tan :tan = =∆∆COA BOC S S :AD DB :∴B A S S COA BOC tan :tan :=∆∆同理得C B S S AOB COA tan :tan :=∆∆,C A S S AOB BOC tan :tan:=∆∆∴C B A S S S AOB COA BOC tan :tan :tan ::=∆∆∆奔驰定理是三角形四心向量式的完美统一4.2三角形“四心”的相关向量问题一.知识梳理:四心的概念介绍:(1) 重心:中线的交点,重心将中线长度分成2:1; (2) 垂心:高线的交点,高线与对应边垂直;(3) 内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等; (4) 外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等。
第3讲立体几何中的向量方法[真题再现]1.(2018·课标Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC使点C到达点P的位置,且PF⊥BF。
(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.[解](1)证明:由已知可得BF⊥PF,BF⊥EF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD。
(2)解:如图,作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD。
以H为坐标原点,错误!的方向为y轴正方向,|错误!|为单位长,建立如图所示的空间直角坐标系H.xyz.由(1)可得,DE⊥PE.又DP=2,DE=1,所以PE=错误!.又PF=1,EF=2,所以PE⊥PF.所以PH=错误!,EH=错误!.则H(0,0,0),P错误!,D错误!,错误!=错误!,错误!=错误!.又错误!为平面ABFD的法向量,设DP与平面ABFD所成角为θ,则sin θ=错误!=错误!=错误!。
所以DP与平面ABFD所成角的正弦值为错误!.2.(2018·课标Ⅱ)如图,在三棱锥P-ABC中,AB=BC=22,P A=PB=PC=AC=4,O为AC的中点.(1)证明:PO⊥平面ABC;(2)若点M在棱BC上,且二面角M。
P A-C为30°,求PC与平面P AM所成角的正弦值[解](1)证明:因为P A=PC=AC=4,O为AC的中点,所以OP⊥AC,且OP=2错误!.如图,连接OB.因为AB=BC=错误!AC,所以△ABC为等腰直角三角形,且OB ⊥AC,OB=错误!AC=2。
由OP2+OB2=PB2知PO⊥OB.由OP⊥OB,OP⊥AC,OB∩AC=O,得PO⊥平面ABC.(2)解:如图,以O为坐标原点,错误!的方向为x轴正方向,建立空间直角坐标系O。
xyz。
由已知得O(0,0,0),B(2,0,0),A(0,-2,0),C(0,2,0),P(0,0,2错误!),错误!=(0,2,2错误!).取平面P AC的一个法向量错误!=(2,0,0).设M (a ,2-a,0)(0≤a ≤2),则错误!=(a ,4-a,0).设平面P AM 的法向量为n =(x ,y ,z ).由AP ,→·n =0,错误!·n =0得错误!可取y =错误!a ,得平面P AM 的一个法向量为n =(错误!(a -4),错误!a ,-a ),所以cos 错误!,n =错误!。
题型专题(四) 不等式(1)一元二次不等式ax 2+bx +c >0(或<0)(a ≠0,Δ=b 2-4ac >0),如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.(2)解简单的分式、指数、对数不等式的基本思想是利用相关知识转化为整式不等式(一般为一元二次不等式)求解.[题组练透]1.(2019·河北五校联考)如图,已知R 是实数集,集合A ={x |log 12(x -1)>0},B =⎩⎨⎧⎭⎬⎫x |2x -3x <0,则阴影部分表示的集合是( )A .[0,1]B .[0,1)C .(0,1)D .(0,1]解析:选D 由题意可知A ={x |1<x <2},B =⎩⎨⎧⎭⎬⎫x |0<x <32,且图中阴影部分表示的是B ∩(∁R A )={x |0<x ≤1},故选D.2.已知函数f (x )=(ax -1)(x +b ),若不等式f (x )>0的解集是(-1,3),则不等式f (-2x )<0的解集是( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞B.⎝⎛⎭⎫-32,12C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-12,32 解析:选A 由f (x )>0,得ax 2+(ab -1)x -b >0,又其解集是(-1,3), ∴a <0,且⎩⎨⎧1-aba =2,-ba =-3,解得a =-1或13(舍去),∴a =-1,b =-3, ∴f (x )=-x 2+2x +3, ∴f (-2x )=-4x 2-4x +3,由-4x 2-4x +3<0,得4x 2+4x -3>0, 解得x >12或x <-32,故选A.3.(2019·泉州质检)设函数f (x )=⎩⎪⎨⎪⎧lg (x +1),x ≥0,-x 3,x <0,则使得f (x )≤1成立的x 的取值范围是________.解析:由⎩⎨⎧x ≥0,lg (x +1)≤1得0≤x ≤9,由⎩⎨⎧x <0,-x 3≤1得-1≤x <0,故f (x )≤1的解集为[-1,9].答案:[-1,9] [技法融会]1.求解一元二次不等式的3步:第一步,二次项系数化为正数;第二步,解对应的一元二次方程;第三步,若有两个不相等的实根,则利用“大于在两边,小于夹中间”得不等式的解集.2.(易错提醒)解形如一元二次不等式ax 2+bx +c >0时,易忽视系数a 的讨论导致漏解或错解,要注意分a >0,a <0进行讨论.基本不等式:a +b2≥ab(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号.(3)应用:两个正数的积为常数时,它们的和有最小值;两个正数的和为常数时,它们的积有最大值.[题组练透]1.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( ) A .1 B.32 C .2 D.52解析:选B 2x +2x -a =2(x -a )+2x -a+2a ≥22(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,解得a ≥32,即实数a 的最小值为32,故选B.2.(2019·湖北七市联考)已知直线ax +by -6=0(a >0,b >0)被圆x 2+y 2-2x -4y =0截得的弦长为25,则ab 的最大值是( )A .9 B.92 C .4 D.52解析:选B 将圆的一般方程化为标准方程为(x -1)2+(y -2)2=5,圆心坐标为(1,2),半径r =5,故直线过圆心,即a +2b =6,∴a +2b =6≥2a ·2b ,可得ab ≤92,当且仅当a =2b=3时等号成立,即ab 的最大值是92,故选B.3.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元解析:选C 设该容器的总造价为y 元,长方体的底面矩形的长为x m ,因为无盖长方体的容积为4 m 3,高为1 m ,所以长方体的底面矩形的宽为4xm ,依题意,得y =20×4+10⎝⎛⎭⎫2x +2×4x=80+20⎝⎛⎭⎫x +4x ≥80+20×2 x ·4x=160⎝⎛⎭⎫当且仅当x =4x ,即x =2时取等号. 所以该容器的最低总造价为160元.4.(2019·江西两市联考)已知x ,y ∈R +,且x +y +1x +1y =5,则x +y 的最大值是( )A .3 B.72 C .4 D.92解析:选C 由x +y +1x +1y =5,得5=x +y +x +y xy ,∵x >0,y >0,∴5≥x +y +x +y ⎝⎛⎭⎫x +y 22=x+y +4x +y,∴(x +y )2-5(x +y )+4≤0,解得1≤x +y ≤4,∴x +y 的最大值是4.[技法融会]1.利用不等式求最值的3种解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,通过凑系数后可得到和或积为定值,从而可利用基本不等式求最值.(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.2.(易错提醒)利用基本不等式求最值时要注意“一正、二定、三相等”,三个条件缺一不可.解决线性规划问题的一般步骤(1)作图——画出约束条件所确定的平面区域和目标函数所表示的平面直线系中的任意一条直线l .(2)平移——将l 平行移动,以确定最优解所对应的点的位置.有时需要对目标函数l 和可行域边界的斜率的大小进行比较.(3)求值——解有关方程组求出最优解的坐标,再代入目标函数,求出目标函数的最值. [题组练透]1.(2019·河南六市联考)已知实数x ,y 满足⎩⎪⎨⎪⎧y ≥1,y ≤2x -1,x +y ≤m ,如果目标函数z =x -y 的最小值为-1,则实数m =( )A .6B .5C .4D .3解析:选B 画出不等式组所表示的可行域如图中阴影部分所示,作直线l :y =x ,平移l可知,当直线l 经过A 时,z =x -y 取得最小值-1,联立⎩⎨⎧y =2x -1,x -y =-1,得⎩⎨⎧x =2,y =3,即A (2,3),又A (2,3)在直线x +y =m 上,∴m =5,故选B.2.(2019·福建质检)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,y +2≥0,x +y +2≥0,则(x +2)2+(y +3)2的最小值为( )A .1 B.92C .5D .9解析:选B 不等式组表示的可行域为如图所示的阴影部分,由题意可知点P (-2, -3)到直线x +y +2=0的距离为|-2-3+2|2=32,所以(x +2)2+(y +3)2的最小值为⎝⎛⎭⎫322=92,故选B.3.(2019·全国甲卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -3≥0,x -3≤0,则z =x -2y 的最小值为________.解析:不等式组⎩⎨⎧x -y +1≥0,x +y -3≥0,x -3≤0表示的可行域如图中阴影部分所示.由z =x -2y 得y =12x -12z .平移直线y =12x ,易知经过点A (3,4)时,z 有最小值,最小值为z =3-2×4=-5.答案:-54.(2019·山西质检)设实数x ,y 满足⎩⎪⎨⎪⎧2x +y -2≤0,x -y +1≥0,x -2y -1≤0,则y -1x -1的最小值是________.解析:画出不等式组所表示的可行域,如图所示,而y -1x -1表示区域内一点(x ,y )与点D (1,1)连线的斜率,∴当x =13,y =43时,y -1x -1有最小值为-12.答案:-125.(2019·全国乙卷)某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900 元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.解析:设生产产品A x 件,产品B y 件,由已知可得约束条件为⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,即⎩⎪⎨⎪⎧3x +y ≤300,10x +3y ≤900,5x +3y ≤600,x ∈N ,y ∈N . 目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2 100x +900y =0,即7x +3y =0,当直线经过点B 时,z 取得最大值,联立⎩⎨⎧10x +3y =900,5x +3y =600,解得B (60,100). 则z max =2 100×60+900×100=216 000(元). 答案:216 000 [技法融会]1.线性目标函数z =ax +by 最值的确定方法线性目标函数z =ax +by 中的z 不是直线ax +by =z 在y 轴上的截距,把目标函数化为y =-a b x +z b ,可知zb 是直线ax +by =z 在y 轴上的截距,要根据b 的符号确定目标函数在什么情况下取得最大值、什么情况下取得最小值.2.(易错提醒)解线性规划问题,要注意边界的虚实;注意目标函数中y 的系数的正负;注意最优整数解.1.不等式的可乘性(1)a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc . (2)a >b >0,c >d >0⇒ac >bd .2.不等式的性质在近几年高考中未单独考查,但在一些题的某一点可能考查,在今后复习中应引起关注.[题组练透]1.(2019·河南六市联考)若1a <1b <0,则下列结论不正确的是( )A .a 2<b 2B .ab <b 2C .a +b <0D .|a |+|b |>|a +b |解析:选D 由题可知b <a <0,所以A ,B ,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误,选D.2.已知a ,b ,c ∈R ,那么下列命题中正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a c >bc,则a >bC .若a 3>b 3且ab <0,则1a >1bD .若a 2>b 2且ab >0,则1a <1b解析:选C 当c =0时,可知A 不正确;当c <0时,可知B 不正确;对于C ,由a 3>b 3且ab <0知a >0且b <0,所以1a >1b成立,C 正确;当a <0且b <0时,可知D 不正确.[技法融会]1.判断多个不等式是否成立,常用方法:一是直接使用不等式性质,逐个验证;二是用特殊法排除.2.利用不等式性质解决问题的注意事项(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等.一、选择题1.已知关于x 的不等式(ax -1)(x +1)<0的解集是(-∞,-1)∪⎝⎛⎭⎫-12,+∞,则a =( ) A .2 B .-2 C .-12 D.12解析:选B 根据不等式与对应方程的关系知-1,-12是一元二次方程ax 2+x (a -1)-1=0的两个根,所以-1×⎝⎛⎭⎫-12=-1a,所以a =-2,故选B. 2.(2019·北京高考)已知A (2,5),B (4,1).若点P (x ,y )在线段AB 上,则2x -y 的最大值为( )A .-1B .3C .7D .8解析:选C 作出线段AB ,如图所示.作直线2x -y =0并将其向下平移至直线过点B(4,1)时,2x -y 取最大值为2×4-1=7. 3.(2019·福建四地六校联考)已知函数f (x )=x +ax +2的值域为(-∞,0]∪[4,+∞),则a的值是( )A.12B.32C .1D .2 解析:选C 由题意可得a >0,①当x >0时,f (x )=x +ax +2≥2a +2,当且仅当x =a 时取等号;②当x <0时,f (x )=x +ax+2≤-2a +2,当且仅当x =-a 时取等号.所以⎩⎨⎧2-2a =0,2a +2=4,解得a =1,故选C. 4.已知函数f (x )=(x -2)(ax +b)为偶函数,且在(0,+∞)单调递增,则f (2-x )>0的解集为( )A .{ x | x >2或x <-2}B .{ x |-2< x <2}C .{ x | x <0或x >4}D .{ x |0< x <4}解析:选C 由题意可知f (-x )=f (x ),即(-x -2)·(-ax +b )=(x -2)(ax +b ),(2a -b )x =0恒成立,故2a -b =0,即b =2a ,则f (x )=a (x -2)( x +2).又函数在(0,+∞)单调递增,所以a >0.f (2-x )>0即ax (x -4)>0,解得x <0或x >4.故选C. 5.(2019·赣中南五校联考)对于任意实数a ,b ,c ,d ,有以下四个命题: ①若ac 2>bc 2,且c ≠0,则a >b ; ②若a > b ,c>d ,则a +c >b +d ; ③若a > b ,c> d ,则ac >bd ; ④若a > b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个解析:选B ①ac 2>bc 2,且c ≠0,则a >b ,①正确;②由不等式的同向可加性可知②正确;③需满足a ,b ,c ,d 均为正数才成立;④错误,比如:令a =-1,b =-2,满足-1>-2,但1-1<1-2.故选B.6.(2019·安徽江南十校联考)若x ,y 满足约束条件⎩⎪⎨⎪⎧3x -y ≥0,x +y -4≤0,y ≥12x 2,则z =y -x 的取值范围为( )A .[-2,2] B.⎣⎡⎦⎤-12,2 C .[-1,2] D.⎣⎡⎦⎤-12,1 解析:选B 作出可行域(图略),设直线l :y =x +z ,平移直线l ,易知当l 过直线3x -y =0与x +y -4=0的交点(1,3)时,z 取得最大值2;当l 与抛物线y =12x 2相切时,z 取得最小值,由⎩⎪⎨⎪⎧z =y -x ,y =12x 2,消去y 得x 2-2 x -2z =0,由Δ=4+8z =0,得z =-12,故-12≤z ≤2,故选B.7.(2019·河北五校联考)若对任意正实数x ,不等式1x 2+1≤ax 恒成立,则实数a 的最小值为( )A .1 B. 2 C.12 D.22解析:选C 因为1x 2+1≤a x ,即a ≥x x 2+1,而x x 2+1=1x +1x ≤12(当且仅当x =1时取等号),所以a ≥12.故选C.8.(2019·河南八市联考)已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =3x +2y 的最小值为1,则a =( )A.14B.12C.34D .1 解析:选B 根据约束条件作出可行域(如图中阴影部分所示),把z =3x +2y 变形为y =-32x +z 2,得到斜率为-32,在y 轴上的截距为z2,随z 变化的一族平行直线,当直线z =3x +2y 经过点B 时,截距z2最小,即z 最小,又B 点坐标为(1,-2a ),代入3x +2y =1,得3-4a =1,得a =12,故选B.9.某企业生产甲、乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )A.12万元B .C .17万元D .18万元解析:选D 设该企业每天生产甲产品x 吨,乙产品y 吨,每天获得的利润为z 万元, 则有z =3x +4y ,由题意得x ,y 满足⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,作出可行域如图中阴影部分所示,根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.故选D.10.(2019·湖北七市联考)设向量a =(1,k ),b =(x ,y ),记a 与b 的夹角为θ.若对所有满足不等式|x -2|≤y ≤1的x ,y ,都有θ∈⎝⎛⎭⎫0,π2,则实数k 的取值范围是( )A .(-1,+∞)B .(-1,0)∪(0,+∞)C .(1,+∞)D .(-1,0)∪(1,+∞)解析:选D 首先画出不等式|x -2|≤y ≤1所表示的区域,如图中阴影部分所示,令z =a ·b =x +ky ,∴问题等价于当可行域为△ABC 时,z >0恒成立,且a 与b 方向不相同,将△ABC 的三个端点值代入,即⎩⎨⎧k +1>0,k +3>0,2+0·k >0,解得k >-1,当a 与b 方向相同时,1·y =x ·k ,则k =y x∈[0,1],∴实数k 的取值范围是(-1,0)∪(1,+∞),故选D. 11.若两个正实数x ,y 满足1x +4y =1,且不等式x +y 4<m 2-3m 有解,则实数m 的取值范围是( )A .(-1,4)B .(-∞,-1)∪(4,+∞)C .(-4,1)D .(-∞,0)∪(3,+∞)解析:选B 由题可知,1=1x +4y ≥24xy =4xy,即xy ≥4,于是有m 2-3m >x +y 4≥xy ≥4,故m 2-3m >4,化简得(m +1)(m -4)>0,即实数m 的取值范围为(-∞,-1)∪(4,+∞).12.设二次函数f (x )=ax 2+bx +c 的导函数为f ′(x ).若∀x ∈R ,不等式f (x )≥f ′(x )恒成立,则b 2a 2+2c 2的最大值为( ) A.6+2 B.6-2C .22+2D .22-2解析:选B 由题意得f ′(x )=2ax +b ,由f (x )≥f ′(x )在R 上恒成立,得ax 2+(b -2a )x +c -b ≥0在R 上恒成立,则a >0且Δ≤0,可得b 2≤4ac -4a 2,则b 2a 2+2c 2≤4ac -4a 2a 2+2c 2=4⎝⎛⎭⎫c a -12⎝⎛⎭⎫c a 2+1,又4ac -4a 2≥0,∴4·c a -4≥0,∴c a -1≥0,令t =c a -1,则t ≥0.当t >0时,b 2a 2+2c 2≤4t 2t 2+4t +3=42t +3t+4≤426+4=6-2(当且仅当t =62时等号成立),当t =0时,b 2a 2+2c 2=0,故b 2a 2+2c 2的最大值为6-2,故选B.二、填空题13.(2019·湖北华师一附中联考)若2x +4y =4,则x +2y 的最大值是________.解析:因为4=2x +4y =2x +22y ≥22x ×22y =22x +2y ,所以2x +2y ≤4=22,即x +2y ≤2,当且仅当2x =22y =2,即x =2y =1时,x +2y 取得最大值2.答案:214.(2019·河北三市联考)如果实数x ,y 满足条件⎩⎪⎨⎪⎧x +y -2≥0,x -1≤0,y -2≤0,且z =y x +a 的最小值为12,则正数a 的值为________.解析:根据约束条件画出可行域如图中阴影部分所示,经分析可知当x =1,y =1时,z取最小值12,即11+a =12,所以a =1.答案:115.(2019·江西两市联考)设x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥x ,4x +3y ≤12,则x +2y +3x +1的取值范围是________.解析:设z =x +2y +3x +1=x +1+2(y +1)x +1=1+2·y +1x +1,设z ′=y +1x +1,则z ′的几何意义为动点P (x ,y )到定点D (-1,-1)的斜率.画出可行域如图中阴影部分所示,则易得z ′∈[k DA ,k DB ],易得z ′∈[1,5],∴z =1+2·z ′∈[3,11].答案:[3,11]16.(2019·湖南东部六校联考)对于问题:“已知关于x 的不等式ax 2+bx +c >0的解集为(-1,2),解关于x 的不等式ax 2-bx +c >0”,给出如下一种解法:解:由ax 2+bx +c >0的解集为(-1,2),得a (-x )2+b (-x )+c >0的解集为(-2,1),即关于x 的不等式ax 2-bx +c >0的解集为(-2,1).参考上述解法,若关于x 的不等式k x +a +x +b x +c<0的解集为⎝⎛⎭⎫-1,-13∪⎝⎛⎭⎫12,1,则关于x 的不等式kx ax +1+bx +1cx +1<0的解集为________.解析:不等式kxax+1+bx+1cx+1<0,可化为ka+1x+b+1xc+1x<0,故得-1<1x<-13或12<1x<1,解得-3<x<-1或1<x<2,故kxax+1+bx+1cx+1<0的解集为(-3,-1)∪(1,2).答案:(-3,-1)∪(1,2)。
高考数学二轮复习专项排列、组合、二项式定理与概率统计(含详解)1. 袋里装有30个球,每个球上都记有1到30的一个号码, 设号码为n 的球的重量为344342+-n n (克). 这些球以等可能性(不受重量, 号码的影响)从袋里取出.(Ⅰ)如果任意取出1球, 求其号码是3的倍数的概率. (Ⅱ)如果任意取出1球, 求重量不大于号其码的概率; (Ⅲ)如果同时任意取出2球, 试求它们重量相同的概率.2. 从10个元件中(其中4个相同的甲品牌元件和6个相同的乙品牌元件)随机选出3个参加某种性能测试. 每个甲品牌元件能通过测试的概率均为54,每个乙品牌元件能通过测试的概率均为53.试求:(I )选出的3个元件中,至少有一个甲品牌元件的概率;(II )若选出的三个元件均为乙品牌元件,现对它们进行性能测试,求至少有两个乙品牌元件同时通过测试的概率.3. 设在12个同类型的零件中有2个次品,抽取3次进行检验,每次任取一个,并且取出不在放回,若以ξ和η分别表示取出次品和正品的个数。
(1)求ξ的分布列,期望及方差; (2)求η的分布列,期望及方差;4.(1)每天不超过20人排队结算的概率是多少?(2)一周7天中,若有三天以上(含三天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问,该商场是否需要增加结算窗口?5. 某售货员负责在甲、乙、丙三个柜面上售货.如果在某一小时内各柜面不需要售货员照顾的概率分别为0.9,0.8,0.7.假定各个柜面是否需要照顾相互之间没有影响,求在这个小时内: (1)只有丙柜面需要售货员照顾的概率;(2)三个柜面最多有一个需要售货员照顾的概率; (3)三个柜面至少有一个需要售货员照顾的概率.6. 某同学上楼梯的习惯每步走1阶或2阶,现有一个11阶的楼梯 ,该同学从第1阶到第11阶用7步走完。
(1)求该同学恰好有连着三步都走2阶的概率;(2)记该同学连走2阶的最多步数为ζ,求随机事件ζ的分布列及其期望。
2019届高考数学二轮复习特色专项训练小题强化练(一) 综合提能练(1)1.设集合P ={x ||x -1|<1},Q ={x |-1<x <2},则P ∩Q =( ) A.⎝⎛⎭⎫-1,12 B .(-1,2) C .(1,2)D .(0,2)2.若复数z 满足(1+i)z =1-2i 3,则|z |=( ) A.102 B .32C .22D .123.已知向量a =(2,1),b =(3,4),c =(k ,2).若(3a -b )∥c ,则实数k 的值为( ) A .-8 B .-6 C .-1D .64.设等差数列{a n }的前n 项和为S n ,若S 4=20,a 5=10,则a 16=( ) A .-32 B .12 C .16D .325.已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m ⊂α,则m ⊥βB .若m ⊂α,n ⊂β,则m ⊥nC .若m ⊄α,m ⊥β,则m ∥αD .若α∩β=m ,n ⊥m ,则n ⊥α6.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,现将函数f (x )图象上的所有点向右平移π4个单位长度得到函数g (x )的图象,则函数g (x )的解析式为( )A .g (x )=2sin ⎝⎛⎭⎫2x +π4 B .g (x )=2sin ⎝⎛⎭⎫2x +3π4C .g (x )=2cos 2xD .g (x )=2sin ⎝⎛⎭⎫2x -π4 7.《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”,其正视图和侧视图是如图所示的直角三角形,若该“阳马”的顶点都在同一个球面上,则该球的体积为( )A.863πB .86πC .6πD .24π8.已知函数f (x +2)(x ∈R )为奇函数,且函数f (x )的图象关于直线x =1对称,当x ∈[0,1]时,f (x )=x2 018,则f (2 018)=( )A .2 018B .12 018C .11 009D .09.执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是( )A .n ≤7?B .n >7?C .n ≤6?D .n >6?10.如图,长方体ABCD -A 1B 1C 1D 1中,AA 1>AB =AD ,设直线A 1B 与直线AD 1,B 1D 1所成的角分别为α,β,则( )A .60°<α<90°,60°<β<90°B .60°<α<90°,0°<β<60°C .0°<α<60°,60°<β<90°D .0°<α<60°,0°<β<60°11.如图,等腰梯形ABCD 的高为1,DC =2,AB =4,E ,F 分别为两腰上的点,且AF →·BE →=-8,则CE →·DF →的值为( )A .-10B .-8C .-6D .-412.已知点P 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)右支上的任意一点,经过点P 的直线与双曲线C 的两条渐近线分别相交于A ,B 两点.若点A ,B 分别位于第一、四象限,O 为坐标原点,当AP →=12PB →时,△AOB 的面积为2b ,则双曲线C 的实轴长为( )A.329 B .169C .89D .4913.已知a =213,b =⎝⎛⎭⎫1223,则log 2(ab )=________.14.如图是调查某学校高三年级男、女学生是否喜欢篮球运动得到的等高条形图,阴影部分的高表示喜欢该项运动的频率.已知该年级男生、女生各500名(假设所有学生都参加了调查),现从所有喜欢篮球运动的学生中按分层抽样的方法抽取32人,则抽取的男生人数为________.15.已知抛物线C :y 2=2px (p >0)的焦点为F ,准线l 与x 轴的交点为A ,P 是抛物线C 上的点,且PF ⊥x 轴.若以AF 为直径的圆截直线AP 所得的弦长为2,则实数p 的值为________.16.已知数列{a n }共16项,且a 1=1,a 8=4.记关于x 的函数f n (x )=13x 3-a n x 2+(a 2n -1)x ,n ∈N *.若x =a n +1(1≤n ≤15)是函数f n (x )的极值点,且曲线y =f 8(x )在点(a 16,f 8(a 16))处的切线的斜率为15,则满足条件的数列{a n }的个数为________.参考答案与解析小题强化练小题强化练(一) 综合提能练(1)1.解析:选D.由题意知P ={x ||x -1|<1}={x |-1<x -1<1}={x |0<x <2},Q ={x |-1<x <2},所以P ∩Q ={x |0<x <2}.故选D.2.解析:选A.z =1-2i 31+i =1+2i 1+i =(1+2i )(1-i )(1+i )(1-i )=3+i 2,所以|z |=⎝⎛⎭⎫322+⎝⎛⎭⎫122=94+14=102.故选A. 3.解析:选B.由题可知3a -b =(6,3)-(3,4)=(3,-1),c =(k ,2),因为(3a -b )∥c ,所以-k =2×3,k =-6.故选B.4.解析:选D.设等差数列{a n }的公差为d ,由S 4=4a 1+4×32d =20,得2a 1+3d =10 ①,由a 5=10,得a 1+4d =10 ②,根据①②可得a 1=d =2,所以a 16=a 1+15d =32.故选D.5.解析:选C.对于A :若m ⊂α,则m 与平面β可能平行或相交,所以A 错误;对于B :若m ⊂α,n ⊂β,则m 与n 可能平行、相交或异面,所以B 错误;对于C :若m ⊄α,m ⊥β,则m ∥α,C 正确;对于D :α∩β=m ,n ⊥m ,则n 不一定与平面α垂直,所以D 错误.6.解析:选D.根据函数f (x )的图象可知A =2,T 4=5π8-3π8=π4,得T =2πω=π,则ω=2,所以f (x )=2sin(2x +φ),又f (x )的图象经过点⎝⎛⎭⎫5π8,-2,所以2sin ⎝⎛⎭⎫2×5π8+φ=-2,即sin ⎝⎛⎭⎫5π4+φ=-1,5π4+φ=-π2+2k π,k ∈Z ,得φ=-7π4+2k π,k ∈Z ,因为|φ|<π2,所以φ=π4,所以f (x )=2sin ⎝⎛⎭⎫2x +π4.将函数f (x )图象上的所有点向右平移π4个单位长度得到函数g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4=2sin ⎝⎛⎭⎫2x -π4的图象. 7.解析:选C.由题可知,该“阳马”为四棱锥,记为P ABCD ,将其放入长方体中如图所示,则该“阳马”的外接球直径为长方体的体对角线,易知AD =AP =1,AB =2,所以PC =12+12+22=6,所以外接球的半径为PC 2=62,故该球的体积为4πR 33=4π3×64×62=6π.故选C.8.解析:选D.由题意知,f (x +2)=-f (-x +2),所以f (x )=-f (-x +4),又f (x )=f (-x +2),所以-f (-x +4)=f (-x +2),所以-f (-x +2)=f (-x ),所以f (-x +4)=f (-x ),所以f (x )的周期为4,故f (2 018)=f (2 016+2)=f (2)=f (0)=0.9.解析:选D.执行程序框图,s =0,a =2,n =1, s =s +a =2,a =a +2=4,n =n +1=2; s =s +a =6,a =a +2=6,n =n +1=3; s =s +a =12,a =a +2=8,n =n +1=4; s =s +a =20,a =a +2=10,n =n +1=5; s =s +a =30,a =a +2=12,n =n +1=6; s =s +a =42,a =a +2=14,n =n +1=7;s =s +a =56,a =a +2=16,此时符合判断框中的条件,退出循环. 所以判断框中的条件可以为“n >6?”.10.解析:选C.根据题意不妨取AA 1=2,AB =AD =1,连接BD ,BC 1,A 1C 1,A 1D ,则AD 1∥BC 1,B 1D 1∥BD ,则直线A 1B 与直线AD 1所成的角即∠A 1BC 1,直线A 1B 与直线B 1D 1所成的角即∠A 1BD .易知A 1B =BC 1=A 1D =5,A 1C 1=BD = 2.易知α=∠A 1BC 1,β=∠A 1BD ,在△A 1BD 中,易求得tan β=3,在△A 1BC 1中,易求得tan α=34,易知0°<α<90°,0°<β<90°,故0°<α<60°,60°<β<90°.11.解析:选D.设AF →=AB →+BF →=AB →+xBC →,BE →=BA →+AE →=BA →+yAD →,则AF →·BE →=-AB→2+yAB →·AD →+xBC →·BA →+xyBC →·AD →=-16+4(x +y ),由AF →·BE →=-8,得x +y =2,而CE →=CD →+DE →=CD →+(1-y )DA →,DF →=DC →+CF →=DC →+(1-x )CB →,于是CE →·DF →=-CD →2+(1-y )DA →·DC →+(1-x )CB →·CD →+(1-x )(1-y )CB →·DA →=-4-2[(1-y )+(1-x )]=-4.故选D.12.解析:选A.设A (x 1,y 1),B (x 2,y 2),P (x ,y ),由AP →=12PB →,得(x -x 1,y -y 1)=12(x 2-x ,y 2-y ),则x =23x 1+13x 2,y =23y 1+13y 2,所以⎝⎛⎭⎫23x 1+13x 22a2-⎝⎛⎭⎫23y 1+13y 22b2=1.易知点A 在直线y =b a x 上,点B 在直线y =-bax 上,则y 1=b a x 1,y 2=-bax 2,所以⎝⎛⎭⎫23x 1+13x 22a 2-⎝⎛⎭⎫2b 3ax 1-b 3a x 22b 2=1,即⎝⎛⎭⎫23x 1+13x 22b 2-⎝⎛⎭⎫2b 3a x 1-b 3a x 22a 2=a 2b 2,化简可得a 2=89x 1x 2. 由渐近线的对称性可得sin ∠AOB =sin 2∠AOx =2sin ∠AOx cos ∠AOx sin 2∠AOx +cos 2∠AOx =2tan ∠AOx tan 2∠AOx +1=2b a⎝⎛⎭⎫b a 2+1=2ab b 2+a2,所以△AOB 的面积为12|OA ||OB |sin ∠AOB =12x 21+y 21×x 22+y 22×sin ∠AOB =12x 21+⎝⎛⎭⎫b a x 12×x 22+⎝⎛⎭⎫-b a x 22×2ab b 2+a 2=x 1x 21+⎝⎛⎭⎫b a 2×1+⎝⎛⎭⎫b a 2×ab b 2+a 2=98a 2×ab b 2+a 2×⎣⎡⎦⎤1+⎝⎛⎭⎫b a 2=98a 2×ab b 2+a2×b 2+a 2a 2=98ab =2b ,得a =169,所以双曲线C 的实轴长为329.故选A.13.解析:a =213,则log 2a =13,b =⎝⎛⎭⎫1223=2-23,则log 2b =-23,所以log 2(ab )=log 2a +log 2b =13-23=-13.答案:-1314.解析:根据等高条形图可知,喜欢篮球运动的女生人数为500×0.2=100,男生人数为500×0.6=300,所以喜欢篮球运动的学生总人数为400,分层抽取32人,抽取的男生人数为300400×32=24.答案:2415.解析:由题可知,△APF 为直角三角形,设直线AP 与以AF 为直径的圆的另一个交点为B ,则BF ⊥AB ,因为AF =PF =p ,所以BF =p 2-4,易知AF 2=AB ×AP ,所以AP =p 22,又12AP ×BF =12AF ×PF ,即p 22×p 2-4=p 2,解得p =2 2. 答案:2 216.解析:f ′n (x )=x 2-2a n x +a 2n -1=[x -(a n +1)][x -(a n -1)].令f ′n (x )=0,得x =a n +1或x =a n -1,所以a n +1=a n +1或a n -1=a n +1(1≤n ≤15),所以|a n +1-a n |=1(1≤n ≤15),又f ′8(x )=x 2-8x +15,所以a 216-8a 16+15=15,解得a 16=0或a 16=8.当a 16=0时,a 8-a 1=(a 2-a 1)+(a 3-a 2)+…+(a 8-a 7)=3, 得a i +1-a i (1≤i ≤7,i ∈N *)的值有2个为-1,5个为1; 由a 16-a 8=(a 9-a 8)+(a 10-a 9)+…+(a 16-a 15)=-4, 得a i +1-a i (8≤i ≤15,i ∈N *)的值有6个为-1,2个为1.所以此时数列{a n }的个数为C 27C 28=588,同理可得当a 16=8时,数列{a n }的个数为C 27C 28=588. 综上,数列{a n }的个数为2C 27C 28=1 176.答案:1 176。
第1讲 函数图象与性质及函数与方程一、选择题1.(2018·广东卷)下列函数中,既不是奇函数,也不是偶函数的是( ) A.y =x +e x B.y =x +1x C.y =2x +12xD.y =1+x 2解析 令f (x )=x +e x ,则f (1)=1+e ,f (-1)=-1+e -1,即f (-1)≠f (1),f (-1)≠-f (1),所以y =x +e x 既不是奇函数也不是偶函数,而B ,C ,D 依次是奇函数、偶函数、偶函数,故选A. 答案 A2.函数f (x )=log 2x -1x 的零点所在的区间为( ) A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C.(1,2)D.(2,3)解析 函数f (x )的定义域为(0,+∞),且函数f (x )在(0,+∞)上为增函数. f ⎝ ⎛⎭⎪⎫12=log 212-112=-1-2=-3<0,f (1)=log 21-11=0-1<0, f (2)=log 22-12=1-12=12>0,f (3)=log 23-13>1-13=23>0,即f (1)·f (2)<0,∴函数f (x )=log 2x -1x 的零点在区间(1,2)内. 答案 C3.(2018·山东卷)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫12,1 C.(1,2)D.(2,+∞)解析 由f (x )=g (x ),∴|x -2|+1=kx ,即|x -2|=kx -1,所以原题等价于函数y =|x -2|与y =kx -1的图象有2个不同交点.如图:∴y =kx -1在直线y =x -1与y =12x -1之间,∴12<k <1,故选B. 答案 B4.(2018·山东卷)设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( ) A.⎣⎢⎡⎦⎥⎤23,1 B.[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞D.[1,+∞)解析 当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B 选项;当a =23时,f (a )=f ⎝ ⎛⎭⎪⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a =23满足题意,排除D 选项,故答案为C. 答案 C5.(2018·全国Ⅱ卷)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析 当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △P AB 中,|P A |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|P A |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ;当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD 的中点重合,即x =π2时,△P AO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|P A |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B. 答案 B 二、填空题6.(2018·福建卷)若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析 由题意f (x )的图象如图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2.答案 (1,2]7.(2018·洛阳模拟)若函数f (x )=⎩⎨⎧2x-a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析 当x >0时,由f (x )=ln x =0,得x =1. 因为函数f (x )有两个不同的零点,则当x ≤0时, 函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x , 因为0<2x ≤20=1,所以0<a ≤1, 所以实数a 的取值范围是0<a ≤1. 答案 (0,1]8.已知函数y =f (x )是R 上的偶函数,对x ∈R 都有f (x +4)=f (x )+f (2)成立.当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,给出下列命题:①f (2)=0;②直线x =-4是函数y =f (x )图象的一条对称轴;③函数y =f (x )在[-4,4]上有四个零点; ④f (2 014)=0.其中所有正确命题的序号为________.解析 令x =-2,得f (-2+4)=f (-2)+f (2),解得f (-2)=0,因为函数f (x )为偶函数,所以f (2)=0,①正确;因为f (-4+x )=f (-4+x +4)=f (x ),f (-4-x )=f (-4-x +4)=f (-x )=f (x ),所以f (-4+x )=f (-4-x ),即x =-4是函数f (x )的一条对称轴,②正确;当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,说明函数f (x )在[0,2]上是单调递减函数,又f (2)=0,因此函数f (x )在[0,2]上只有一个零点,由偶函数知函数f (x )在[-2,0]上也只有一个零点,由f (x +4)=f (x ),知函数的周期为4,所以函数f (x )在(2,4]与[-4,-2)上也单调,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f (2)=f (6)=f (10)=…=f (2 014)=0,④正确. 答案 ①②④ 三、解答题9.定义在[-1,1]上的奇函数f (x ),已知当x ∈[-1,0]时,f (x )=14x -a2x (a ∈R ). (1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值.解 (1)∵f (x )是定义在[-1,1]上的奇函数,∴f (0)=0,∴a =1,∴当x ∈[-1,0]时,f (x )=14x -12x . 设x ∈[0,1],则-x ∈[-1,0],∴f (-x )=14-x -12-x =4x -2x , ∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (x )=2x -4x . ∴f (x )在[0,1]上的解析式为f (x )=2x -4x .(2)f (x )=2x-4x,x ∈[0,1],令t =2x,t ∈[1,2],g (t )=t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,∴g (t )在[1,2]上是减函数,∴g (t )max =g (1)=0,即x =0,f (x )max =0.10.(2018·太原模拟)已知函数f (x )=ax 2-2ax +2+b (a ≠0)在区间[2,3]上有最大值5,最小值2. (1)求a ,b 的值;(2)若b <1,g (x )=f (x )-2m x 在[2,4]上单调,求m 的取值范围. 解 (1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上为增函数, 故⎩⎨⎧f (3)=5,f (2)=2⎩⎨⎧9a -6a +2+b =5,4a -4a +2+b =2⎩⎨⎧a =1,b =0.②当a <0时,f (x )在[2,3]上为减函数, 故⎩⎨⎧f (3)=2,f (2)=5⎩⎨⎧9a -6a +2+b =2,4a -4a +2+b =5⎩⎨⎧a =-1,b =3. 故⎩⎨⎧a =1,b =0或⎩⎨⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2, g (x )=x 2-2x +2-2m x =x 2-(2+2m )x +2.若g (x )在[2,4]上单调,则2+2m 2≤2或2m +22≥4, ∴2m ≤2或2m ≥6,即m ≤1或m ≥log 26. 故m 的取值范围是(-∞,1]∪[log 26,+∞). 11.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若g (x )=m 有实根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解 (1)∵x >0,∴g (x )=x +e 2x ≥2e 2=2e , 等号成立的条件是x =e.故g (x )的值域是[2e ,+∞),因而只需m ≥2e , 则g (x )=m 就有实根.故m ∈[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )=f (x )中函数g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x (x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2.其对称轴为x=e,开口向下,最大值为m-1+e2.故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根. ∴m的取值范围是(-e2+2e+1,+∞).。