小学奥数训练专题 组合之插板法.学生版【推荐】.doc
- 格式:doc
- 大小:650.50 KB
- 文档页数:6
排列组合问题三——插板法默认分类2009-09-15 11:29 阅读248 评论0 字号:大大中中小小前面,介绍了元素排序问题的四种常见考点,今天开始我介绍排列组合的第二大类问题,即元素分组问题。
元素分组又分为相同元素分组和不相同元素分组这两类问题。
对于相同元素分组来说,如果是相同元素分到相同的组里,问题就变的没有意义,公考中也不会涉及到。
那么对于相同元素分到不同的组里,一般我们就用插板法来解决。
【基本题型】有n个相同的元素,要求分到m组中,并且要求每组中至少有一个元素问有多少种分法?【基本解题思路】将n个相同的元素排成一行,n个元素之间出现了(n-1)个空档,现在我们用(m-1)个“档板”插入(n-1)个空档中,就把n个元素隔成有序的m份,每个组依次按组序号分到对应位置的几个元素(可能是1个、2个、3个、4个、….),这样不同的插入办法就对应着n 个相同的元素分到m组的一种分法,这种借助于这样的虚拟“档板”分配元素的方法称之为插板法。
【基本题型例题】【例1】共有10完全相同的球分到7个班里,要求每个班至少要分到一个球,问有几种不同分法?解析一:我们首先用常规方法。
若想将10个球分到7个班里,球的分法共三类:第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。
这样,第一步,我们从7个班中选出3个班,每个班分2个球;第二步,从剩下的4个班中选4个班,每班分1球。
其分法种数为:C(7,3)*C(4,4)=35注明:由于排版的关系,我用C(n,m)和A(n,m)代替原来的组合与排列公式。
第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。
其分法种数:C(7,1)* C(6,1)* C(5,5)=42第三类:有1个班分到4个球,其余的6个班每班分到1个球。
其分法种数:C(7,1)* C(6,6)=7所以,10个球分给7个班,每班至少一个球的分法种数为:35+42+7=87(种)。
第十九讲排列组合一、排列问题二、排列数三、组合问题四、组合数的重要性质五、插板法六、使用插板法一般有如下三种类型:1.使学生正确理解排列、组合的意义;正确区分排列、组合问题;2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合;3.掌握排列组合的计算公式以及组合数与排列数之间的关系;4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。
5.根据不同题目灵活运用计数方法进行计数。
例1:小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。
例2:用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?例3:用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数?例4:某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?例5:两对三胞胎喜相逢,他们围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,(同一位置上坐不同的人算不同的坐法),那么共有多少种不同的坐法?例6:一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?例7:一个六位数能被11整除,它的各位数字非零且互不相同的.将这个六位数的6个数字重新排列,最少还能排出多少个能被11整除的六位数?例8:已知在由甲、乙、丙、丁、戊共5名同学进行的手工制作比赛中,决出了第一至第五名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名次排列共有多少种不同的情况?例9:4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:⑴甲不在中间也不在两端;⑵甲、乙两人必须排在两端;⑶男、女生分别排在一起;⑷男女相间.例10:一台晚会上有6个演唱节目和4个舞蹈节目.求:⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?A1.用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数?2.用0到9十个数字组成没有重复数字的四位数;若将这些四位数按从小到大的顺序排列,则5687是第几个数?3.用1、2、3、4、5、6六张数字卡片,每次取三张卡片组成三位数,一共可以组成多少个不同的偶数?4.五位同学扮成奥运会吉祥物福娃贝贝、晶晶、欢欢、迎迎和妮妮,排成一排表演节目。
插板法例题
【最新版】
目录
1.插板法概述
2.插板法的应用举例
3.插板法的解题技巧
4.总结
正文
一、插板法概述
插板法是一种常用的数学方法,主要应用于求解排列组合问题。
它是通过将一定数量的板子插入一定数量的间隔中,使得间隔被划分成若干个部分,从而实现元素之间的排列组合。
插板法可以有效地解决一些复杂的排列组合问题,使得问题变得简单易懂。
二、插板法的应用举例
举个例子,假设有 5 个元素 A、B、C、D、E,要求将它们排列,可以使用插板法。
首先,将 4 个板子插入 5 个元素之间的 4 个间隔中,这样每个间隔就代表了一个元素的排列位置。
然后,将元素依次插入到这些间隔中,就可以得到所有可能的排列组合。
在这个例子中,共有 5!(5 的阶乘)种排列方法。
三、插板法的解题技巧
在使用插板法解题时,可以遵循以下步骤:
1.确定元素的个数和间隔的个数。
2.将板子插入间隔中,注意不要将板子插入到元素之间。
3.根据插板后的间隔数,计算排列组合的种数。
4.将元素依次插入到间隔中,得到所有可能的排列组合。
四、总结
插板法是一种实用的数学方法,适用于解决排列组合问题。
通过将板子插入间隔中,可以简化问题,使得排列组合的计算变得更加容易。
排列组合插板法求解排列应用题的主要方法:直接法:把符合条件的排列数直接列式计算;优先法:优先精心安排特定元素或特定边线捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法:对不能相连问题,先考量不受限制的元素的排序,再将不相连的元素挂在前面元素排序的空档中定序问题除法处理:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列。
间接法:正容易则反华,等价转变的方法。
例1:有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数:(1) 全体排列成一行,其中甲就可以在中间或者两边边线;(2) 全体排成一行,其中甲不在最左边,乙不在最右边;(3) 全体排列成一行,其中男生必须排在在一起;(4) 全体排成一行,男生不能排在一起;(5) 全体排列成一行,男、女各不相连;(6) 全体排成一行,其中甲、乙、丙三人从左至右的顺序不变;(7) 全体排列成一行,甲、乙两人中间必须存有3人;(8) 若排成二排,前排3人,后排4人,有多少种不同的排法。
某班存有54十一位同学,正、副班长各1名,现选派6名同学出席某科课外小组,在以下各种情况中,各存有多少种相同的选法?(1)无任何限制条件;(2)正、副班长必须入围;(3)正、副班长只有一人入选;(4)正、副班长都不入围;(5)正、副班长至少有一人入选;(5)正、副班长至多存有一人入围;6本不同的书,按下列要求各有多少种不同的选法:(1)让给甲、乙、丙三人,每人2本;(2)分为三份,每份2本;(3)分成三份,一份1本,一份2本,一份3本;(4)分给甲、乙、丙三人,一人1本,一人2本,一人3本;(5)让给甲、乙、丙三人,每人至少1本例2、(1)10个优秀指标分配给6个班级,每个班级至少一个,共计多少种相同的分配方法?(2)10个优秀指标分配到1、2、 3三个班,若名额数不少于班级序号数,共计多少种相同的分配方法?.(1)四个不同的小球放入四个不同的盒中,一共存有多少种相同的放法?(2)四个不同的小球放入四个不同的盒中且恰有一个空盒的放法存有多少种?解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。
1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯. 因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)7-5-4.组合之插板法教学目标知识要点这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n nC =,01n C =.插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----. ⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.【例 1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有种不同的放法。
排列组合问题之插板法:插板法是用于解决“相同元素”分组问题,且要求每组均“非空”,即要求每组至少一个元素;若对于“可空”问题,即每组可以是零个元素,又该如何解题呢?例1.现有10个完全相同的球全部分给7个班级,每班至少1个球,问共有多少种不同的分法?【解析】:题目中球的分法共三类:第一类:有3个班每个班分到2个球,其余4个班每班分到1个球。
其分法种数为C37=35。
第二类:有1个班分到3个球,1个班分到2个球,其余5个班每班分到1个球。
其分法种数2*C27=42。
第三类:有1个班分到4个球,其余的6个班每班分到1个球。
其分法种数C17=7。
所以,10个球分给7个班,每班至少一个球的分法种数为84:。
由上面解题过程可以明显感到对这类问题进行分类计算,比较繁锁,若是上题中球的数目较多处理起来将更加困难,因此我们需要寻求一种新的模式解决问题,我们创设这样一种虚拟的情境——插板。
将10个相同的球排成一行,10个球之间出现了9个空档,现在我们用“档板”把10个球隔成有序的7份,每个班级依次按班级序号分到对应位置的几个球(可能是1个、2个、3个、4个),借助于这样的虚拟“档板”分配物品的方法称之为插板法。
由上述分析可知,分球的方法实际上为档板的插法:即是在9个空档之中插入6个“档板”(6个档板可把球分为7组),其方法种数为C39=84。
由上述问题的分析解决看到,这种插板法解决起来非常简单,但同时也提醒各位考友,这类问题模型适用前提相当严格,必须同时满足以下3个条件:①所要分的元素必须完全相同;②所要分的元素必须分完,决不允许有剩余;③参与分元素的每组至少分到1个,决不允许出现分不到元素的组。
下面再给各位看一道例题:例2.有8个相同的球放到三个不同的盒子里,共有()种不同方法.A.35 B.28 C.21 D.45【解析】:这道题很多同学错选C,错误的原因是直接套用上面所讲的“插板法”,而忽略了“插板法”的适用条件。
1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力;通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯. 因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.知识要点教学目标7-5-4.组合之插板法规定1n nC =,01n C =.插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----.⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.【例 1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有 种不同的放法。
1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数n m P 可分成以下两步: 第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m mP 种排法. 根据乘法原理,得到m m mn n m P C P =⋅.因此,组合数12)112321⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⋅⋅L L m mn nm m P n n n n m C P m m m ()(()()().这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n mn C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =. 规定1n C =,01C =. 知识要点教学目标7-5-2.组合的基本应用(二)模块一、组合之几何问题【例 1】 在一个圆周上有10个点,以这些点为端点或顶点,可以画出多少不同的:⑴ 直线段;⑵ 三角形;⑶ 四边形.【巩固】 平面内有10个点,以其中每2个点为端点的线段共有多少条?【巩固】 在正七边形中,以七边形的三个顶点为顶点的三角形共有多少个?【例 2】 平面内有12个点,其中6点共线,此外再无三点共线.⑴ 可确定多少个三角形?⑵ 可确定多少条射线?【巩固】 如图,问:⑴ 图1中,共有多少条线段? ⑵ 图2中,共有多少个角?C 5C 4C 3C 2C 1BA...P 9P 3P 2P 1BAO图1 图2模块二、组合之应用题【例 3】 6个朋友聚会,每两人握手一次,一共握手多少次? 例题精讲【巩固】某班毕业生中有20名同学相见了,他们互相都握了一次手,问这次聚会大家一共握了多少次手?【例 4】学校开设6门任意选修课,要求每个学生从中选学3门,共有多少种不同的选法?【例 5】有2克,5克,20克的砝码各1个,只用砝码和一架已经调节平衡了的天平,能称出种不同的质量。
1.使學生正確理解組合的意義;正確區分排列、組合問題;2.瞭解組合數的意義,能根據具體的問題,寫出符合要求的組合;3.掌握組合的計算公式以及組合數與排列數之間的關係;4.會分析與數字有關的計數問題,以及與其他專題的綜合運用,培養學生的抽象能力和邏輯思維能力;通過本講的學習,對組合的一些計數問題進行歸納總結,重點掌握組合的聯繫和區別,並掌握一些組合技巧,如排除法、插板法等.一、組合問題 日常生活中有很多“分組”問題.如在體育比賽中,把參賽隊分為幾個組,從全班同學中選出幾人參加某項活動等等.這種“分組”問題,就是我們將要討論的組合問題,這裏,我們將著重研究有多少種分組方法的問題.一般地,從n 個不同元素中取出m 個(m n ≤)元素組成一組不計較組內各元素的次序,叫做從n 個不同元素中取出m 個元素的一個組合.從排列和組合的定義可以知道,排列與元素的順序有關,而組合與順序無關.如果兩個組合中的元素完全相同,那麼不管元素的順序如何,都是相同的組合,只有當兩個組合中的元素不完全相同時,才是不同的組合.從n 個不同元素中取出m 個元素(m n ≤)的所有組合的個數,叫做從n 個不同元素中取出m 個不同元素的組合數.記作m n C .一般地,求從n 個不同元素中取出的m 個元素的排列數m n P 可分成以下兩步: 第一步:從n 個不同元素中取出m 個元素組成一組,共有m n C 種方法;第二步:將每一個組合中的m 個元素進行全排列,共有m m P 種排法.根據乘法原理,得到m m m n n m P C P =⨯. 因此,組合數12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 這個公式就是組合數公式.知識要點教學目標7-5-4.組合之插板法二、組合數的重要性質一般地,組合數有下麵的重要性質:m n m n n C C -=(m n ≤)這個公式的直觀意義是:m n C 表示從n 個元素中取出m 個元素組成一組的所有分組方法.n m n C -表示從n 個元素中取出(n m -)個元素組成一組的所有分組方法.顯然,從n 個元素中選出m 個元素的分組方法恰是從n 個元素中選m 個元素剩下的(n m -)個元素的分組方法.例如,從5人中選3人開會的方法和從5人中選出2人不去開會的方法是一樣多的,即3255C C =.規定1n n C =,01n C =.插板法一般用來解決求分解一定數量的無差別物體的方法的總數,使用插板法一般有三個要求:①所要分解的物體一般是相同的:②所要分解的物體必須全部分完:③參與分物體的組至少都分到1個物體,不能有沒分到物體的組出現.在有些題目中,已知條件與上面的三個要求並不一定完全相符,對此應當對已知條件進行適當的變形,使得它與一般的要求相符,再適用插板法. 使用插板法一般有如下三種類型:⑴ m 個人分n 個東西,要求每個人至少有一個.這個時候我們只需要把所有的東西排成一排,在其中的(1)n -個空隙中放上(1)m -個插板,所以分法的數目為11m n C --. ⑵ m 個人分n 個東西,要求每個人至少有a 個.這個時候,我們先發給每個人(1)a -個,還剩下[(1)]n m a --個東西,這個時候,我們把剩下的東西按照類型⑴來處理就可以了.所以分法的數目為1(1)1m n m a C ----.⑶ m 個人分n 個東西,允許有人沒有分到.這個時候,我們不妨先借來m 個東西,每個人多發1個,這樣就和類型⑴一樣了,不過這時候物品總數變成了()n m +個,因此分法的數目為11m n m C -+-.【例 1】 將三盆同樣的紅花和四盆同樣的黃花擺放成一排,要求三盆紅花互不相鄰,共有 種不同的放法。
插板法解决组合问题基本概念基本公式排列公式:组合公式:解决排列组合问题,首先我们要明白此题是分步还是分类来解决,分步用乘法,分类用加法,另外还需掌握排列是有顺序的,组合是没有顺序的,比如四个人站成一排,请问有多少种排列方法?这是一道非常简单的排列组合题,首先要明白,四个人站成一排,比如让这四个人分别编号为1、2、3、4,位置同样也编号,1这个人站在1号位置和2站在1号位置,排列的方法是不一样的,因此他们之间是有顺序的,即这是一道排列题,即是四个人全排列,答案为。
P44 =4下面我们来看几道比较典型的题目:例1、参加会议的人两两都彼此握手,有人统计共握手36次,到会共有()人。
A。
9 B. 10 C。
11 D. 12解析:解答这道题之前,首先要明白这是一道排列还是组合的题目,参加会议的人两两握手,比如说我和你握手,和你和我握手,这是算一次还是两次。
很显然,不管是我和你握手还是你和我握手,都只是我们两在握手,这算一次,没有顺序,因此这是一道组合题,设到会的总共有n个人,从n个人中挑出2个人来握手,即=36,所以n=9,即到会的有9人.例2、某单位订阅了30份学习材料发放给3个部门,每个部门至少发放9份材料.问一共有多少种不同的发放方法?()A. 7 B。
9 C。
10 D。
12解析:这是2010年的国考题,首先我们考虑,要想每个部门至少发9份,有几种发法呢?(1)10 10 10 (2)9 10 11 (3) 9 9 12 ········很显然,这是个分类的问题,用加法原理来解决,首先我们来看第一种情况,每个部门都分10本,那就只有一种选择,就是每个部分给10本;第二种情况,即一个部分给9本,另一个部门给10本,第三个部门给11本,即从三个部门中挑出一个部分给9本,再从剩下的两个部门中挑出一个部门给10本,那剩余的一个部门只能得11本,这样共有=6种;第三种情况,即挑出三个部门中的其中一个给12本,那另外两个就只能每个部门9本,所以=3种,那这三种情况加起来即是1++=10种.这是一道典型的排列组合问题,题目中给的条件是至少每个部门给9份,出现了“至少”两字,那么我们可以用“插板法"来解决这类问题,首先举个简单的例子来介绍什么是“插板法"。
1.使学生正确理解组合的意义;正确区分排列、组合问题;2.了解组合数的意义,能根据具体的问题,写出符合要求的组合;3.掌握组合的计算公式以及组合数与排列数之间的关系;4.会分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对组合的一些计数问题进行归纳总结,重点掌握组合的联系和区别,并掌握一些组合技巧,如排除法、插板法等.一、组合问题日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:第一步:从n 个不同元素中取出m 个元素组成一组,共有m n C 种方法;第二步:将每一个组合中的m 个元素进行全排列,共有m m P 种排法.根据乘法原理,得到m m m n n m P C P =⨯. 因此,组合数12)112321mm n n m m P n n n n m C m m m P ⋅-⋅-⋅⋅-+==⋅-⋅-⋅⋅⨯⨯()(()()(). 这个公式就是组合数公式.二、组合数的重要性质一般地,组合数有下面的重要性质:m n m n n C C -=(m n ≤)这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m n C -表示从n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即3255C C =.规定1n nC =,01n C =.知识要点教学目标7-5-4.组合之插板法插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1个物体,不能有没分到物体的组出现.在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.使用插板法一般有如下三种类型:⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的(1)n -个空隙中放上(1)m -个插板,所以分法的数目为11m n C --.⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为1(1)1m n m a C ----. ⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.【例 1】 将三盆同样的红花和四盆同样的黄花摆放成一排,要求三盆红花互不相邻,共有 种不同的放法。
【考点】计数之插板法 【难度】2星 【题型】填空【关键词】希望杯,五年级,一试,第18题【解析】 四盆黄花摆好后,剩下5个位子可插进红花,选三个位置将三盆红花插入,35543==10321C ⨯⨯⨯⨯,所以有10种选择. 【答案】10种【例 2】 在1,2,3,……,7,8的任意排列中,使得相邻两数互质的排列方式共有______ 种.【考点】复杂乘法原理 【难度】4星 【题型】解答【关键词】西城实验【解析】 这8个数之间如果有公因子,那么无非是2或3.8个数中的4个偶数一定不能相邻,对于这类多个元素不相邻的排列问题,考虑使用“插入法”即首先忽略偶数的存在,对奇数进行排列,然后将偶数插入但在偶数插入时,还要考虑3和6相邻的情况.奇数的排列一共有4!24=种对任意一种排列4个数形成5个空位,将6插入,可以有符合条件的3个位置可以插再在剩下的四个位置中插入2、4、8,一共有43224⨯⨯=种所以一共有243241728⨯⨯=种.【答案】1728【例 3】 有10粒糖,分三天吃完,每天至少吃一粒,共有多少种不同的吃法?【考点】计数之插板法 【难度】2星 【题型】解答【解析】 如图:○○|○○○○|○○○○,将10粒糖如下图所示排成一排,这样每两颗之间共有9个空,从头开始吃,若相邻两块糖是分在两天吃的,就在其间画一条竖线隔开表示之前的糖和之后的糖不是在同一天吃掉的,九个空中画两条竖线,一共有98236⨯÷=种方法.【答案】36【巩固】小红有10块糖,每天至少吃1块,7天吃完,她共有多少种不同的吃法?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 分三种情况来考虑:⑴ 当小红最多一天吃4块时,其余各每天吃1块,吃4块的这天可以是这七天里的任何一天,有7种吃法; ⑵ 当小红最多一天吃3块时,必有一天吃2块,其余五天每天吃1块,先选吃3块的那天,有7种选择,再选吃2块的那天,有6种选择,由乘法原理,有7642⨯=种吃法;例题精讲⑶ 当小红最多一天吃2块时,必有三天每天吃2块,其四天每天吃1块,从7天中选3天,有3776535321C ⨯⨯==⨯⨯(种)吃法. 根据加法原理,小红一共有7423584++=(种)不同的吃法.另外还可以用挡板法来解这道题,10块糖有9个空,选6个空放挡板,有639984C C ==(种)不同的吃法. 【答案】84【巩固】有12块糖,小光要6天吃完,每天至少要吃一块,问共有 种吃法.【考点】计数之插板法 【难度】3星 【题型】解答【关键词】西城实验【解析】 将12块糖排成一排,中间共有11个空,从11个空中挑出5个空插挡板,把12块糖分成6堆,则这样的每一种分法即对应一种吃法,所以共有511111098746212345C ⨯⨯⨯⨯==⨯⨯⨯⨯种. 【答案】462【巩固】把5件相同的礼物全部分给3个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有 种.【考点】计数之插板法 【难度】3星 【题型】解答【关键词】十三分,小升初,入学测试【解析】 把5件相同的礼物排成一列,中间有4个间隔,现在用两个板去隔,每个间隔最多放一个板.这2个板的每一种放法都把5件礼物分成3份,所以这两个板的每一种放法都对应一种分礼物的方法.而板的放法有246C =种,所以分礼物的不同方法有6种. 【答案】6【巩固】把7支完全相同的铅笔分给甲、乙、丙3 个人,每人至少1支,问有多少种方法?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 将铅笔排成一排,用两块挡板将这一排铅笔隔开成三份,然后分与甲、乙、丙,挡板可插入的位置一共有716-=个,6个位置中安插两个不分次序的挡板一共有65215⨯÷=种方法.处理分东西的问题用隔板(挡板)法可以顺利解决.【答案】15【巩固】学校合唱团要从6个班中补充8名同学,每个班至少1名,共有多少种抽调方法?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 插板法,8名同学之间有7个空,插5块板,一共有5277762121C C ⨯===⨯(种)方法. 【答案】21【例 4】 10只无差别的橘子放到3个不同的盘子里,允许有的盘子空着.请问一共有多少种不同的放法?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 把10只无差别的橘子放到3个不同的盘子里,允许有的盘子空着,然后在每个盘子里再另加一个橘子,这就变成了把13只无差别的橘子放到3个不同的盘子里,不允许任何一个盘子空着.反过来也是一样,把13只橘子放到3个盘子里,不允许任何一个盘子空着,再从每一个盘子中取出一个橘子,这就变回题目中的放法.所以把10只无差别的橘子放到3个不同的盘子里且允许有的盘子空着的放法数目,和把13只无差别的橘子放到3个不同的盘子里且不允许任何一个盘子空着的放法数目相同.我们现在来计算把13只无差别的橘子放到3个不同的盘子里且不允许任何一个盘子空着的放法数目.这时我们用隔板地方法,把这13只橘子排成一列,则这13只橘子之间有12个空隙.我们只要选定这12个空隙中的2个空隙,再这两个空隙中分别放一块隔板,这样就分成了3组,就相当于把这13只橘子分成了3堆,如下图.所以只要求出从12个空隙中选出2个空隙有多少种方法就可以了.1211266=⨯÷=212C ,所以题目中所求的不同的放法有66种.【答案】66【巩固】将13个相同的苹果放到3个不同的盘子里,允许有盘子空着。
一共有种不同的放法。
【考点】计数之插板法【难度】3星【题型】填空【关键词】学而思杯,6年级,第8题【解析】215105C=种。
【答案】105种【例5】把20个苹果分给3个小朋友,每人最少分3个,可以有多少种不同的分法?【考点】计数之插板法【难度】3 【题型】解答【解析】先给每人2个,还有14个苹果,每人至少分一个,13个空插2个板,有21378C=种分法.【答案】78【巩固】三所学校组织一次联欢晚会,共演出14个节目,如果每校至少演出3个节目,那么这三所学校演出节目数的不同情况共有多少种?【考点】计数之插板法【难度】3星【题型】解答【解析】由于每校至少演出3个节目,所以可以由每所学校先分别出2个节目,剩下的8个节目再由3所学校分,也就是在8个物体间插入2个挡板,8个物体一共有7个间隔,这样的话一共有762121⨯÷⨯=()种方法.【答案】21【例6】(1)小明有10块糖,每天至少吃1块,8天吃完,共有多少种不同吃法?(2)小明有10块糖,每天至少吃1块,8天或8天之内吃完,共有多少种吃法?【考点】计数之插板法【难度】3星【题型】解答【解析】将10拆成8个自然数的和,有两种拆法,10=1+1+1+1+1+1+1+3=1+1+1+1+1+1+2+2.若8天中有7天每天吃一块,另外一天吃三块,有8种吃法.若8天中有6天每天吃一块,另外2天每天吃两块,有8×7÷2=28种吃法.8+28=36,所以共有36种吃法.(2)考虑有n块糖,每天至少吃1块,n天之内吃完的情况.将n块糖排成一行,这样在n块糖之间就产生了n-1个空隙.可以在这些空隙中插入竖线,如果一条竖线都没有插,就代表着1天把所有的糖吃完.如果每个空隙都插入竖线,就代表着每天吃一块糖,n天吃完.每个空隙都可以选择插或者不插,这样每一种插法都代表着一种吃法.由于每个空隙都有插或者不插两个选择,所以n-1个空隙就有2n-1种插法,即n块糖每天至少吃1块,一共有2n-1种不同的吃法.当有10块糖时,10天之内吃完共有29=512种吃法.10块糖9天吃完时,其中1天要吃2块,其余8天每天吃1块,共有9种吃法.10块糖10天吃完时,每天吃1块,有1种吃法.512-9-1=502,所以10块糖8天或8天之内吃完,共有502种吃法.【答案】502【巩固】有10粒糖,每天至少吃一粒,吃完为止,共有多少种不同的吃法?【考点】计数之插板法【难度】3星【题型】解答【解析】初看本题似乎觉得很好入手,比如可以按天数进行分类枚举:1天吃完的有1种方法,这天吃10块;2天吃完的有9种方法,10=1+9=2+8=……=9+1;当枚举到3天吃完的时,情况就有点错综复杂了,叫人无所适从……所以我们必须换一种角度来思考.不妨从具体的例子入手来分析,比如这10块糖分4天吃完:第1天吃2块;第2天吃3块;第3天吃1块;第4天吃4块.我们可以将10个“○”代表10粒糖,把10个“○”排成一排,“○”之间共有9个空位,若相邻两块糖是分在两天吃的,就在其间画一条竖线(如下图).○○|○○○|○|○○○○比如上图就表示“第1天吃2块;第2天吃3块;第3天吃1块;第4天吃4块.”这样一来,每一种吃糖的方法就对应着一种“在9个空位中插入若干个‘|’的方法”,要求有多少个不同的吃法,就是要求在这9个空位中插入若干个“|”的方法数.由于每个空位都有画‘|’与“不画‘|’两种可能:根据乘法原理,在这9个空位中画若干个“|”的方法数有:9922222512⨯⨯⨯==,这也就说明吃完10颗糖共有512种不同的吃法.【答案】512【例 7】 马路上有编号为1,2,3,…,10的十只路灯,为节约用电又能看清路面,可以把其中的三只灯关掉,但又不能同时关掉相邻的两只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法有多少种?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 10只灯关掉3只,实际上还亮7只灯,而又要求不关掉两端的灯和相邻的灯,此题可以转化为在7只亮着的路灯之间的6个空档中放入3只熄灭的灯,有3620C =种方法. 【答案】20【巩固】 学校新修建的一条道路上有12盏路灯,为了节省用电而又不影响正常的照明,可以熄灭其中2盏灯,但两端的灯不能熄灭,也不能熄灭相邻的2盏灯,那么熄灯的方法共有多少种?【考点】组合之基本运用 【难度】3星 【题型】解答【解析】 要熄灭的是除两端以外的2盏灯,但不相邻.可以看成有10盏灯,共有9个空位,在这9个空位中找2个空位的方法数就是熄灭2盏灯的方法数,那么熄灯的方法数有29983621C ⨯==⨯(种). 【答案】2936C =【例 8】 在四位数中,各位数字之和是4的四位数有多少?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 设原四位数为ABCD ,按照题意,我们有4A B C D +++=,但是对A 、B 、C 、D 要求不同,因为这是一个四位数,所以应当有0A ≠,而其他三个字母都可以等于0,这样就不能使用我们之前的插板法了,因此我们考虑将B 、C 、D 都加上1,这样B 、C 、D 都至少是1,而且这个时候它们的和为437+=,即问题变成如下表达:一个各位数字不为0的四位数,它的各位数字之和为7,这样的四位数有多少个?采用插板法,共有6个间隔,要插入3个板,可知这样的四位数有3620C =个,对应着原四位数也应该有20个.【答案】20【巩固】大于2000小于3000的四位数中数字和等于9的数共有多少个?【考点】计数之插板法 【难度】3星 【题型】解答【解析】 大于2000小于3000的四位数,首位数字只能为2,所以后三位数字之和为7,后三位数字都有可能为0,为使用隔板法,先将它们变成至少为1的数,可以将每个数都加上1,这样它们的和为10,且每个数都至少为1,那么采用隔板法,相当于在9个间隔中选择2个插入隔板,有2936C =种方法,所以满足题意的四位数有36个.【答案】36【例 9】 兔妈妈摘了15个相同的磨菇,分装在3个相同的筐子里,如果不允许有空筐,共有多少种不同的装法?如果分装在3个不同的筐子里,不允许有空筐,又有多少种不同的装法?【考点】计数之插板法 【难度】4星 【题型】解答【解析】 ⑴分装在3个相同的筐子里,两种不同的装法意味着这两种装法中3个筐子里的蘑菇数量不完全相同.可以进行分类讨论:①如果每个筐至少有5个,有1种情况;②如果每个筐至少有4个,则相当于把15433-⨯=个蘑菇分装在3个筐子里,且至少有1个筐子是空的(否则没有筐子是空的,将与①中的情况相同),有(0,0,3)和(0,1,2)2种情况;③如果每个筐至少有3个,则相当于把6个蘑菇分装在3个筐子里,且至少有1个筐子是空的,有(0,0,6),(0,1,5),(0,2,4)和(0,3,3)4种情况;④如果每个筐至少有2个,类似分析可知有5种情况;⑤如果每个筐至少有1个,类似分析可知有7种情况.所以共有1245719++++=种不同的装法.⑵如果分装在3个不同的筐子里,不允许有空筐,可以把这15个蘑菇排成一列,中间有14个间隔,现在用两个板去隔,每个间隔最多放一个板.这2个板的每一种放法都把15个蘑菇分成3份,所以这两个板的每一种放法都对应一种装蘑菇的方法.而板的放法有21491C=种,所以装蘑菇的不同方法有91种.【答案】91。