顶驱的结构
- 格式:ppt
- 大小:5.40 MB
- 文档页数:21
顶驱系统与传统转盘系统的区别顶驱系统和传统转盘系统是石油钻井作业中常用的两种钻机装置。
它们在设计和功能上存在一些差异,本文将从结构、工作原理和应用等方面对两者进行比较,详细探讨顶驱系统与传统转盘系统的区别。
一、结构区别顶驱系统是一种安装在钻井井口上方的设备,包括顶驱、钻杆和钻头。
顶驱是由电动机、液压系统、控制系统等部件组成,可以实现沿着井眼轴线上下移动,同时以高转速旋转钻杆。
钻井液通过钻杆中的内腔进入钻头完成钻井作业。
传统转盘系统由转盘、钻杆和钻头组成。
转盘是固定在钻井井架上的圆盘状设备,通过转盘将扭矩传递给钻杆,从而使钻杆旋转,完成钻井作业。
二、工作原理区别顶驱系统是通过电动机驱动顶驱旋转,产生扭矩,然后通过钻杆将扭矩传递到钻头。
顶驱系统的主要工作原理是通过顶驱调整进给速度和扭矩来控制钻进过程,使得整个钻井作业更加灵活高效。
传统转盘系统是通过转盘将扭矩传递到钻杆,使其旋转。
传统转盘系统在旋转过程中不能调整扭矩和进给速度,钻井作业的灵活性和控制性相对较低。
三、优势与适用场景区别顶驱系统具有以下优势:1. 提高钻进效率:顶驱系统可以实现较大的转速和扭矩输出,提供更大的钻进力和速度,加快钻井作业进度。
2. 减少人工劳动:顶驱系统通过自动化控制,减少了人工操作,提高了工作安全性。
3. 降低故障率:顶驱系统的电动机和液压系统能够实时监测工作状态,及时预警并修复故障,提高设备的稳定性和可靠性。
传统转盘系统适用于以下场景:1. 井深较浅:传统转盘系统对井深的要求相对较低,适用于井深较浅的钻井作业。
2. 作业环境受限:传统转盘系统由于结构简单,适应性较强,可以适用于一些特殊的作业环境,如受限空间。
四、发展趋势随着钻井技术的不断发展,顶驱系统在石油钻井领域的应用逐渐增多。
相比于传统转盘系统,顶驱系统具有更高的钻进效率和更好的控制性能,将成为钻井作业的重要发展方向。
综上所述,顶驱系统与传统转盘系统在结构、工作原理和应用等方面存在显著差异。
简要分析顶部驱动装置的性能构造与使用特点结合实际对顶部驱动装置的性能构造和使用特点进行分析,首先阐述顶驱装置组成与结构特征,其次详细讨论顶驱装置的改进优化方向,希望分析后能够给相关工作人员提供一些参考。
标签:顶部驱动;装置;性能构造;使用特点1顶驱装置组成与结构分析1.1 水龙头—钻井马达总成该部分就是顶驱装置中非常关键的组成部分,其中包含有马达、变速箱、刹车装置、水龙头等关键的部分,该部分的作用在于钻井施工中的旋转钻井、上卸扣部分的处理,可以由水龙头为整个部分提供循环井液,以保证钻井施工的顺利进行。
根据不同的工作原理,可以将马达分为电动与液动两种形式。
在整个结构中,一般需要设置一台或者两台马达,然后使用齿轮机达到减速的目的,可以有效的提升钻井动力。
某油田在进行钻井施工中选择使用的是DQ—60D1 型顶驱采用ZL490/390 直流电动机驱动,电动机立式安装,输出轴直接与齿轮轴连接起来,然后在通过驱动主轴来进行钻进施工。
因为电枢运动的转速与电枢的电压成正比,电机额定输出扭矩与电流成正比关系,所以立式中空直流电机的转速能够通过电枢电压的无极变速来进行速度的调整。
主电机的上部位置上需要安装一台冷却用的鼓风机装置,冷却的过程中可以先将风压至主电机的接线盒中,然后再通过电机与电枢定子间的间隙进行移动,在下部双层金属网的位置上直接排出到系统外。
1.2 钻杆上卸扣装置总成这是顶部驱动系统中非管关键的组成部分,其主要的组成部分有转头、背钳、内防喷器以及操作部分、取送结构部分、吊环吊卡等结构部分组成。
该部分的主要作用就是保证下钻作业的正常进行,其主要应用在取送钻杆、上卸扣两个部分功能,井喷时遥控内部的防喷器将钻柱内部的通道关闭,可以在任何的高度位置上进行电机上卸扣。
综合分析当前所应用的常见顶驱背钳结构部分,环形背钳在使用中可以自动定心,卡紧效果最好,还具备较强的应用性能,这种结构形式较为简单,后期的维护也非常的方便,是当前最常使用的结构方式。
第二章顶部驱动钻井装置的结构本章将简述顶部驱动钻井装置的主要部件和选择件。
各主要部件在用户服务手册中都有独立章节予以叙述,不同类型钻机专用设备在操作说明书里有叙述。
顶部驱动钻井装置由以下主要部件和附件组成:l)水龙头-钻井马达总成(关键部件之一);2)马达支架/导向滑车总成(关键部件之一);3)钻杆上卸扣装置总成(关键部件之一,它是体现顶部驱动钻井装置最大优点的设备);4)平衡系统;5)冷却系统;6)顶部驱动钻井装置控制系统;7)可选用的附属设备。
第一节水龙头-钻井马达总成水龙头-钻井马达总成是顶部驱动钻井装置的主体部件,见图2-l。
它由水龙头、马达和一级齿轮减速器组成。
钻井水龙头额定载荷是6500 kN;采用串激(或并激)直流电动机立式传动,驱动主轴。
轴上端装有气动刹车(16VC600气离合器)。
当气压为0.62 MPa时,可产生47.5 kN•m的扭矩,用于马达的快速制动。
这是由于主轴带动质量很大的钻具旋转时,旋转体转动惯量大,惯性则大,因此立即刹止,改变运动方式是不易的,故要有气刹车刹止才能克服惯性,制止钻具的旋转运动。
马达轴下伸轴头装有小齿轮(Z=18),与装在主轴上的大齿轮(Z=96)相啮合,主轴下方接钻杆柱,最大转速为430 r/min。
钻井时,当马达电枢电流为1325 A时,间隙尖峰扭矩51.5 kN•m,而当电流为1050A时,连续运转扭矩为39.1kN•m,主轴转速可达180r/min。
由上可见,水龙头-钻井马达总成包括下述主要部件:。
1)钻井马达和制动器(气刹车)2)齿轮箱(变速箱);3)整体水龙头;4)平衡器。
以下将分别对每个部件进行说明。
一、钻井马达在TDS-3S型顶部驱动钻井装置上安装的是1100/1300hp的并激直流钻井马达。
马达配置双头电枢轴和垂直止推轴承。
气刹车用于承受钻柱扭矩,避免马达停车并有利于定向钻井的定向工作。
气刹车由一个远控电磁阀控制。
如需要输出扭矩和齿轮传动比卡片,可参阅用户手册。
顶部驱动钻井装置简介目录•顶部驱动钻井装置概述•顶部驱动钻井装置结构组成•顶部驱动钻井装置工作原理与性能特点•顶部驱动钻井装置安装与调试•顶部驱动钻井装置操作与维护保养•顶部驱动钻井装置在石油工程中的应用实例01顶部驱动钻井装置概述定义与基本原理定义顶部驱动钻井装置,简称顶驱,是一种直接安装在钻柱顶端,能够旋转钻柱并施加扭矩的钻井设备。
基本原理通过电动机或液压马达驱动齿轮减速机构,将扭矩传递给钻柱,同时通过控制系统实现钻柱的旋转、提升、加压等操作。
发展历程及现状发展历程顶驱技术起源于20世纪60年代,经历了从机械式到电动式、从单一功能到多功能的发展历程。
随着技术的不断进步,顶驱已经成为现代钻井技术的重要组成部分。
现状目前,顶驱技术已经广泛应用于石油、天然气、地热等领域的钻井作业中。
随着非常规油气资源的开发,顶驱技术也在不断发展和创新,以适应更复杂、更恶劣的钻井环境。
应用领域与市场需求应用领域顶驱主要应用于石油、天然气、地热等领域的钻井作业中。
它可以提高钻井效率、降低钻井成本、减少井下事故等。
市场需求随着全球能源需求的不断增长和非常规油气资源的开发,顶驱市场需求将持续增长。
同时,随着环保要求的提高和技术的进步,市场对顶驱的性能、可靠性、安全性等方面也提出了更高的要求。
02顶部驱动钻井装置结构组成提供驱动力,驱动传动系统工作。
柴油机或电动机液压泵站冷却系统为控制系统和辅助系统提供液压动力。
对动力系统进行冷却,确保其在高温环境下正常工作。
030201将动力系统的输出转速和扭矩调整到适合钻井作业的范围。
变速箱实现传动系统与动力系统的连接与断开,方便操作和维护。
离合器将动力传递给钻井装置的其他部分,如转盘、绞车等。
传动轴主控制器对整个顶部驱动钻井装置进行集中控制,实现自动化操作。
传感器监测钻井装置的工作状态,如转速、扭矩、温度等,并将数据传输给主控制器。
执行器根据主控制器的指令,控制传动系统、辅助系统等的工作。
顶驱钻机结构原理顶驱钻机是一种用于油田钻井作业的重要设备,它通过顶部的顶驱系统来传递旋转力和下压力,驱动钻杆和钻头进行钻井作业。
顶驱钻机的结构原理涉及到顶驱系统、传动系统、控制系统和液压系统等多个方面。
一、顶驱系统顶驱系统是顶驱钻机的核心部件,其主要由顶驱头、滑卡、电机和液压缸等组成。
顶驱头是顶驱系统的核心部件,它通过电机带动内部的传动装置旋转,产生旋转力;液压缸则通过液压系统提供的油压力,产生下压力,使钻杆和钻头能够顺利下入井口。
二、传动系统传动系统是顶驱钻机实现旋转力传递的关键部分,主要由主减速器、链条传动、齿轮传动和链轮传动等组成。
主减速器通过电机带动,将驱动力传递给链条传动装置;链条传动装置再将力传递给齿轮传动装置,齿轮传动装置则将力传递给链轮传动装置,最终实现旋转力的传递。
三、控制系统控制系统是顶驱钻机实现自动控制的重要组成部分,主要包括电气控制柜和控制软件。
电气控制柜负责接收和处理各种传感器和执行器的信号,并将信号传递给控制软件进行处理;控制软件则根据接收到的信号,通过控制电机和液压系统的工作,实现对顶驱钻机的旋转和下压力的控制。
四、液压系统液压系统是顶驱钻机实现下压力传递和控制的关键部分,主要由液压泵、液压缸和液压阀组成。
液压泵通过驱动力源提供的动力,将液压油压力提升,并通过液压阀控制液压油的流向和流量,从而实现对液压缸的控制。
液压缸则通过液压油的压力,产生下压力,使钻杆和钻头能够顺利下入井口。
顶驱钻机的结构原理使其能够实现高效、自动化的钻井作业。
顶驱系统通过顶驱头的旋转和液压缸的下压力,驱动钻杆和钻头进行钻井操作;传动系统通过主减速器、链条传动、齿轮传动和链轮传动,实现旋转力的传递;控制系统通过电气控制柜和控制软件,实现对顶驱钻机的旋转和下压力的控制;液压系统通过液压泵、液压缸和液压阀,实现下压力的传递和控制。
通过以上的结构原理,顶驱钻机能够有效地提高钻井作业的效率和质量。
它具有自动化控制、高承载能力和稳定性好等优点,可以适应不同的地质条件和钻井需求。
浅谈石油机械——顶驱结构与发展摘要:顶部驱动钻井装置是20世纪80年代兴起的新型钻井技术,是旋转钻井技术的一项重大突破,在国际石油工业中得到迅速发展和应用,顶驱装置的应用明显提高了钻井作业的速度和效率,已成为石油钻井先进装备的代表。
虽然国产顶驱在设计制造时都引进了国外的先进技术,但同国外的顶驱相比,国产顶驱的质量和性能等方面仍然存在着或多或少的问题。
因此,顶驱整体的设计与研究,对缩短与国外之间的技术差距、提高顶驱产品的技术含量、提升顶驱产品的品质具有重要的现实意义。
关键词:顶驱结构、发展、性能特点1顶驱装置1.1顶驱装置概述及结构顶驱的全称为顶部驱动钻井装置TDS(TOP DRIVE DRILLING SYSTEM),是美国、法国、挪威近20年来相继研制成功的一种顶部驱动钻井系统。
它可从井架上部空间直接旋转钻杆,沿专用导轨向下送进,完成钻杆旋转钻进,循环钻井液,接立柱,上卸扣和倒划眼等多种钻井操作。
该系统显著提高了钻井作业的能力和效率,并已成为石油钻井行业的标准产品。
自20世纪80年代初开始研制,现在已发展为最先进的整体顶部驱动钻井装置IDS(INTEGRATED TOP DRIVE DRILLING SYSTEM),是当前钻井设备自动化发展更新的突出阶段成果之一。
顶部驱动装置的出现,使得传统的转盘钻井法发生了变革,诞生了顶部驱动钻井方法。
顶部驱动钻井装置的旋转钻柱和接卸钻杆立根更为有效的方法。
该装置可起下28米立柱,减少了钻井时三分之二的上卸扣操作。
它可以在不影响现有设备的条件下提供比转盘更大的旋转动力,可以连续起下钻、循环、旋转和下套管,还可以使被卡钻杆倒划眼。
图1.1为我公司生产的DQ70III-A型顶驱主要部件图。
图1.1我公司生产的DQ70III-A型顶驱主要部件图1.2顶驱的特点作为当前最新的钻井方式,有许多不同于方钻杆钻井的优点。
同以前的方法相比,顶部驱动钻井装置还有一些特定优点:1.在起下钻及遇阻遇卡时,能及时旋转钻杆和循环泥浆。
顶驱装置主体结构——管子处理装置管子处理装置是为起下钻作业服务的,主要由旋转机构、吊环倾斜机构、背钳三大部分组成,是最能体现顶驱装置优越性的地方。
一、旋转机构大多数顶驱装置都设计有旋转机构,它独立于主轴运动,通过旋转头两侧的吊耳连接吊环及吊卡,其功能是使吊环、吊卡正反360°自由旋转(或只旋转一定的角度),去鼠洞抓取单根,或是对准二层台的架子工,或是转至某一位置,使顶驱装置本体在钻井时有一个较开阔的空间。
目前在一些小吨位的顶驱装置上取消了旋转机构的设计,而将旋转头与箱体做成一体,主要是由于受到井架空间结构和顶驱装置工作高度的限制。
图1为管子处理装置。
(图1管子处理装置)旋转机构主要由液压马达、大齿轮、旋转头等组成。
旋转头靠液压马达带动大齿轮驱动,可通过调节液压马达的转速来调节旋转头的转速,通常设定旋转头的转速为4~6r/min。
由于顶驱装置配有环形与侧挂式两种不同的背钳结构,旋转头也相应略有改变。
环形背钳不与旋转头安装在一起,而是与内套(与减速箱连接,相对静止)相连,因此在旋转头旋转过程中环形背钳是不动的,在使用背钳进行上卸扣时也不需要锁紧装置。
这样就简化了系统结构,减少了编程时的逻辑控制。
具体结构如图2所示。
(图2环形背钳旋转头)侧挂式背钳上端与旋转头连接在一起,作业时与旋转头一起旋转,因此需增加锁紧装置,在上卸扣时将旋转头锁紧,否则旋转头会跟着背钳运动,反扭矩无承受之处。
锁紧装置的锁紧方式通常有插销式和齿啮合式,前者采用多点定位,锁紧可靠,后者不需定点,随处可实现锁紧功能。
如图3所示。
(图3侧挂式背钳旋转头)北石顶驱采用双负荷通道,即旋转头直接座落在内套上,其内部有一个止推轴承和两个扶正轴承,因此在起下钻或下套管时能够直接承受吊环的载荷,而钻井时的载荷是通过主轴传递到减速箱内部的止推轴承上,可有效提高主轴承的使用寿命。
为保证连接的通用性,旋转头上悬挂吊环的吊耳外形应按图4所示设计,连接尺寸符合表1的规定。
当主电站/辅助电站失电时,在45秒内全负荷自动启动1台应急电站,应急柴油发电机组交流110kW,电制50Hz/400V.该平台还设置2台LSQ15-0.7型全自动燃油锅炉,每台蒸发量为1500kg/h ,额定压力为0.7MPa, 以作为平台加热保温使用悬臂梁下部设有基座和锁紧机构悬臂梁可沿主甲板上的基座滑动锁紧机构可压住悬臂梁使之保持平衡悬臂梁两侧设有油缸推动系统为悬臂梁滑动提供动力悬臂梁上部设有横向轨道和横向轨道底座横向轨道底座可沿横向轨道滑动钻台安装在横向轨道底座钻台布置有井架绞车等修井专用设备自升式平台一般的操作过程如下拖航→就位→放桩→预压→升起主体→作业完毕→降下主体→拔桩一般需要冲桩→提桩→固桩后拖航总布置及性能计算部分, 总布置包括生活区布置,钻台布置,悬臂粱布置,主要设备布置等.最佳分舱方案研究涉及各分舱的仓容校核,包含压载舱,钻井水舱,泥浆池,泥浆泵舱,主机舱,泵舱/污水处理舱等/设计载荷计算包含由平台重量,使用及作业引起的重力载荷和由风载荷,波浪载荷及海流载荷等组成的环境载荷。
性能计算包括完整稳性.破舱稳性.坐底稳性(抗倾,抗滑稳性)沉浮稳性及静水力计算和干舷校核等空气压缩机工作时产生的压缩空气在柴油机船舶上主要功能是:(1)压力在2~3MPa之间的压缩空气用来起动主机。
(2)压力在1.0MPa左右的压缩空气用来作为主机操纵机构、换向机构的动力,起动副机和操作气动元件等。
(3)压力在1.0MPa左右的压缩空气用来操纵离合器、填充压力水柜、气笛等。
空压机组主要包括空气系统、冷却系统和润滑系统。
空气系统由进气消声器、各压缩级、油水分离器和空气管路等组成。
空气系统中的I和II级低压空气管路为铜管,而III、IV高压管路为不锈钢管。
空气管路中装有传感器、各级压力表。
各级安全阀保证各级压力在设定的压力范围内。
冷却系统采用淡水或海水循环冷却。
为了保证冷却的效果,要求冷却水具有一定的压力和流量。