纯铁滑移线
纯锌机械孪晶
纯铁机械孪晶
形变孪晶的产生与金属的点阵类型和层 错能高低等因素有关,如密排六方金属 (Zn,Mg等),易以孪生方式变形而产生 孪晶,层错能低的奥氏体不锈钢亦产生 形变孪晶。
工业纯铁为体心立方金属,它只有在 0℃以下受冲击载荷时,才易产生孪晶。
晶粒形貌的变化
随着变形度的增加,等轴晶将逐渐沿变形 方向伸长。
影响再结晶的因素
变形度:变形度越大,储能增加,再结晶驱 动力越大,再结晶温度越低,同时等温退火 时的再结晶速度越快,但当变形量大到一定 程度后,再结晶温度基本稳定。在给定温度 下,发生再结晶需要一个最小变形量(临界 变形度)低于此变形度,不发生再结晶。同 时,变形度越大,得到的再结晶晶粒越细。
当变形程度和退火保温时间一定时,退 火温度越高,再结晶速度越快,产生一
定体积分数的再结晶所需要的时间越短, 再结晶后的晶粒越粗大。
变形度70%+400℃ 退火小时
变形度70%+450℃ 退火小时
变形度70%+500℃ 退火小时
变形度70%+600℃ 退火小时
变形度70%+850℃ 退火小时
层错能低的晶体容易形成退火孪晶。
实验步骤
观察并描绘纯铁冷变形的滑移线。 观察低碳钢经5%,10%,20%,50%,70%
变形度变形后的显微组织,并描绘其组织特 征。 观察低碳钢经5%,10%,20%,30%,70% 六种变形度变形后在850 ℃退火半小时后组织, 并用割线法测得其晶粒度。 观察低碳钢经70%变形度在400 ℃ ,450 ℃, 500 ℃,600 ℃,850 ℃退火半小时后的试样, 从中找出再结晶后晶粒大小与退火温度之间 的定性关系。 观察并描绘黄铜的退火孪晶。