有理数的乘方(第一课时)
- 格式:doc
- 大小:159.50 KB
- 文档页数:2
有理数的乘方(1)1.在背景中,理解有理数乘方的意知与技能2. 会利用算器行乘方运算教学目程与方法已知一个数,会求出它的正整数指数,渗透化思想情感度价培养学生察、能力,以及思考、解决的能力,切提高学生的运算能力.教学重点、底数、指数的概念及其表示,理解有理数乘法运算与乘方的系,理好数的乘方运算。
教学点准确建立底数、指数和三个概念,并能求的运算教学程(生活)理念1. 提并引学生回答:在小学里我学一个数的回小学相关知平方和立方是如何定的?怎表示?,利入状a·a 作 a2, 作 a 的平方(或 a 的 2 次方),即 a2=a·a;a·a·a作 a3,作 a 的立方(或 a 的 3 次方),即a3=a·a·a.(分是 a 的正方形的面与棱a 的正方体的体)2. 教展示胞分裂的示意,引学生分析某种胞在背景中置情境情境激学生的分裂程,学生回答教提出来的,并明如引入的学趣。
何得出果。
3. 合学生熟悉的 a 的正方形的面是 a· a, 棱a 的正方体的体是a· a·a 及它的法,告学生几个相同因数 a 相乘的运算就是堂所要学通算正方体的内容。
面和正方体体的例,引出。
乘方定:一般地, n 个相同的因数 a 相乘,即 a· a·⋯· a,作 a n,作 a 的 n 次方.求 n 个相同因数的的运算,叫做乘方,乘方的果叫做.新知探究n中, a 叫做底数, n 叫做指数,当n看作 a 的 n 次在 a a方的果,也可作 a 的 n 次.明:( 1)例 94明概念及法;(2)一个数可以看作个数本身的一次方,通常省略指数 1 不写;n( 3)因为 a 就是 n 个 a 相乘,所以可以利用有理数的( 4)乘方是一种运算,幂是乘方运算的结果.例 1 说出下列各数的底数,指数,表示的含义,并求出结果.5 2,( -3) 4 2,-32 ,1,- 5 452使学生清楚的理点拨:对于每一个数, 应注意是哪一部分进行乘方,解有理数乘方的那才是真正的底数. 若底数为负数或分数, 应打上括号, 意义,真正掌握若没有打括号,表示只有其中的一部分进行乘方.幂、底数、指数解: 52 底数 5,指数 2,52= 5× 5=25. 52 表示 2 个等概念的意义。
有理数的乘方(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第一课时),内容包括:有理数的乘方、幂、底数、指数的概念及意义、有理数的乘方运算.2.内容解析《有理数的乘方》是义务教育课程标准实验教科书新人教版《数学》七年级上册第一章的内容,有理数的乘方是有理数的一种基本运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和八年级数学开方、整数指数幂的基础,起到承前启后、铺路架桥的作用.基于以上分析,确定本节课的教学重点为:理解并掌握有理数的乘方、幂、底数、指数的概念及意义.二、目标和目标解析1.目标(1)理解并掌握有理数的乘方、幂、底数、指数的概念及意义.(转化思想)(2)能够正确进行有理数的乘方运算.(运算能力)2.目标解析通过自主学习理解有理数乘方的乘方、底数、指数、幂的概念.通过探究掌握乘方运算的符号法则并能正确进行乘方运算.通过现实情境及题组练习让学生经历探索乘方意义及乘方符号法则的过程,发展学生的合情推理能力和演绎推理能力,体会由特殊到一般的数学思想及转化的数学思想.让学生体会在具体的情景中从数学角度去发现和解决问题,在与他人合作交流的过程中,较好地理解他人的思考方法和结论.在乘方运算中增强学生的数感,感悟乘方符号的简捷美;让学生在经历发现问题、探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,增强学生学好数学的自信心.三、教学问题诊断分析七年级学生思维比较活跃,喜欢发表自己的见解而且具备小组合作学习的经验,从知识体系上来说,学生已经学习了有理数的加、减、乘、除运算,对有理数运算法则及特点已经有了初步认识,具备了学习本节课的必要条件.但是学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象.所以在本节课的教学中应予以简单明白,深入浅出的分析.基于以上学情分析,确定本节课的教学难点为:掌握有理数乘方运算的符号法则.四、教学过程设计(一)情境引入某种细胞每过30分钟便由1个分裂成2个. 经过5时,这种细胞由1个能分裂成多少个?(二)自学导航边长为2cm 的正方形的面积是2×2=4(cm 2);棱长为2cm 的正方体的体积2×2×2=8(cm 3).2×2记作22,读作“2的平方”(或“2的二次方”);2×2×2记作23,读作“2的立方”(或“2的三次方”).2×2×2×2×2×2×2×2×2×2记作_____,读作___________.(-2)×(-2)×(-2)×(-2)记作_____,读作___________.(-52)×( -52)×(-52)×(-52)×(-52)记作______,读作___________. 【归纳】一般地,n 个相同的因数a 相乘,记作a n ,读作“a 的n 次幂(或a 的n 次方)”,即乘方的定义:这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素:一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.【迁移应用】1.(-5)3的底数是 ,指数是 ,(-7)6表示6个 相乘,读作 ,也读作-7的 .2.(−32)5表示 个 相乘,读作 的 次方,也读作 的 次幂,其中-32叫做 ,6叫做 .(三)合作探究探究1:(-2)4与-24一样吗?为什么?(-2)4表示4个-2相乘,即:(-2)×(-2)×(-2)×(-2)-24表示4个2相乘的相反数,即:-2×2×2×2(-2)4与-24互为相反数.【归纳】负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来. 探究2:432⎪⎭⎫ ⎝⎛与324一样吗?为什么? 32×32×32×32记作432⎪⎭⎫ ⎝⎛;32222⨯⨯⨯记作324. 432⎪⎭⎫ ⎝⎛与324是不相同的. 【归纳】分数的乘方,在书写时一定要把整个分数(连同负号)用小括号括起来.(四)考点解析例1.下列对于-34的叙述正确的是( )A.读作“-3的4次幂”B.底数是-3,指数是4C.表示4个3相乘的积的相反数D.表示4个-3相乘的积【迁移应用】1.填空:2.-35的4次幂记为( )A.-345B.-(35)4C.-(−35)4D. (−35)4例2.计算:(1)34=__________=_____; (2)(-3)4=____________________=_____;(3)53=________=_____; (4)(-5)3=_______________=_____;(5)(34)3=_________=_____; (6)(−34)3=_________________=_____;(7)-34=___________=_____; (8)(-1)2034=__________________=_____.【迁移应用】1.下列各数:-(-2),(-2)2,-22,(-2)3,其中负数的个数为( )A.1B.2C.3D.42.下列各组数中,其值相等的是( )A.23和32B.-32和(-3)2C.-23和(-2)3D. (−23)3和-233 3.计算:(1)63; (2)-53; (3)(-4)4; (4)06; (5)(-2)7; (6)(-0.3)3; (7)(-12)5. 解:(1)原式=6×6×6=216;(2)原式=-5×5×5=-125;(3)原式=(-4)×(-4)×(-4)×(-4)=256;(4)原式=0;(5)原式=(-2)×(-2)×(-2)×(-2)×(-2)×(-2)×(-2)= -128;(6)原式=(-0.3)×(-0.3)×(-0.3)=-0.027;(7)原式= (-12)×(-12)×(-12)×(-12)×(-12)=-132.(五)自学导航不计算下列各式,你能确定其结果的符号吗?从计算结果中,你能得到什么规律?⑴(-2)51; ⑴(-2)50; ⑴250; ⑴251;⑴(-1)2012; ⑴(-1)2013; ⑴02012; ⑴12013.【归纳】(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(六)考点解析例3.(1)比较各组中两个数的大小:⑴12_____21; ⑴23_____32; ⑴34____43; ⑴45____54.(2)将上题的结果进行归纳,比较n n+1与(n+1)n (n 为正整数)的大小.(3)根据归纳的结论,比较999998与998999的大小.解:(2)当n <3时,n n+1<(n+1)n ;当n≥3时,n n+1>(n+1)n .(3)999998<998999【迁移应用】1.比较大小:(1)(32)2_____(32)3; (2)(12)4_____(13)4.2.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则( )A.a>b>cB.b>c>aC.b>a>cD.c>a>b3.将下列各数用“<”号连接起来:(1)23,(23)2,(23)3,(23)4; (2)15,25,35,45.解:(1)23=5481, (23)2=49=3681,(23)3=827=2481,(23)4=1681;所以 (23)4<(23)3<(23)2<23.(2)15=1,25=32,35=243,45=1024;所以15<25<35<45.例4.计算:(1)2233(-)(-)⨯ (2)-23×(-32) (3)64÷(-2)5(4)(-4)3÷(-1)200+2×(-3)4 22236;33解:(1)(-)(-)=9(-)⨯⨯=-(2)-23×(-32)=-8×(-9)=72;(3)64÷(-2)5=64÷(-32)=-2;(4)(-4)3÷(-1)200+2×(-3)4=-64÷1+2×81=98思考:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?【运算顺序】先算乘方,后算乘除;如果遇到括号就先进行括号里的运算.【迁移应用】计算:(1)−23÷49×(−23)2; (2)−32÷23×(1−13)2; (3)(−1)9×(−2)2017×(−12)2016.(1)解原式 =−8÷49×49 =−8×94×49=-8; (2)解原式=−9×32×49=−6;(3)解原式=(−1)×(−2)×[(−2)2016×(−12)2016]=2×[(−2)×(−12)]2016=2×12016=2×1=2. 例 5.你喜欢吃拉面吗?拉面馆的师傅.用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出______根细面条;(2)若拉出128根细面条,则捏合的次数是多少?解:(1)根据题意得4×2=8故第三次后可以拉出8根细面条;(2)由于27=128,因此若拉出128根细面条,则捏合的次数是7.【迁移应用】当你把纸对折一次时,就得到2层,当对折两次时,就得到4层,照这样折下去.(1)当对折3次时,层数是多少;(2)如果纸的厚度是0.1mm ,求对折8次时,总厚度是多少mm ?(1)解:因为23=8,所以对折3次时,层数是8;(2)解:28×0.1=256×0.1=25.6(mm ),所以总厚度是25.6mm .例6.已知(a -7)2+|b+6|=0,求(-a -b)100的值.解:因为(a -7)2不小于0,|b+6|不小于0,(a -7)2+|b+6|=0,所以(a -7)2=0,|b+6|=0.所以a=7,b=-6.当a=7,b=-6时,原式=[-7-(-6)]100=(-1)100=1.【迁移应用】1.若|x+2|+(y -3)2=0,则x -y 的值为( )A.-5B.5C.1D.-12.若|a -1|+(a -b -2)2=0,则下列式子正确的是( )A.a=1,b=1B.a+b=1C.a+b=0D.a -b=03.|a -4|与(b+5)2互为相反数,则b a 的值为_______.例7.(1)根据已知条件填空:⑴已知(-1.2)2=1.44,计算:(-120)2=_______,(-0.012)2=________.⑴已知(-3)3=-27,计算:(-30)3=________,(-0.3)3=________.(2)观察上述计算结果我们可以看出:⑴当底数的小数点向左(或右)每移动位,它的二次幂的小数点向左(或右)移动_____位; ⑴当底数的小数点向左(或右)每移动一位,它的三次幂的小数点向左(或右)移动_____位.【迁移应用】1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,猜想:32025的个位上的数是_____.2.给出下列两组算式:(4×5)2与42×52; [(-13)×9]3与(-13)3×93. (1)每组的结果相等吗?(2)想一想:当n 是正整数时,(a·b)n =______.(3)用你发现的规律计算:(-0.125)20×820.解:(1)相等.(3)(-0.125)20×820=(-0.125×8)20=(-1)20=1.(七)小结梳理五、教学反思。
大墩中学七年级(上)数学学科导学案
主备人: 何瑞云 复备人: 唐 审核人: 唐 班级: 小组/号: — 学号: 姓名: 编号: 16
课题 : 2.9有理数的乘方(第一课时)
学习目标:经历有理数乘方的符号法则的探究过程,并能进行有理数的乘方运算
一、自主探究
1、边长为a 的正方形的面积是a·a 简记作2
a ,读作a 的平方(或二次方)
棱长为a 的正方体的体积是a·a·a,简记作3
a ,读作a 的立方(或三次方) 那么a·a·a·a ,简记作________
a·a·a·…·a ,n 个a 相乘可简记为:________
一般地,n 个相同的因数a 相乘,即a·a·a·…·a 记作, 读做a 的n 次方。
求n 个相同因数的积的运算,叫做 . 乘方的结果叫
其中
,
,
填空:
(1)(-2)10
的底数是_______,指数是________,读作_______ _
(2)(
3
1)8
的指数是________,底数是________读作_______, (3) 8的底数是 , 指数是 , 二、我来尝试.
把下列乘法式子写成乘方的形式: 1、1×1×1×1×1×1×1= ;
2、(-3)×(-3)×(-3)×(-3)= ; 3. 2121212121⨯⨯⨯⨯=
计算 例: 53
; 解:原式=5×5×5 =125
4. (-2)4 5. (-3
1
)8
小结:
正数的任何次方都是_______数,负数的偶数次幂是_______数, 负数的奇数次幂是_______数.
计算
6. 3)2(--
7. 42-;
8. 4
32
-.
三、【达标检测1】:
3
)
2(--
四、【过关检测2】:
3、
4、设n为正整数,计算:
⑴(-1)2n⑵(-1)2n+1。