ANSYS非线性_结构分析
- 格式:docx
- 大小:140.81 KB
- 文档页数:32
ANSYS教程,非线性结构分析过程尽管非线性分析比线性分析变得更加复杂,但处理基本相同。
只是在非线形分析的适当过程中,添加了需要的非线形特性。
非线性结构分析的基本分析过程也主要由建模、加载并求解和观察结果组成。
下面来讲解其主要步骤和各个选项的处理方法。
建模这一步对线性和非线性分析都是必需的,尽管非线性分析在这一步中可能包括特殊的单元或非线性材料性质,如果模型中包含大应变效应,应力─应变数据必须依据真实应力和真实(或对数)应变表示。
加载求解在建立好有限元模型之后,将进入ANSYS求解器(GUI:Main Menu | Solution),并根据分析的问题指定新的分析类型(ANTYPE)。
求解问题的非线性特性在ANSYS中是通过指定不同的分析选项和控制选项来定义的。
非线性分析不同于线性分析之处在于,它通常要求执行多荷载步增量和平衡迭代。
下面就详细讲解一下进行非线性结构分析需要定义的各个求解选项、分析选项和控制选项是如何设置的,以及他们的意义是什么。
求解控制对于一些基本的非线性问题的分析选项,可以通过ANSYS提供的求解控制对话框中的选项设置来完成。
选择菜单路径:Main Menu | Solution | Analysis Type | Sol’n Controls,将弹出求解控制(Solution Controls)对话框,如下图所示。
从图中可以看出该对话框主要包括5个选项卡:基本选项(Basic)、瞬态选项(Transient)、求解选项(Sol’n Options)、非线性选项(Nonlinear)和高级非线性选项(Advanced NL)。
如果开始一项新的分析,在设置分析类型和非线性选项时,选择“Large Displacement Static”选项(不是所有的非线性分析都支持大变形)。
如果想要重新启动一个失败的非线性分析,则选择“Restart Current Analysis”选项。
选中下面的“Calculate prestress effects”单选按钮用于有预应力的模态分析时的预应力计算,具体内容见模态分析部分。
基于ANSYS的钢筋混凝土框架非线性分析的开题报告1. 研究背景和意义钢筋混凝土结构是现代建筑中广泛使用的结构形式之一。
在建筑结构设计中,非线性分析是许多工程问题中的关键,钢筋混凝土框架非线性分析是在重要荷载作用下结构响应分析中普遍应用的方法。
在钢筋混凝土结构设计和施工中,为确保结构安全和可靠性,需要使用计算机模拟工具进行结构分析和设计。
2. 研究内容本文将使用ANSYS软件进行建筑结构的非线性分析,通过使用ANSYS进行非线性分析,分析结构在重要荷载下的响应。
本文将对框架结构的受力分析、节点位移分析、应力-strain关系曲线分析、裂缝形态分析等方面进行研究。
3. 研究方法本文将使用ANSYS软件进行模拟分析,包括有限元模拟、非线性分析、边界条件的设计和模拟结果分析等方面。
在进行有限元模拟前,首先进行结构建模,根据结构的实际布局和特点进行建模,然后设置合适的边界条件,配置荷载,并进行非线性分析。
4. 研究进度计划本文研究工作的进度计划如下:第一阶段:对钢筋混凝土框架结构进行有限元建模和边界条件设置;第二阶段:进行静力荷载的平衡计算和结构的非线性分析;第三阶段:对模拟结果进行分析,并对模拟模型进行优化。
5. 预期研究结果本文预期研究结果包括:结构的受力分析、节点位移分析、应力-strain关系曲线分析、裂缝形态分析等方面。
通过分析模拟结果,研究框架结构在受力分析、应力-strain关系曲线分析、裂缝形态分析等方面的特性和规律,为建筑结构设计和施工提供参考和指导。
6. 参考文献:- Carpinteri, A., 2008. Fracture of concrete and rock: SEM images. CRC press.- Mosalam, K., Anagnos, T. and Pister, K., 1999. Finite element modeling of reinforced concrete members under seismic loads. Computers & Structures, 72(1-3), pp.243-257.- Ganesan, N. and Narayanan, R., 1998. Nonlinear finite element analysis of RC beams with FRP reinforcement. Computers & structures, 67(2), pp.167-184.- Orangun, C.O. and Livaoglu, R., 2009. Seismic performance assessment of existing reinforced concrete buildings designed without earthquake-resistant requirements. Structural Engineering and Mechanics, 31(4), pp.429-448.。
ANSYS结构非线性分析指南ANSYS是一个强大的工程仿真软件,能够对各种复杂的结构进行分析。
其中,结构非线性分析是其中一种重要的分析方法,它能够模拟结构在非线性载荷和变形条件下的行为。
本文将为您提供一个ANSYS结构非线性分析的指南,帮助您更好地理解和应用这个方法。
首先,我们需要明确结构非线性分析的目标。
一般来说,结构非线性分析主要用于研究结构在大变形、材料非线性、接触或摩擦等复杂条件下的响应。
例如,当结构受到极大的外力作用时,其产生的变形可能会导致材料的非线性行为,这时我们就需要进行非线性分析。
在进行非线性分析之前,我们需要进行准备工作。
首先,我们需要准备一个几何模型,可以通过CAD软件导入或者直接在ANSYS中绘制。
然后,我们需要选择合适的材料模型,这将直接影响分析结果的准确性。
ANSYS提供了多种材料模型,例如线弹性模型、塑性模型和粘弹性模型等。
接下来,我们需要定义边界条件和载荷。
边界条件指明了结构的固定边界和自由边界,这决定了结构的位移约束。
载荷是作用在结构上的外力或者外界约束,例如压力、点载荷或者摩擦力等。
在非线性分析中,载荷的大小和施加方式可能会导致结构的非线性响应,因此需要仔细选择。
接下来,我们需要选择适当的非线性分析方法。
ANSYS提供了多种非线性分析方法,例如几何非线性分析、材料非线性分析和接触非线性分析等。
几何非线性分析适用于大变形情况下的分析,材料非线性分析适用于材料的弹塑性行为分析,而接触非线性分析适用于多个结构之间的接触行为分析。
在进行非线性分析之前,我们需要对模型进行预处理,包括网格划分和解算控制参数的设置。
网格划分的精度会直接影响分析结果的准确性,因此需要进行适当的剖分。
解算控制参数的设置涉及到收敛性和稳定性的问题,需要进行合理的调整。
然后,我们可以进行非线性分析了。
ANSYS提供了多种求解器,例如Newton-Raphson方法和弧长法等。
这些求解器可以通过迭代算法来求解非线性方程组,得到结构的响应结果。
第六章 钢筋混凝土结构非线性分析应用§6.1截面非线性分析例 1: 钢筋混凝土单筋矩形截面,混凝土和钢筋的应力-应变关系选自CEB 模型规范(1990),见下图6-1-1,图 6.1-1 截面和材料应力-应变关系极限弯矩 M u : 用弧长法对截面进行全过程分析,对给定的弯矩M y , 计算相应的截面应变平面({}[]T z y ϑϑεε0=).计算不平衡弯矩及相应的应变平面增量,直至满足收敛条件。
再增加弯矩∆M y , 计算相应的应变平面增量,等等,图6-1-2为截面弯矩-曲率关系曲线。
图 6.1-2 弯矩-曲率关系曲线 例2: 采用不同应力-应变关系(EC2规范, CEB 规范),钢筋混凝土矩形截面的几何尺寸和配筋同例1,非线性分析结果见图6-1-4。
力-应变关系随应变而逐渐的降低,截面刚度降低的也比较缓慢。
图 6.1-4 CEB 规范与EC2 规范建议的应力-应变关系截面分析结果比较例 3: 异形截面非线性分析. 此例Georg Knittel [32]计算过,Knittel 选择的材料应力应变关系取自德国规范DIN 1045(见图 6.1-5). 截面形状和尺寸见图6.1-6. Knittel 分析的截面极限承载力为,{}{}N M M y z T T=--005026000075... 相应的应变矢量为,{}{}{}TT z y 009343.0006976.0004359.00--==ϑϑεε. 用弧长法分析时取的参照荷载值为,{}{}N M M yz T T =--00050026000075... 截面极限荷载为,{}{}N M M y z T T =--004991490263211600076718...(a) DIN 1045建议的混凝土应力-应变关系 (b) DIN 1045建议的钢筋应力-应变关系图 6.1-5 DIN 1045规范建议的应力-应变关系图 6.1-6 钢筋混凝土柱截面图 6.1-7 极限状态时混凝土压应力分布图 6.1-8 弯矩-曲率(M y- y) 关系曲线§6.2 受弯和偏压构件非线性分析6.2.1 简化计算利用虚功原理计算荷载挠度曲线:设两点集中加载简支梁,弯矩图、曲率分布图如下,图6-2-1 梁内力与变形取支撑条件相同的简支梁为虚梁,拟求跨中挠度,在虚梁跨中施加单位荷载(求转角加单位力矩)。
第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。
混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。
1.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。
一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。
二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应1满足工程设计的精度要求。
(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。
第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。
混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。
1.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。
一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。
二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。
(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。
ANSYS结构非线性分析相应步骤及命令流屈服准则概念:1.理想弹性材料物体发生弹性变形时,应力与应变完全成线性关系,并可假定它从弹性变形过渡到塑性变形是突然的。
2.理想塑性材料(又称全塑性材料)材料发生塑性变形时不产生硬化的材料,这种材料在进入塑性状态之后,应力不再增加,也即在中性载荷时即可连续产生塑性变形。
3.弹塑性材料在研究材料塑性变形时,需要考虑塑性变形之前的弹性变形的材料这里可分两种情况:Ⅰ.理想弹塑性材料在塑性变形时,需要考虑塑性变形之前的弹性变形,而不考虑硬化的材料,也即材料进入塑性状态后,应力不再增加可连续产生塑性变形。
Ⅱ.弹塑性硬化材料在塑性变形时,既要考虑塑性变形之前的弹性变形,又要考虑加工硬化的材料,这种材料在进入塑性状态后,如应力保持不变,则不能进一步变形。
只有在应力不断增加,也即在加载条件下才能连续产生塑性变形。
4.刚塑性材料在研究塑性变形时不考虑塑性变形之前的弹性变形。
这又可分两种情况:Ⅰ.理想刚塑性材料在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。
Ⅱ.刚塑性硬化材料在研究塑性变形时,不考虑塑性变形之前的弹性变形,但需要考虑变形过程中的加工硬化材料。
屈服准则的条件:1.受力物体内质点处于单向应力状态时,只要单向应力大到材料的屈服点时,则该质点开始由弹性状态进入塑性状态,即处于屈服。
2.受力物体内质点处于多向应力状态时,必须同时考虑所有的应力分量。
在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件。
它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件,这种力学条件一般可表示为)=Cf(σij又称为屈服函数,式中C是与材料性质有关而与应力状态无关的常数,可通过试验求得。
屈服准则是求解塑性成形问题必要的补充方程。
1.1 什么是结构非线性在日常生活中,经常会遇到结构非线性。
ANSYS软件介绍与实例讲解1.结构分析:能够对结构进行线性和非线性、静态和动态的力学分析,可以预测结构的变形、应力、疲劳寿命等。
2.热分析:可以模拟热传导、热辐射和热对流等热现象,用于评估热应力、温度分布和热失效等问题。
3.流体力学分析:可以模拟流体流动、传热和传质过程,用于评估气流、液流和多相流等问题。
4.电磁场分析:可以模拟电磁场的分布、场强和场频率,用于评估电磁辐射、电磁感应和电子器件等问题。
下面以一个实例来说明ANSYS软件的使用。
假设我们需要设计一只新型飞机的机翼。
为了减小飞机的阻力和提高机动性能,我们采用了非传统的蝶形机翼结构。
在使用ANSYS软件进行分析之前,我们需要将机翼的三维CAD模型导入到软件中。
首先,我们可以使用ANSYS的结构分析模块对蝶形机翼的静态强度进行分析。
在分析过程中,我们可以定义材料的弹性模量、泊松比和密度等参数,为机翼施加正常工作时的风载荷,然后进行应力分析。
通过这样的分析,我们可以评估机翼在正常工作状态下的变形和应力分布,确保其在设计寿命内不会发生破坏。
接下来,我们可以使用ANSYS的热分析模块对机翼进行温度场分析。
在分析过程中,我们可以定义材料的导热系数和热容量等参数,为机翼施加高速飞行时的热载荷,然后进行温度分析。
通过这样的分析,我们可以评估机翼在高速飞行状态下的温度分布和热应力,确保其在设计寿命内不会因为高温而破坏。
然后,我们可以使用ANSYS的流体力学分析模块对机翼进行气动特性分析。
在分析过程中,我们可以定义空气的密度和粘度等参数,为机翼施加不同飞行状态下的气流载荷,然后进行流动分析。
通过这样的分析,我们可以评估机翼的升力、阻力和气动稳定性等气动特性,提供指导性的优化建议。
最后,我们可以使用ANSYS的优化模块对机翼进行形状优化。
在优化过程中,我们可以定义参数化的设计变量,设置优化目标和约束条件,并选择合适的优化算法。
通过多次迭代计算,可以获得最优的机翼形状,以提高飞机的性能。
第二章材料本构关系§2.1本构关系的概念本构关系:应力与应变关系或内力与变形关系结构的力学分析,必须满足三类基本方程:(1)力学平衡方程:结构的整体或局部、静力荷载或动力荷载作用下的分析、精确分析或近似分析都必须满足;(2)变形协调方程:根据结构的变形特点、边界条件和计算精度等,可精确地或近似地满足;(3)本构关系:是连接平衡方程和变形协调方程的纽带,具体表达形式有:材料的应力-应变关系,截面的弯矩-曲率关系,轴力-变形(伸长、缩短)关系,扭矩-转角关系,等等。
所有结构(不同材料、不同结构形式和体系)的力学平衡方程和变形协调方程原则上相同、数学形式相近,但本构关系差别很大。
有弹性、弹塑性、与时间相关的粘弹性、粘塑性,与温度相关的热弹性、热塑性,考虑材料损伤的本构关系,考虑环境对材料耐久性影响的本构关系,等等。
正确、合理的本构关系是可靠的分析结果的必要条件。
混凝土结构非线性分析的复杂性在于:钢筋混凝土---复杂的本构关系:有限元法---结构非线性分析的工具:非线性全过程分析---解决目前结构分析与结构设计理论矛盾的途径:§2.2 一般材料本构关系分类1.线弹性(a) 线性本构关系; (b) 非线性弹性本构关系图2-1 线弹性与非线性弹性本构关系比较在加载、卸载中,应力与应变呈线性关系:}]{[}{εσD = (图2-1a ) 适用于混凝土开裂前的应力-应变关系。
2. 非线性弹性在加载、卸载中,应力与应变呈非线性弹性关系。
即应力与应变有一一对应关系,卸载沿加载路径返回,没有残余变形(图2-1b )。
}{)]([}{εεσD = 或 }{)]([}{εσσD =适用于单调加载情况结构力学性能的模拟分析。
3. 弹塑性图2 – 2 弹塑性本构关系(a)典型弹塑性;(b)理想弹塑性;(c)线性强化;(d)刚塑性典型的钢筋拉伸应力、应变曲线 (图2-2(a ))包含弹性阶段(OA )、流动阶段(AB )及硬化阶段(BC )。
ANSYS结构非线性分析指南ANSYS是一款非常强大的有限元分析软件,广泛应用于各种工程领域的结构分析。
在常规的结构分析中,通常会涉及到线性分析,但一些情况下,结构出现了非线性行为,这时就需要进行非线性分析。
非线性分析可以更准确地模拟结构的真实行为,包括材料的非线性、几何的非线性和接触非线性等。
在进行ANSYS结构非线性分析时,需要考虑以下几个方面:1.材料的非线性:在材料的应力-应变关系中,材料的性质可能会发生变化,如塑性变形、损伤、软化等。
因此在非线性分析中,需要考虑材料的非线性特性,并正确选取材料模型。
2.几何的非线性:在一些情况下,结构本身的几何形态可能会发生较大变化,如大变形、屈曲等。
这需要考虑结构的几何非线性,并在分析中充分考虑结构的形变情况。
3.接触非线性:当结构中存在接触面时,接触面之间的接触力可能是非线性的,如摩擦力、法向压力等。
在进行非线性分析时,需要考虑接触面上的非线性行为,确保接触的可靠性。
在进行ANSYS结构非线性分析时,可以按照以下步骤进行:1.建立模型:首先需要根据实际情况建立结构的有限元模型,包括几何形状、边界条件和加载条件等。
在建立模型时,需要考虑到结构的材料、几何和接触情况,并进行合理的网格划分。
2.设置分析类型:在ANSYS中,可以选择静力分析、动力分析等不同的分析类型。
在进行非线性分析时,需要选择适合的非线性分析模块,并设置相应的参数。
3.设置材料模型:根据结构的材料特性,选择合适的材料模型,如弹塑性模型、本构模型等。
根据实际情况,设置材料的材料参数,确保材料的非线性行为能够得到准确的描述。
4.设置几何非线性:考虑结构的几何非线性时,需要选择合适的几何非线性选项,并设置合适的几何参数。
在进行大变形分析时,需要选择几何非线性选项,确保结构的形变情况能够得到准确的描述。
5.设置接触非线性:当结构存在接触面时,需要考虑接触面上的非线性行为。
在ANSYS中,可以设置接触类型、摩擦系数等参数,确保接触的可靠性。
目录
非线性结构分析的定义 (1)
非线性行为的原因 (1)
非线性分析的重要信息 (3)
非线性分析中使用的命令 (8)
非线性分析步骤综述 (8)
第一步:建模 (9)
第二步:加载且得到解 (9)
第三步:考察结果 (16)
非线性分析例题(GUI方法) (20)
第一步:设置分析标题 (21)
第二步:定义单元类型 (21)
第三步:定义材料性质 (22)
第四步:定义双线性各向同性强化数据表 (22)
第五步:产生矩形 (22)
第六步:设置单元尺寸 (23)
第七步:划分网格 (23)
第八步:定义分析类型和选项 (23)
第九步:定义初始速度 (24)
第十步:施加约束 (24)
第十一步:设置载荷步选项 (24)
第十二步:求解 (25)
第十三步:确定柱体的应变 (25)
第十四步:画等值线 (26)
第十五步:用Post26定义变量 (26)
第十六步:计算随时间变化的速度 (26)
非线性分析例题(命令流方法) (27)
1
2
非线性结构分析
非线性结构的定义
在日常生活中,会经常遇到结构非线性。
例如,无论何时用钉书针钉书,金 属钉书钉将永久地弯曲成一个不同的形状。
(看图1─1(a ))如果你在一个木 架上放置重物,随着时间的迁移它将越来越下垂。
(看图1─1(b ))。
当在
汽车或卡车上装货时,它的轮胎和下面路面间接触将随货物重量的啬而变化。
(看图1─1(c ))如果将上面例子所载荷变形曲线画出来,你将发现它们都显 示了非线性结构的基本特征--变化的结构刚性.
图1─1 非线性结构行为的普通例子
非线性行为的原因
引起结构非线性的原因很多,它可以被分成三种主要类型:
状态变化(包括接触)
许多普通结构的表现出一种与状态相关的非线性行为,
例如,一根只能拉伸
3
的电缆可能是松散的,也可能是绷紧的。
轴承套可能是接触的,也可能是不接触的, 冻土可能是冻结的,也可能是融化的。
这些系统的刚度由于系统状态的改变在不同的值之间突然变化。
状态改变也许和载荷直接有关(如在电缆情况中), 也可能由某种外部原因引起(如在冻土中的紊乱热力学条件)。
ANSYS 程序中单元的激活与杀死选项用来给这种状态的变化建模。
接触是一种很普遍的非线性行为,接触是状态变化非线性类型形中一个特殊而重要的子集。
几何非线性
如果结构经受大变形,它变化的几何形状可能会引起结构的非线性地响应。
一个例的垂向刚性)。
随着垂向载荷的增加,杆不断弯曲以致于动力臂明显地减 少,导致杆端显示出在较高载荷下不断增长的刚性。
图1─2 钓鱼杆示范几何非线性
材料非线性
非线性的应力──应变关系是结构非线性名的常见原因。
许多因素可以影响材料的应力──应变性质,包括加载历史(如在弹─塑性响应状况下),环境状况(如温度),加载的时间总量(如在蠕变响应状况下)。
牛顿一拉森方法
ANSYS 程序的方程求解器计算一系列的联立线性方程来预测工程系统的响应。
然而,非线性结构的行为不能直接用这样一系列的线性方程表示。
需要一系列的带校正的线性近似来求解非线性问题。
逐步递增载荷和平衡迭代
一种近似的非线性救求解是将载荷分成一系列的载荷增量。
可以在几个载荷步内或者在一个载步的几个子步内施加载荷增量。
在每一个增量的求解完成后,
继续
4
进行下一个载荷增量之前程序调整刚度矩阵以反映结构刚度的非线性变化。
遗憾的是,纯粹的增量近似不可避免地随着每一个载荷增量积累误差,导种结果最终 失去平衡,如图1─3(a )所示所示。
.
(a )纯粹增量式解 (b)全牛顿-拉普森迭代求解(2个载荷
增量)
图8─3 纯粹增量近似与牛顿-拉普森近似的关系。
ANSYS 程序通过使用牛顿-拉普森平衡迭代克服了这种困难,它迫使在每一个载荷增量的末端解达到平衡收敛(在某个容限范围内)。
图1─3(b)描述了在单自由度非线性分析中牛顿-拉普森平衡迭代的使用。
在每次求解前,NR 方法估算出残差矢量,这个矢量是回复力(对应于单元应力的载荷)和所加载荷的差值。
程序然后使用非平衡载荷进行线性求解,且核查收敛性。
如果不满足收敛准则,重新估算非平衡载荷,修改刚度矩阵,获得新解。
持续这种迭代过程直到问题收敛。
ANSYS 程序提供了一系列命令来增强问题的收敛性,如自适应下降,线性搜索,自动载荷步,及二分等,可被激活来加强问题的收敛性,如果不能得到收敛,那么程序或者继续计算下一个载荷前或者终止(依据你的指示)。
对某些物理意义上不稳定系统的非线性静态分析,如果你仅仅使用NR 方法,正切刚度矩阵可能变为降秩短阵,导致严重的收敛问题。
这样的情况包括独立实体从固定表面分离的静态接触分析,结构或者完全崩溃或
者“突然变成”另一。