ansys非线性分析例子
- 格式:pptx
- 大小:1.21 MB
- 文档页数:38
第六章 钢筋混凝土结构非线性分析应用§6.1截面非线性分析例 1: 钢筋混凝土单筋矩形截面,混凝土和钢筋的应力-应变关系选自CEB 模型规范(1990),见下图6-1-1,图 6.1-1 截面和材料应力-应变关系极限弯矩 M u : 用弧长法对截面进行全过程分析,对给定的弯矩M y , 计算相应的截面应变平面({}[]T z y ϑϑεε0=).计算不平衡弯矩及相应的应变平面增量,直至满足收敛条件。
再增加弯矩∆M y , 计算相应的应变平面增量,等等,图6-1-2为截面弯矩-曲率关系曲线。
图 6.1-2 弯矩-曲率关系曲线 例2: 采用不同应力-应变关系(EC2规范, CEB 规范),钢筋混凝土矩形截面的几何尺寸和配筋同例1,非线性分析结果见图6-1-4。
力-应变关系随应变而逐渐的降低,截面刚度降低的也比较缓慢。
图 6.1-4 CEB 规范与EC2 规范建议的应力-应变关系截面分析结果比较例 3: 异形截面非线性分析. 此例Georg Knittel [32]计算过,Knittel 选择的材料应力应变关系取自德国规范DIN 1045(见图 6.1-5). 截面形状和尺寸见图6.1-6. Knittel 分析的截面极限承载力为,{}{}N M M y z T T=--005026000075... 相应的应变矢量为,{}{}{}TT z y 009343.0006976.0004359.00--==ϑϑεε. 用弧长法分析时取的参照荷载值为,{}{}N M M yz T T =--00050026000075... 截面极限荷载为,{}{}N M M y z T T =--004991490263211600076718...(a) DIN 1045建议的混凝土应力-应变关系 (b) DIN 1045建议的钢筋应力-应变关系图 6.1-5 DIN 1045规范建议的应力-应变关系图 6.1-6 钢筋混凝土柱截面图 6.1-7 极限状态时混凝土压应力分布图 6.1-8 弯矩-曲率(M y- y) 关系曲线§6.2 受弯和偏压构件非线性分析6.2.1 简化计算利用虚功原理计算荷载挠度曲线:设两点集中加载简支梁,弯矩图、曲率分布图如下,图6-2-1 梁内力与变形取支撑条件相同的简支梁为虚梁,拟求跨中挠度,在虚梁跨中施加单位荷载(求转角加单位力矩)。
【分享】ANSYS7.0超弹材料的定义-新的曲线拟合功能--摘自ansys用户专区几何非线性几何非线性不受敛主要原因1.网格质量,特别是warpage2.约束方程,少用刚性连接3.收敛准则,可适当加大容差4.荷载步设置,可适当加大步数最近碰到一个对我来说很意外的问题:如果确实如此希望大家以后小心大家知道定义接触后会自动生成一组实常数,前几天我碰到一个问题,需定义超过10组实常数,接触对很多,好像有20多处,按照常规步骤划分完所有网格,当时因为有一个实常数参数没确定,便预留了最后一组(第10组)实常数里面的参数为空,接下来就定义了所有的接触对,由于所有接触对里的设置一样,ANSYS在我保存db完重新打开后便把我所有的接触对综合成一个了!接下来我就把第十组实常数里面的参数补上了,但在求解时却提示我该实常数同时被两种单元(包括CNTACT单元)同时占用,出现错误!!检查了半天才发现自动生成的接触对实常数把第10组实常数也占用了!我实在没找到什么好的解决办法,只得把接触对删除了重新定义,那可是上百多个面的选取过程,痛苦不堪简直!ANSYS里接触对面的选取时还不能针对Component操作!ANSYS7.0超弹材料的定义-新的曲线拟合功能ANSYS7.0中的超弹材料模拟能力得到了很大的加强,在ANSYS6.1的超弹材料模型的基础上又增加了Gent, Yeoh, Blatz-Ko, and Ogden (Foam)四种超弹性材料模型,使得其超弹模拟能力得到了进一步扩展。
ANSYS7.0中对超弹能力最吸引人的增强还不在于此,而是在于其曲线拟合能力的大幅度扩展,不再像ANSYS6.1以前的版本一样曲线拟合仅仅局限于Mooney-Rivlin模型,而是将其扩展到所有的超弹模型,这样,用户可以利用实验得到的应力应变数据直接让程序自己拟合出任意一种超弹材料模型的参数,大大方便了用户的使用。
以下就ANSYS7.0的超弹拟合功能做一简单介绍。
第5章 非线性静力学分析– 424 –同理,右键点击Connections 插入Connection Group4,隐含core 、solid 、shell 三个零件,在Geometry 处选择剩下的13个零件,调整Tolerance Slider 为0,然后自动生成接触,如图5-3-83所示。
图5-3-83 接触设置4由于产生的接触对较多,不可避免会有接触对重复现象,所以生成完所有接触对之后,右键点击Connections →Search Connections for Duplicate Pairs ,软件将自动检查重复接触对,然后手动删除,多次检查,直到出现:no connections with duplicate pairs have been found 提示。
接触对全部定义完以后,可以再统一修改接触类型为No Separation 或Frictionless ;或者在定义接触之前,就修改Tool →Option →Mechanical →Connections →Type 为No Separation 或Frictionless ,这样定义的接触对默认为不分离或无摩擦。
4.小结对于复杂零件的接触设置,通过定义多个Connection Group ,定义不同的接触公差,可以有效地提高软件自定义接触的准确性。
如果是更加复杂的整件,通过External Model 模块可以装配有限元模型(支持主流有限元软件的网格文件,且不受版本限制)。
该模块可以保留网格文件中的命名选择、网格控制,如果是装配部件,还会保留接触对设置,可以对Solid 单元、Shell 单元的高阶、低阶单元模型进行装配,而且ANSYS 后续版本都在强化该模块装配后的智能操作。
5.3.8 材料非线性接触设置实例接触分析过程中,往往伴随着材料非线性特征,这两种非线性结合在一起,极易不收敛。
初学者在学习过程中,由于参照例子一步一步操作,知其然不知其所以然,造成面临实际不收敛问题时,往往不知所措。
ansys非线性接触分析中接触行为接触是状态改变非线性,经典ANSYS版本中共提供了7种接触行为,每一种都有其特点及相应的应用范围,在选用的时候应该谨慎。
(1)标准接触行为(standard)该接触行为包括了法向接触闭合和分开行为,在该接触模式中既考虑粘着摩擦同时也考虑了滑动摩擦。
如图上,AB与BC本来是分开的,中间通过B点连接,当在A点施加力F,AB慢慢贴近BC,最终靠在一起。
但F撤销后,AB在恢复力的作用下慢慢回复到初始分开状态。
标准接触行为包括了分开状态→闭合状态→分开状态。
当AB与BC靠在一起时,既存在正压力,同时还有沿BC圆弧切线方向的摩擦力。
(2)粗糙接触行为(rough)该接触行为包括了法向接触闭合和分开行为,但滑动行为在此是不会发生的。
原因是所有参与接触的表面都被假定为非常粗糙,以致于可以认为摩擦力无穷大而不能够产生相对滑动。
在这种接触行为中,接触的两个物体或部件之间,除了存在正压力外,还有切向摩擦力,但是接触部分之间不可以产生相对滑动。
(3)绑定接触行为(bonded)是指一旦接触关系建立,那么目标面及接触面就被假定为粘结在一起(不可以分开)。
(4)绑定接触行为(始终)(bonded(always))任何初始时在许可接触容差范围内探测到的接触点或者是那些即将进入接触的点在后续的分析中将被绑定在一起。
这种接触行为的典型应用,如在组装分析中将两种不同网络的组件“加”在一起。
线性静态分析也可以用该种接触行为来解决,虽然由于有接触单元的存在,分析中将会提示为非线性分析,但往往只要一步迭代就完成了。
(5)绑定接触行为(初始接触)(bonded(initial))绑定仅发生在初始状态下就接触的面上,初始状态下没有接触的部分将继续保持分开。
典型的例子是通过焊接连接在一起的两个物体,焊接部分始终保持连接,没有焊接的部分保持分离状态。
(6)不分开型(no separation)一旦接触关系建立,目标面及接触面便被约束在一起了,但还是允许接触面之间有滑动。
ANSYS 分线性接触问题分析汇总接触非线性是一门复杂的学科,ANSYS 关于计算非线性接触的设置选项多只又多,很多人摸不到头脑,本文就基于ANSYS 模拟过的几个接触实例,研究了相关设置选项对接触结果的影响。
实例1:橡胶密封圈配合接触研究—非线性求解设置对结果的影响密封圈配合模型简图见图1,左右两端为刚体,中间圆部分为橡胶密封圈,将刚体2沿刚体1方面移动,从而实现橡胶圈密封作用,采用plane182单元,设置轴对称行为,建立橡胶密封圈与刚体接触模型,见图2。
图1 密封圈配合模型简图 图2 密封圈配合有限元模型图接触对采用默认设置,摩擦系数取0.10,研究非线性求解器设置对收敛方面的影响,大变形静态(Large Displacement Static )效应打开,自动时间步长(Automatic time stepping )打开,子步数(Number of substeps )设置为50,线性搜索(Line search )打开。
1 收敛准则对结果的影响此实例收敛准则默认采用力收敛结合力矩收敛准则(基于L2范数),收敛容差(Tolerance )默认为0.001,工程上认为0.05的收敛容差足够满足要求。
表 1 收敛容差对计算结果的影响收敛容差 最大应力/ MPa报错与否? 0.001 4.12364报错 0.05 4.12785 报错 0.14.12996报错查看报错信息,见图3,表示单元过于扭曲,建议提高子步数或降低时间步长,需要提高网格质量,也要考虑材料属性,接触对及约束方程的合理性,若在第一步迭代就如此,需要预先执行单元形状检查。
图3 报错信息刚体1刚体2密封圈橡胶密封圈配合Von Mises应力云图见图4。
图4 橡胶密封圈配合Von Mises应力2 子步数对结果的影响此实例子步数设置为50、100、200、500,收敛容差(Tolerance)默认为0.001,研究子步数对收敛的影响。
弹簧单元模拟土壤
杆为平面应变分析
土壤单元选项及实常数
材料性能:d-p模型(土壤)
铁桩材料
布尔运算:叠合。
并压缩实体编号(方便划网)
选择所有
all
相加分离的线
delte 划网注意划网属性与面编号对应
定义映射的边再划分面
转换为柱坐标系
创建节点并复制
通过节点再创建单元,注意选设置好单元属性
选择r=180(圆边界节点)(from all)及外节点180*(2*1.732)/3(also select)进行全约束
转换为直角坐标
对桩进行压力加载500(Mpa)先选择节点(通过坐标值)
创建静态分析
并设置非线性收敛标准
求解保存
结果(应力、位移、剪力)。
第一章钢筋混凝土结构非线性分析概述1.1 钢筋混凝土结构的特性1.钢筋混凝土结构由两种材料组成,两者的抗拉强度差异较大,在正常使用阶段,结构或构件就处在非线性工作阶段,用弹性分析方法分析的结构内力和变形无法反映结构的真实受力状况;2.混凝土的拉、压应力-应变关系具有较强的非线性特征;3.钢筋与混凝土间的黏结关系非常复杂,特别是在反复荷载作用下,钢筋与混凝土间会产生相对滑移,用弹性理论分析的结果不能反映实际情况;4.混凝土的变形与时间有关:徐变、收缩;5.应力-应变关系莸软化段:混凝土达到强度峰值后有应力下降段;6.产生裂缝以后成为各向异形体。
混凝土结构在荷载作用下的受力-变形过程十分复杂,是一个变化的非线性过程。
1.2 混凝土结构分析的目的和主要内容《混凝土结构设计规范》(GB50010-2002)中新增的主要内容:(1)混凝土的本构关系和多轴强度:给出了单轴受压、受拉非线性应力-应变(本构)关系,混凝土二轴强度包络图、三轴抗压强度图和三轴应力状态破坏准则;(2)结构分析:规范概括了用于混凝土结构分析的5类方法,列入了结构非线性分析方法。
一、结构分析的基本目的:计算在各类荷载作用下的结构效应——内力、位移、应力、应变根据设计的结构方案确定合理的计算简图,选择不利荷载组合,计算结构内力,以便进行截面配筋计算和采取构造措施。
二、结构分析的主要内容:(1)确定结构计算简图:考虑以下因素:(a)能代表实际结构的体形和尺寸;(b)边界条件和连接方式能反映结构的实际受力状态,并有可靠的构造措施;(c)材料性能符合结构的实际情况;(d)荷载的大小、位置及组合应与结构的实际受力吻合;(e)应考虑施工偏差、初始应力及变形位移状况对计算简图进行适当修正;(f)根据结构受力特点,可对计算简图作适当简化,但应有理论或试验依据,或有可靠的工程经验;(g)结构分析结果应满足工程设计的精度要求。
(2)结构作用效应分析:根据结构施工和使用阶段的多种工况,分别进行结构分析,确定最不利荷载效应组合。