原子物理-衰变规律
- 格式:ppt
- 大小:7.70 MB
- 文档页数:43
19.2 反射性元素的衰变【重点知识】1.原子核衰变时电荷数和质量数都守恒。
2.α衰变:238 92U→234 90Th +42He3.β衰变:234 90Th→234 91Pa + 0-1e4.放射性元素的原子核有半数发生衰变所需的时间叫做这种元素的半衰期。
【基本知识】一、原子核的衰变1.定义原子核放出 或 ,则核电荷数变了,变成另一种 ,这种变化称为原子核的衰变。
2.衰变分类(1)α衰变:放出α粒子的衰变。
(2)β衰变:放出β粒子的衰变。
3.衰变方程23892U→23490Th + 23490Th→234 91Pa + 。
4.衰变规律(1)原子核衰变时 和 都守恒。
(2)当放射性物质连续衰变时,原子核中有的发生α衰变,有的发生β衰变,同时伴随着γ辐射。
这时,放射性物质发出的射线中就会同时具有α、β和γ三种射线。
二、半衰期1.定义放射性元素的原子核有 发生衰变所需的时间。
2.决定因素放射性元素衰变的快慢是由 的因素决定的,跟原子所处的化学状态和外部条件没有关系。
不同的放射性元素,半衰期 。
3.应用利用半衰期非常稳定这一特点,可以测量其衰变程度、推断时间。
【课堂例题】例1、原子核238 92U经放射性衰变①变为原子核234 90Th,继而经放射性衰变②变为原子核234 91Pa,再经放射性衰变③变为原子核234 92U。
放射性衰变①②③依次为 ( )A.α衰变、β衰变和β衰变B.β衰变、α衰变和β衰变C.β衰变、β衰变和α衰变D.α衰变、β衰变和α衰变例2、(多选)14C发生放射性衰变成为14N,半衰期约5 700年。
已知植物存活期间,其体内14C与12C的比例不变;生命活动结束后,14C的比例持续减小。
现通过测量得知,某古木样品中14C的比例正好是现代植物所制样品的二分之一。
下列说法正确的是 ( ) A.该古木的年代距今约5 700年B.12C、13C、14C具有相同的中子数C.14C衰变为14N的过程中放出β射线D.增加样品测量环境的压强将加速14C的衰变例3、 (多选)静止在匀强磁场中的某放射性元素的原子核放出一个α粒子,其速度方向与磁场方向垂直。
【高中物理】高考物理复习:原子核的衰变【摘要】为大家整理了高考物理复习,便于大家查阅复习。
希望大家喜欢,也希望大家在学习愉快。
3.自然衰变中原子核的变化规律在核的天然衰变中,核变化的最基本的规律是质量数守恒和电荷数守恒。
① α衰变:随着α衰变,新原子核在周期表中的位置向前移动2位,即②β衰变:随着β衰变,新核在元素周期表中位置向后移1位,即③ γ衰变:对于γ,衰变和变化的不是原子核的类型,而是原子核的能量状态。
但总的来说,γ衰变总是伴随着α衰变或β衰变。
4.放射性元素放射的射线有三种:α射线、γ射线、β射线,这三种射线可以用磁场和电场加以区别,如图1所示。
图15.半衰期:放射性元素的原子核有半数发生衰变所需要的时间称为半衰期。
不同的放射性元素的半衰期是不同的,但对于确定的放射性元素,其半衰期是确定的。
它由原子核的内部因素所决定,跟元素的化学状态、温度、压强等因素无关。
二、实例分析[[例1]]关于天然放射现象,以下叙述正确的是()a、如果放射性物质的温度升高,它的半衰期就会降低b.β衰变所释放的电子是原子核内的中子转变为质子时所产生的c、在α、β、γ三种射线中,γ射线的穿透能力最强,α射线的电离能力最强d.铀核(23892U)衰变为铅芯(20682pb)的过程中,要经过8次α衰变和10次β衰变[[分析]]半衰期由放射性元素原子核的内部因素决定,与元素的化学状态、温度、压力等因素无关;β衰变释放的电子是当原子核中的中子转化为质子时产生的。
1.0n11h+0-1e,b对;根据三种射线的物理性质,c对;23892U有92个质子和146206个中子82pb的质子数为82,中子数为124,因而铅核比铀核少10个质子,22个中子。
一次α衰变质量数减少4,故α衰变的次数为x==8次。
再结合核电荷数的变化情况和衰变规律来判定β衰变的次数y应满足2x-y+82=92,y=2x-10=6次。
故本题正确答案为b、c.[评论](1)检查这个问题α衰变β衰变规律以及质量数、质子数和中子数之间的关系。
原子核衰变时电荷数和质量数都守恒原子核放出α粒子或β粒子后,就变成新的原子核.这种变化称为原子核的衰变.
衰变规律:原子核衰变时电荷数和质量数都守恒.
质量数守恒(注意不是质量守恒);电荷数守恒;动量守恒;能量守恒.
题目
分析原子核发生衰变时质量数与核电荷数守恒.由此解答即可.解答解:原子核发生衰变时,无论能量然后变化,但电荷数和质量数守恒.
故答案为:电荷数,质量数
点评该题考查对衰变的理解,属于对基础知识的考查,牢记该知识点的内容即可.
已知的衰变的种类主要有以下三种:
1、阿尔法衰变,它是某种元素的一个原子核通过放射出一个阿尔法粒子,变成另外一种元素的原子核的衰变。
2、贝塔衰变,它的特点是原子核的原子序数改变而质量数不变。
它主要分为三种类型:贝塔加衰变、贝塔加衰变和轨道电子俘获;
3、伽马衰变,它是伴随着阿尔法衰变或贝塔衰变而产生的。
备注:原子核的放射性衰变还包括原子核的自发裂变、质子放射性等许多形式。
只有质量大的原子核才会有显著的原子核的自发裂变。
衰变规律的特点衰变是指原子核在放射性衰变过程中转变成其他原子核的现象。
衰变规律是指放射性核素衰变的特点和规律。
下面将从放射性衰变的概念、类型、速率和半衰期等方面进行详细解释,并按照标题要求进行扩展描述。
一、放射性衰变的概念放射性衰变是指放射性核素自发地发射出粒子或电磁波,从而转变成其他核素的过程。
放射性核素的衰变是一个随机的过程,无法准确预测某个核素何时会发生衰变,但可以通过概率统计的方法描述大量核素的衰变行为。
二、放射性衰变的类型放射性衰变包括α衰变、β衰变和γ衰变三种类型。
1. α衰变:α衰变是指放射性核素放出一个α粒子,即两个质子和两个中子组成的氦核。
在α衰变过程中,放射性核素的质量数减少4,原子序数减少2。
2. β衰变:β衰变包括β+衰变和β-衰变两种形式。
β+衰变是指放射性核素放出一个正电子和一个中微子,原子序数减少1。
β-衰变则是放射性核素转变成一个高一阶的核素,放出一个负电子和一个反中微子,原子序数增加1。
3. γ衰变:γ衰变是指放射性核素经历α衰变或β衰变后,通过放出一束高能γ射线来释放剩余的能量。
γ射线是电磁波的一种,不改变原子核的质子数和中子数。
三、放射性衰变的速率放射性衰变的速率可以用半衰期来描述,半衰期是指放射性核素的一半原子核衰变所需的时间。
半衰期是每种放射性核素的固有特性,不受温度、压力等条件的影响。
放射性核素的衰变速率遵循指数衰减规律,即以时间为自变量,以剩余核素数或活度为因变量的函数关系。
放射性核素的衰变速率与剩余核素数成正比,与时间成反比。
随着时间的推移,放射性核素的衰变速率逐渐减小。
四、放射性衰变的半衰期半衰期是放射性核素衰变速率的重要参数。
半衰期越短,放射性核素衰变速率越快,反之则越慢。
在放射性衰变过程中,原子核的衰变是一个随机的过程,无法准确预测某个核素何时会发生衰变。
但通过大量核素的统计,可以得到一个平均的衰变速率,从而计算出平均的半衰期。
半衰期越短的放射性核素,其辐射强度下降得越快,对人体的辐射危害也越小。
高三物理核衰变知识点归纳核衰变是高中物理中一个重要的知识点,也是学习核物理的基础。
核衰变涉及到一系列的变化,包括放射性衰变和核反应。
本文将对高三物理核衰变相关的知识点进行归纳,方便同学们理解和记忆。
一、核衰变的基本概念核衰变是指原子核自发地改变核内的粒子组成,通过释放辐射或产生其它粒子的过程。
核衰变可以分为放射性衰变和核反应两种形式。
1.1 放射性衰变放射性衰变是指原子核自发地发生变化,释放出一定能量的过程。
放射性同位素会自发地发生核衰变,放射出α粒子、β粒子或γ射线。
不同类型的衰变具有不同的特点。
1.2 核反应核反应是指两个或多个核粒子发生碰撞或聚变,从而形成新的核粒子的过程。
核反应通常涉及到高速粒子的加速和撞击,因此需要一定的能量。
二、放射性衰变放射性衰变是核物理中的重要概念,包括α衰变、β衰变和γ衰变三种形式。
2.1 α衰变α衰变是指原子核中放出一个氦核(即α粒子)的过程。
α衰变会导致原子序数减2、质量数减4。
α粒子在空气中的传播距离较短,因此对人体的辐射伤害较小。
2.2 β衰变β衰变是指原子核中发生中子转变为质子或质子转变为中子,同时释放出一个β粒子(包括正电子和电子)的过程。
β衰变可以分为β-衰变和β+衰变,分别对应电子和正电子的释放。
2.3 γ衰变γ衰变是指在核衰变中,原子核从高能态跃迁到低能态,释放出γ射线的过程。
γ射线是电磁波,具有很强的穿透能力,对人体的辐射伤害较大。
三、核反应核反应是原子核之间的相互作用,包括聚变和裂变两种形式。
3.1 聚变聚变是指两个或多个轻核相互碰撞、结合成为一个更重的核的过程。
聚变在太阳和恒星中是主要的能量来源,但在地球上实现聚变仍然面临很多技术挑战。
3.2 裂变裂变是指重核在受到中子轰击时发生的核反应,产生两个或多个中子及伴随释放大量能量的过程。
核裂变在核燃料的利用和核武器的制造中发挥着重要作用。
四、应用与展望核衰变和核反应在科学研究、医学、能源等领域具有重要的应用价值。
第2讲原子核一、原子核的组成、放射性元素的衰变1.天然放射现象元素自发地放出射线的现象,首先由贝克勒尔发现。
天然放射现象的发现,说明原子核具有复杂的结构。
2.原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。
3.原子核的衰变(1)衰变:原子核放出α粒子或β粒子,变成另一种原子核的变化。
(2)分类α衰变:A Z X―→A-4Z-2Y+42He,如:238 92U―→234 90Th+42He;β衰变:A Z X―→A Z+1Y+0-1e,如:234 90Th―→234 91Pa+0-1e。
(3)半衰期:放射性元素的原子核有半数发生衰变所需的时间。
半衰期由原子核内部的因素决定,跟原子所处的物理、化学状态无关。
4.放射性同位素的应用与防护(1)放射性同位素:有天然放射性同位素和人工放射性同位素两类,放射性同位素的化学性质相同。
(2)应用:消除静电、工业探伤、作示踪原子等。
(3)防护:防止放射性对人体组织的伤害。
思考辨析1.原子核的电荷数就是核内的质子数,也就是这种元素的原子序数。
(√)2.β射线是高速电子流,很容易穿透黑纸,也能穿透几毫米厚的铝板。
(√)3.半衰期可以通过人工进行控制。
(×)4.某放射性元素的半衰期为4天,若有100个这样的原子核,经过4天后还剩50个。
这种说法对吗?提示:不对,半衰期是大量放射性元素的原子核衰变时所遵循的统计规律,不能用于少量的原子核发生衰变的情况,因此,经过4天后,100个原子核有多少发生衰变是不能确定的,所以这种说法不对。
核反应方程:质量数守恒、电荷数守恒,但不是总质量守恒。
1.核力和核能(1)核力:原子核内部,邻近核子间所特有的相互作用力。
(2)核子在结合成原子核时出现质量亏损Δm,其对应的能量ΔE=Δmc2。
(3)原子核分解成核子时要吸收一定的能量,相应的质量增加Δm,吸收的能量为ΔE=Δmc2。
2.裂变反应和聚变反应(1)重核裂变①定义:质量数较大的原子核受到高能粒子的轰击而分裂成几个质量数较小的原子核的过程。
原子衰变公式原子衰变是指一个原子核中的粒子或核子发生自发转化的过程。
在这个过程中,原子核会释放出粒子或辐射,转化成另一个元素的原子核。
这个过程是基于一定的能量条件下通过自发核反应进行的。
在自然中,发生辐射的现象很常见,如阳光、地球磁场、电视等。
这些辐射是由不稳定的核素在放射时放出的电离辐射。
原子核的衰变是一个自然现象,同时也是人们进行各种应用的基础。
原子衰变是一个复杂的过程,可以用数学公式表示。
其基本公式为:A = A0*e-λt,其中A0是初始放射性核素的数量,A是现在的放射性核素的数量,e是数学自然常数,.lambda.是放射性衰变常数,t是时间。
这个公式可以用来计算所有放射性元素的衰变过程,包括α、β和γ衰变。
其中,α衰变是最常见的放射性衰变之一。
在α衰变过程中,原子核会释放出两个质子和两个中子组成的α粒子,转化成另一个元素的原子核。
β衰变是另一种放射性衰变形式,其中原子核会释放出一个电子或一个正电子,并转化成另一个原子核。
γ衰变是电磁辐射的一种形式,它是由原子核内部弱的放射性衰变所生成的。
衰变过程会影响到放射性元素的稳定性和半衰期。
半衰期是指需要多长时间放射性元素崩解到一半。
这个时间对于安全使用放射性元素非常重要,因为这有助于人们确定最佳使用方案和处理机制。
总的来说,原子衰变公式是原子核衰变过程中最基础的公式之一。
了解这个公式对于研究和应用放射性元素都非常重要,可以帮助人们更好地管理和利用这些元素。
当然,在使用和处理放射性元素时,遵循正确的安全规程和指南也是至关重要的。
原子核物理——放射性衰变简介天津师范大学物理与电子信息学院王桐瑞095060131 放射性、衰变1.1 放射性放射性是指元素从不稳定的原子核自发地放出射线,(如α射线、β射线、γ射线等)而衰变形成稳定的元素而停止放射(衰变产物),这种现象称为放射性。
衰变时放出的能量称为衰变能量。
原子序数在83(铋)或以上的元素都具有放射性,但某些原子序数小于83的元素(如锝)也具有放射性。
1.2 衰变放射性衰变都有一定的周期,并且一般不因环境而改变,这也就是放射性可用于确定年代的原因。
由于一个原子的衰变是自然地发生,即不能预知何时会发生,因此会以机率来表示。
假设每颗原子衰变的机率大致相同,例如半衰期为一小时的原子,一小时后其未衰变的原子会剩下原来的二分之一,两小时后会是四分之一,三小时后会是八分之一。
原子的衰变会产生出另一种元素,并会放出α粒子、β粒子或中微子,在发生衰变后,该原子也会释出伽马射线。
衰变后的实物粒子静止质量的总合会少于衰变前实物粒子静止质量的总和,根据质能方程,能量可以表现出质量。
当物体的能量增加E,其质量则增加E/C²,当物体的能量减少E,其质量也减少E/C²,如果一个原子核衰变后放出实物粒子,假设该原子核在衰变前相对于某一贯性参照物静止,衰变后的新原子核和所放出的实物粒子相对于该惯性参照物运动,即对于该惯性参照物而言,新原子核和所放出的实物粒子具有动能,当新原子核或所放出的实物粒子与其他粒子发生碰撞,它便会失去能量。
因此,衰变前和衰变后质量和能量都是守恒的,粒子的静止质量则不守恒。
如果该原子核放出光子,同样的,光子也具有质量,但没有静止质量。
通常衰变所产生的产物多也是带放射性,因此会有一连串的衰变过程,直至该原子衰变至一稳定的同位素。
发生核衰变的放射性元素有的是在自然界中出现的天然放射性同位素,如碳14,但其衰变只会经过一次β衰变转为氮14原子,并不会一连串地发生。
也有很多是经过粒子对撞等方法人工制造的元素。
α、β、γ衰变的规律总结万阳 2008011762工物 83α 衰变β 衰变γ 跃迁不稳定核自发地放原子核从激发态通核电荷 Z 发生改变,而核子过发射 γ 光子或其出 α 粒子,并转变定义数不变的自发衰变过程,称它过程跃迁到较低 成另一种原子核的 为 β 衰变;能态,称为 γ跃迁或现象,成为 α 衰变;γ 衰变;发射的粒 子的能量4~9Mev范围反应式ZAXA Z 42Y+ ;发生的条 M X (Z,A)>M Y (Z-2,A- 件(能量) 4)+M α(2,4)所采用的穿透库仑势垒;物理模型α,β或Aγ的能量 E 0与衰变能 TA 4 ;的关系最大能量在几十 kev~Mev Kev~Mev: Z A XZA1Ye,: Z A XZ A 1Ye ,ZAXZAX;EC : Z AX e iZ A1Y e ;β - :M X (Z,A)>M Y (Z+1,A)or(Z,A)>(Z+1,A)β +:M(Z,A)>M (Z-1,A)+2m or原子核处于激发态;XYe(Z,A)>(Z-1,A)+2m e c 2EC :XYi/c 2M(Z,A)>M (Z-1,A)+ εor(Z,A)> (Z-1,A)+ ε i ;费米理论单质子模型;γ 光子的动能近似T β =E βmax ≈ E 0等于衰变能:E γ =E 0-T R ≈ E 0衰变能,原子序数用费米积分表示衰变常数,在其它条件不变的情况下:对于偶偶核:m 5e c 4 g 2 M if2λ 随着衰变能的增大而增大,影响衰变1/2常数大小 lnA BE 0的因素有(其中 A ,B 为常哪些?数,与原子序数有关)衰变能对一般而言,衰变能23 7f (Z , E 0 )表明 λ 与跃迁类型(轻子带走的角动量),以及衰变能,原子序数都有一定关系,其中λ ~E 05萨金特定律: β 衰变的半衰随着 γ 带走角动量的增加(即跃迁级次)而减小,电多级辐射, 磁电多级辐射对应的衰变常数也不同其他条件一定的情衰变的影越大, α 粒子穿透响库仑势垒概率越大,衰变常数越大,α 衰变越容易发生;α 衰变过程中角动 角动量对 量守恒,这影响后面的选择定则;同 衰变的影 时 α 粒子带走的角响是怎样 动量越小,衰变越 的?为什容易发生,因为 α么?粒子穿透势垒的离心势会变小。