第七章 海洋有机地球化学
- 格式:ppt
- 大小:11.27 MB
- 文档页数:101
第七章 海洋有机物和海洋生产力本章重点:(1)海洋中的溶解有机碳、颗粒有机碳的组成、含量、分布和运移规律;(2)海洋的初级生产力和中国近海及其主要河口(长江口、黄河口和珠江口)的有机物质。
7.1 海洋中溶解有机物质(DOC)海洋中有机物质大致可分为:①溶解有机物质;②颗粒有机物质(碎屑);③浮游植物;④浮游动物;⑤细菌。
7.1.1 海洋中溶解有机物的组成、含量和分布海水中溶解有机物总含量的测定,是海洋化学家长期关心的问题,至今未得到满意解决,通常是使有机物质氧化 ,随后测定它的一种组成元素(一般为C 、N 和P ),然后将结果表示为有机碳、有机氮和有机磷。
图7.6列出了不同海区溶解有机磷分析的平均值和(或)典型范围值。
海水中具体的溶解性有机化合物主要有:氨基酸、腐殖质、碳水化合物、烃和氯代烃、以及维生素。
表7.15列出了海水中的各种烃和氯代烃的浓度。
图7.6 南海DOC 的垂直分布 (a )14号站 (b )8号站 (c )1号站7.1.2 海洋中有机物的供给源和移出海洋是一个开放体系,从物质全球变化的角度而论,对有机物质,内源为主,外源为辅。
但随着近年来人类活动对海洋的影响,外源亦日益引起人们的重视。
大气输入的突出例子是含氯农药,是DDT及其衍生物进入海洋的主要途径。
7.2 海洋中的颗粒有机碳(POC)海洋中颗粒有机碳一般是指直径大于0.45μm的微粒的有机碳,包括海洋中有生命和无生命的悬浮颗粒和沉积物微粒。
7.2.1 海洋中POC的含量和分布7.2.2 海洋中POC的运移规律POC的运移规律包括来源:(1)陆地和大气输入;(2)在海洋中现场生成:碎屑(粪粒、碎片)的直接形成,细菌的吸附和聚凝,有机分子聚集,在无机矿物颗粒上吸附和胶体絮凝。
图7.26和7.28表示了海洋中有机物随深度的变化和天然烃循环的有关过程。
7.3 海洋的初级生产力7.3.1 光合作用的呼吸作用海洋生物及其食物链中最重要的步骤就是光合作用的呼吸作用。
第7章生物地球化学循环第1节土壤的组成第2节土壤的性质第3节物质循环与土壤形成第4节土壤分类与土壤类型第4节生态系统的组成与结构第6节生态系统的能量流动第7节生态系统的物质循环第8节地球上的生态系统引子:生物地球化学循环概述一、何谓生物地球化学循环?1.概念:生命有机体及其产物与周围环境之间反复不断进行的物质和能量的交换过程。
2.过程:物能的吸收-同化-排放-分解-归还-流失3.性质:非封闭的循环(进入土壤、岩层、海底)4.主体:生物和土壤5.循环的介质:水和大气二、人类对生物地球化学循环的影响1.大气、水体、土壤的污染2.污染物质的迁移、转化和集散3.对人类健康的威胁第1节土壤的组成引言:土壤与土壤肥力1. 土壤:在陆地表层和浅水域底部、由有机和无机物质组成、具有肥力、能生长植物的疏松层。
2.土壤的本质是肥力,指土壤中水、热、气、肥(养分)周期性动态达到稳、匀、足、适地满足植物需求的能力。
3. 土壤是一种类生物体代谢和调节功能比生物弱(如温度)不具有生长、发育和繁殖的功能不具有功能各异的器官一、土壤的无机组成1. 原生矿物:在物理风化过程中产生的未改变化学成分和结晶构造的造岩矿物。
土壤中各种化学元素的最初来源;土壤矿物质的粗质部分;经化学风化分解后,才能释放并供给植物生长所需养分。
2. 次生矿物:岩石在化学风化过程中新生成的土壤矿物,如粘土矿物。
土壤矿物质中最细小的部分;具有吸附保存呈离子态养分的能力,使土壤具有一定的保肥性。
二、土壤的有机组成1.原始组织:包括高等植物未分解的根、茎、叶;动物分解原始植物组织,向土壤提供的排泄物和死亡之后的尸体等。
土壤有机部分的最初来源2.腐殖质:有机组织经由微生物合成的新化合物,或者由原始植物组织变化而成的、比较稳定的分解产物,呈黑色或棕色,性质上为胶体状(颗粒直径<1μm)。
具有极强的吸持水分和养分离子的能力,少量的腐殖质就能显著提高土壤的生产力。
土壤中生活的重要生物类群三、土壤水分1.土壤水分通常是以溶液的形式存在的。
《地球化学》章节笔记第一章:导论一、地球化学概述1. 地球化学的定义:地球化学是应用化学原理和方法,研究地球及其组成部分的化学组成、化学性质、化学作用和化学演化规律的学科。
它是地质学的一个分支,同时与物理学、生物学、大气科学等多个学科有着密切的联系。
2. 地球化学的研究对象:- 地球的固体部分,包括岩石、矿物、土壤等;- 地球的流体部分,包括大气、水体、地下水等;- 地球生物体,包括植物、动物、微生物等;- 地球内部,包括地壳、地幔、地核等。
3. 地球化学的研究内容:- 地球物质的化学组成及其时空变化;- 地球内部和外部的化学过程;- 元素的迁移、富集和分散规律;- 地球化学循环及其与生物圈的相互作用;- 地球化学在资源、环境、生态等领域的应用。
二、地球化学的研究方法与意义1. 地球化学的研究方法:- 野外调查与采样:包括地质填图、钻孔、槽探、岩心采样等;- 实验室分析:包括光学显微镜观察、X射线衍射、电子探针、电感耦合等离子体质谱(ICP-MS)、原子吸收光谱(AAS)等;- 地球化学数据处理:包括统计学分析、多元回归、聚类分析等;- 地球化学模型:建立地球化学过程的理论模型和数值模型;- 同位素示踪:利用稳定同位素和放射性同位素研究地球化学过程。
2. 地球化学研究的意义:- 揭示地球的形成和演化历史;- 了解地球内部结构、成分和动力学过程;- 探索矿产资源的形成机制和分布规律;- 评估和治理环境污染问题;- 理解地球生物圈的化学循环和生态平衡;- 为可持续发展提供科学依据。
三、地球化学的发展历程与现状1. 地球化学的发展历程:- 起源阶段:19世纪初,地质学家开始关注矿物的化学组成;- 形成阶段:19世纪末至20世纪初,维克托·戈尔德施密特等科学家奠定了地球化学的基础;- 发展阶段:20世纪中叶,地球化学在理论、方法、应用等方面取得显著进展;- 现代阶段:20世纪末至今,地球化学与分子生物学、环境科学等学科交叉,形成新的研究领域。
《地球化学》2024年(第53卷)总目次第一篇范文《地球化学》2024年(第53卷)总目次1. 综述与评论1.1 地球化学综述1.2 环境地球化学评论1.3 生物地球化学评论1.4 构造地球化学评论1.5 海洋地球化学评论1.6 岩石地球化学评论1.7 矿物地球化学评论2. 基础地球化学2.1 元素地球化学2.2 同位素地球化学2.3 有机地球化学2.4 微量元素地球化学2.5 放射性元素地球化学3. 应用地球化学3.1 环境地球化学3.2 生物地球化学3.3 资源地球化学3.4 石油地球化学3.5 金属地球化学3.6 煤炭地球化学4. 区域地球化学4.1 构造地球化学4.2 海洋地球化学4.3 陆地地球化学4.4 盆地地球化学4.5 岩石地球化学4.6 矿物地球化学5. 岩石与矿物5.1 岩浆岩5.2 沉积岩5.3 变质岩5.4 矿物5.5 岩石成因与演化6. 地球化学勘查6.1 地球化学勘查方法6.2 地球化学勘查技术6.3 地球化学勘查实例6.4 地球化学勘查理论7. 实验技术与方法7.1 岩石实验7.2 矿物实验7.3 元素分析7.4 同位素质谱分析7.5 地球化学数值模拟8. 国内外学术交流8.1 国内学术会议8.2 国际学术会议8.3 国际合作与交流8.4 学术团体与期刊9. 资讯与动态9.1 地质与地球化学动态9.2 科研项目与成果9.3 学术活动与会议9.4 人才培养与引进10. 征稿与订阅10.1 征稿启事10.2 订阅办法10.3 联系方式《地球化学》2024年(第53卷)总目次涵盖了地球化学领域的各个方面,包括综述与评论、基础地球化学、应用地球化学、区域地球化学、岩石与矿物、地球化学勘查、实验技术与方法、国内外学术交流、资讯与动态以及征稿与订阅等。
本卷期刊致力于为广大地球化学研究者提供最新的研究成果、技术进展和学术交流的平台,以推动地球化学领域的发展。
第二篇范文想象一下,如果我们能够一览无余地浏览《地球化学》2024年(第53卷)的全部内容,那会是多么令人兴奋的事情!就好比打开了一扇窗,让我们得以窥视地球化学领域的最新动态和突破性研究。
第7章海洋有机物和海洋生产力7.1 引言存在于海水中的有机物,广义地讲,包括大至鲸小至分子甲烷的有机物。
但海洋化学所研究的有机物,主要是海水中海洋生物的代谢物、分解物、残骸和碎屑等,它们是海洋本身所产生的;还有一部分是陆源有机物,包括人类生活和生产活动所产生的有机物质和有机污染物质,通过大气或河流带入海洋中。
海洋中有机物质的含量虽然很低,但它参与海洋中许多化学变化和生物地球化学作用,研究水体有机物是海洋化学、海洋生物学和海洋有机地球化学共同关心的重要研究内容,对认识海洋环境中所发生的各种过程具有重要意义。
十九世纪末Natterer、Pütter开始了溶解有机物的研究工作,但当时的研究受到分析方法的严重限制。
研究海水有机化学的真正起点是在20世纪30年代,当时出现了Krogh的精细工作,以及随后Datsko关于海水的溶解有机碳含量和Redfield关于溶解有机磷的工作,使海洋有机化学在广度和深度上有了新的进展。
在这些初始工作之后,直至50年代后期,都未取得太大的进展。
后来开始研究设计对海水中溶解有机碳、氮、磷做半常规分析的方法,以及海水中个别化合物(例如维生素)和分解作用的中间物(例如糖和氨基酸)的分析方法。
后来,由于不断获知人类活动对环境的影响,已开始了测定大洋中的诸如烃和氯代烃等类化合物的浓度和分布的工作。
到20世纪60年代由于分析测试技术有了一定进展,不仅对海洋中一些有机物作了鉴定,而且开始用海洋生物地球化学观点对海洋有机物的分布作初步研究。
20世纪七八十年代,尤其在1976年,美国爱丁堡“海洋有机化学概念”讨论会之后,海洋科学工作者逐步认识到海洋有机物质与海洋生命起源、生物活动、元素的化学物种溶存形式和运移规律、水团运动、沉积/成岩作用等等都有密切关系。
20世纪90年代,随着溶解有机碳(DOC)各种分析方法的建立和完善,对海水中有机物的研究蓬勃发展起来。
同时,由于切向超滤技术的发展,胶体有机碳(COC)也被从传统意义上的DOC中分离出来,作为单独的一相进行研究。
海洋地球有机化学
海洋地球有机化学是研究海洋中有机物的组成、结构、来源、转化、生物地球化学过程及其环境效应等方面的科学。
海洋地球有机化学旨在深入了解海洋有机物的性质、生物地球化学循环、海洋生物圈和全球碳循环等重要科学问题。
海洋中的有机物主要来源于陆地输入、海洋生物活动和海洋降解等过程。
陆地输入的有机物包括河水、悬浮物、沉积物中的有机物等,它们通过河流输运进入海洋。
海洋生物活动产生的有机物主要包括藻类所释放的游离和胶体有机物、浮游生物的残骸和分泌物等。
海洋降解是指有机物在海洋中经历光合作用、微生物代谢、化学变化等过程而降解。
海洋中的有机物具有多种结构,包括蛋白质、多糖、脂类、腈类、生物碱等。
它们对海洋生物圈的结构和功能具有重要作用,同时也对全球碳循环、物种多样性、气候变化等产生重要影响。
海洋有机物还可以通过光合作用吸收和释放大气中的二氧化碳,影响全球碳循环的平衡。
海洋地球有机化学的研究方法包括分析化学技术、分子生物学技术、同位素示踪技术、光谱技术等。
研究人员通过分析海水、沉积物、浮游生物等样品中的有机物组成和结构,揭示海洋有机物的来源、演化和影响机制。
海洋地球有机化学的研究成果对于了解海洋生态系统的运行机制、预测全球气候变化、生物资源的开发利用等具有重要意义。
1、海洋中有机物的形态有哪些(DOC, COC)?其主要来源?颗粒态 (POC) 主要来源:生物生产溶解态(DOC)主要来源:河流输入、大气沉降、生物生产2、海洋中有机物的分类特征。
基于分类学海洋中哪种有机物最多?分类特征:来源、溶解性、分子量、稳定性、(生物)化学类别最多的有机物:海源有机物3、海洋中颗粒有机碳的循环规律、分布特征?循环规律:海洋中浮游植物通过死亡分解向海洋中输入颗粒有机碳,颗粒有机碳通过细菌分解、代谢为溶解性有机碳,未被生物降解的部分结合入沉积物,低分子有机组分分泌至水体很快被细菌所利用。
如此不断参与地球化学循环。
分布特征:与河水、湖水相比,海水中POC浓度较低。
受陆源有机物影响,河口与近岸海域海水中POC浓度比开阔大洋高。
对于开阔大洋,水体中POC浓度总体随深度增加而降低。
在光合作用强烈的真光层中,POC浓度高且变化大。
4、海洋中有机物有哪些特点?它们对海水物理化学性质有哪些影响?含量低、组成复杂、分布不均匀、容易形成金属-有机络合物。
影响:●对水色的影响(改变表面活性和张力)。
●对海-气交换的影响:表面微层及其作用。
●对多价金属离子的络合作用。
●改变一些成分在海水中的溶解度。
●对化学过程的影响:影响氧化-还原作用●对成岩作用的影响(干酪根)5、熟悉氨基酸、蛋白质、腐殖质有关内容。
(1)氨基酸:是一种有机酸,通用分子式为RCHNH2COOH。
海水中的氨基酸类化合物包括各种酸性的、中性的和碱性的氨基酸,在海水中通常以肽的形式存在,主要由动物蛋白和植物蛋白降解而来。
海水中氨基酸大部分为结合氨基酸(也即肽)。
海水中氨基酸类化合物无论游离的或结合的,其种类都以甘氨酸、丝氨酸、丙氨酸、鸟氨酸等的含量居多。
氨基酸类化合物在大洋水中总含量为5-90微克/升,但在近海或生物生产力高的海域,总含量可达400微克/升。
(2)蛋白质:对于海洋生物而言,蛋白质的氮约占浮游植物总氮的60%~70%。
海洋地球化学的概念及研究内容海洋地球化学主要参考书1. 赵其渊等编,海洋地球化学,地质出版社,1989 (青岛海洋大学)2. Roy Chester, Marine Geochemistry(2nd ed.), Oxford: Blackwell Science Ltd, 19993. 张正斌、陈镇东、刘莲生、王肇鼎著,海洋化学原理和应用——中国近海的海洋化学,海洋出版社,19994. 张经主编,中国主要河口的生物地球化学研究,北京,海洋出版社,19965. 赵一阳、鄢明才,中国浅海沉积物地球化学,北京,科学出版社,19945. 宋金明著,中国近海沉积物-海水界面化学,海洋出版社,19976. 陈松等著,海洋沉积物-海水界面过程研究,海洋出版社,1999海洋地球化学的定义李法西(1987)研究海洋中化学物质的含量、分布、形态、转移和通量的学科。
它是地球化学中以海洋为主体的一个分支,也是化学海洋学的主体。
赵其渊(1989)海洋地球化学是地球化学的新兴的分支学科,是地质学、海洋地质学、海洋学和海洋化学相结合而形成的边缘科学,它集中研究海洋环境下的各种地球化学作用过程和在这些过程中化学元素的行为规律和自然历史。
胡明辉(1998)* 研究海洋中物质的来源、迁移、转化及循环过程* 研究全球海洋收支(budget)平衡(balance)* 研究各种界面过程及物质的输入输出通量例子1:海洋中Mg的收支不平衡(imbalance)问题海洋中Mg的通量(1012mol/yr) :河流输入:+ 8.0大气再循环:-0.5 -6.3 (?)离子交换:-1.2问题:Mg到哪里去了?——海洋化学(溶液化学时代)长期未能解决的一个悬案70年代末~ 80年代初,MIT的Edmond等开展海底热泉活动的化学通量研究,发现镁的热液输出通量与河流通量相当,解决了长期未决的海洋主要物质不平衡(balance)的悬案,同时也补足了一份海洋物质收支平衡的较完整的清单。