1.认识四边形-教案导学案
- 格式:doc
- 大小:267.00 KB
- 文档页数:6
四边形的认识教案四边形的认识教案作为一名教师,常常要根据教学需要编写教案,教案是教材及大纲与课堂教学的纽带和桥梁。
那么教案应该怎么写才合适呢?下面是作者收集整理的四边形的认识教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
四边形的认识教案 1教学内容本册教材第34—36页上的例1、例2,完成“做一做”中的题。
教学目的1、使学生初步认识四边形,了解四边形的特点,并能根据四边形的特点对四边形进行分类。
2、通过学生动手操作、小组讨论,培养学生独立思考、合作交流的学习。
3、通过主题图的教学,对学生进行热爱运动、积极参加体育锻炼的教育。
教学重点找出四边形的特点。
教学难点根据四边形的特点对四边形进行分类。
教学过程一、主题图引入。
1、同学们,你们喜欢参加体育活动吗?你喜欢什么运动?(对学生进行热爱运动、积极参加体育锻炼的教育。
)2、这是什么地方?你看到了什么?(给充分的时间让学生同桌说或小组说。
)3、仔细观察,你会发现许多图形。
学生汇报、交流。
4、揭示课题。
今天我们就来学习有关“四边形”的知识。
——板书课题。
二、探究新知。
1、教学例1。
(认识四边形)(1)下面的图形中,你认为是四边形的就把它剪下来。
(印发,每人一份)学生剪完后汇报,并说说理由。
(2)小组讨论。
你发现四边形有什么特点?学生汇报,教师根据回答板书:四条直的边四边形有四个角(3)联系生活实际,说说你身边哪些物体的表面是四边形的。
2、教学例2。
(给四边形分类)(1)把你剪下的四边形进行分类。
(学生独立操作)(2)还有不同的分法吗?(小组交流)学生汇报,并说理由三、巩固应用。
教材第36页的“做一做”中的第1、2题。
四、全课。
1、通过今天的学习,你学会了哪些知识?(学生汇报)2、今天我们学习了四边形,掌握了四边形的特点;还能根据四边形的边和角的特点给四边形分出不同的类型。
四边形的认识教案 21、知识与技能目标:联系实际和利用生活经验,通过观察、操作、测量、联想等学习活动,认识三角形的基本特征,初步形成三角形的概念,初步认识三角形的底和高,感悟三角形的底和高的相互依存的关系。
人教版数学四年级上册平行四边形的认识导学案(推荐3篇)〖人教版数学四年级上册平行四边形的认识导学案第【1】篇〗教学目标:1、知识与技能目标:使学生掌握平行四边形的意义及特征,了解它的特性。
2、过程与方法目标:通过观察、动手,培养学生抽象概括能力和初步的空间观念。
3、情感态度与价值观:培养学生观察和认识周围图形的兴趣和认识。
教学重点与难点:重点:平行四边形的意义。
难点:抽象概括平行四边形的意义。
教学准备:用木条订成的三角形、平行四边形框架,小棒、钉子板、方格纸等。
教学过程:(一)、老师出示一个长方形框架、1、老师动手拉它的一组相对的角,请同学们观察:这个框架还是长方形吗?为什么?(这个图形不是长方形了,因为它的四个角不是直角)今天,我们又认识了一个图形——平行四边形,我们把这样的图形叫做平行四边形、在黑板右上角贴出一个平行四边形、2、问:同学们平时见过平行四边形吗?请举例来说、(有一种防盗网上的图形、篱笆上的图形,有的编织图案)3、动手操作,感受平行四边形的特征分组操作探究师:第一组:量一量平行四边形各边的长度。
第二组:用小棒搭平行四边形。
学生的操作,教师巡视,并参与学生活动。
4、各组汇报探究结果,互相评价。
5、画平行四边形师:请你在方格纸上画一个你最喜欢的平行四边形。
6、。
平行四边形和长方形有什么相同点和不同点?(老师又一次演示长方形活动框架)(它们的相同点是都有四条边且对边相等、它们都有四个角;不同点是:长方形的四个角必须是直角)巩固练习完成课本练习三十九第2题,指生订正并说出理由。
1、判断题:(1)长方形、正方形和平行四边形都是四边形。
()(2)四个角都是直角的'四边形一定是正方形。
()(3)一个四边形,它的四条边相等,这个四边形一定是正方形。
()(4)对边相等的四边形都是长方形。
()(5)有个四边形,它的四个角都是直角,那么,这个四边形不是正方形就是长方形。
()全课总结通过今天的学习你有什么收获?谈一谈。
2024《认识四边形》说课稿范文今天我说课的内容是《认识四边形》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《认识四边形》是人教版小学数学七年级上册第一单元的内容。
它是在学生已经学习了基本几何形状并掌握了一些几何知识的基础上进行教学的,是小学几何领域中的重要知识点,而且四边形在日常生活中有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:学生能够认识和区分不同的四边形,理解四边形的特点和性质。
②能力目标:培养学生观察和分类的能力,能够辨别和描述不同的四边形。
③情感目标:培养学生对几何学科的兴趣和热爱,认识到几何在生活中的应用和重要性。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:认识不同的四边形,理解四边形的特点和性质。
难点是:能够辨别和描述不同的四边形,培养学生的观察和分类能力。
二、说教法学法本节课的教法是以学生为主体,由教师引导,通过问题导入、实例引发思考、合作探究和归纳总结等教学方法,培养学生的观察和分类能力。
学法是:自主学习法,合作交流法。
通过学生自主观察实例,合作讨论和共同总结来加深对知识点的理解和掌握。
三、说教学准备在教学过程中,我准备了一些图片和实物样本,以直观地呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、说教学过程根据教学设计,我将在课堂中运用以下几个环节来实现教学目标:1、导入环节:通过展示一些图形和实物样本,引发学生对四边形的认识和兴趣。
2、观察和分类环节:让学生观察实例,并在小组中进行讨论和分类,培养学生的观察和分类能力。
3、引导发现环节:通过问题的引导,帮助学生发现四边形的特点和性质,并进行总结。
4、拓展应用环节:通过实际生活中的例子,让学生认识到四边形的应用和重要性。
5、巩固练习环节:设计一些简单的练习题,让学生巩固所学知识并检验掌握情况。
2.5四边形分类(导学案)四年级下册数学北师大版今天我们要学习的是北师大版四年级下册数学的2.5四边形分类(导学案)。
一、教学内容我们将会使用教材第57页的内容,主要学习四边形的分类。
学生需要能够识别并理解长方形、正方形、梯形和任意四边形的特征。
二、教学目标通过本节课的学习,我希望学生们能够掌握四边形的分类知识,能够正确识别各种四边形,并理解它们的特征。
三、教学难点与重点重点是让学生掌握四边形的分类知识,难点是让学生能够理解并应用这些知识。
四、教具与学具准备我已经准备好了各种四边形的图片和模型,以及导学案供学生们自主学习。
五、教学过程六、板书设计我会将四边形的分类,以及它们的特征和例子,用板书的形式展示给学生。
七、作业设计1. 一个有四个角,四条边的图形。
2. 一个有四个角,四条边,且对边相等的图形。
3. 一个有四个角,四条边,且有一对对边平行,一对对边不平行的图形。
答案:1. 四边形2. 正方形3. 梯形八、课后反思及拓展延伸通过本节课的学习,我发现学生们对四边形的分类有了更深入的理解,他们能够正确识别各种四边形,并理解它们的特征。
在课后,我可以让学生们进一步探索四边形的性质,例如对角线的性质,以及它们与四边形的关系。
重点和难点解析在上述教学过程中,有几个重点和难点是我需要特别关注的。
一、教学内容的深入理解我需要确保学生们对四边形的分类有深入的理解。
这不仅仅是让他们记住四边形的名称,而是要让他们理解四边形的特征和它们之间的区别。
因此,在展示各种四边形的图片时,我会引导学生观察并说出它们的名称,然后解释四边形的定义,并引导他们发现各种四边形的特征。
通过这种方式,我希望能够帮助学生们建立起对四边形分类的深入理解。
二、教学难点的突破我需要帮助学生们理解和应用四边形的知识,这是本节课的难点。
为了突破这个难点,我会通过一些例题,让学生们应用他们所学的知识,解决问题。
我会选择一些具有代表性的例题,通过 stepstep 的解题过程,让学生们能够理解和掌握四边形的应用方法。
1 认识四边形
预习指南:直观感知四边形,能区分和辨认四边形,进一步认识长方形和正方形的特征,知道它们的角都是直角。
1.说出下列图形的名称。
2.你认识下面的立体图形吗?说说看。
3.教材第79页例1。
涂一涂,把你认为是四边形的图形涂上颜色。
4.填一填。
四边形是由( )条线段围成的封闭图形,并且都有( )个角。
5. 教材第80页例2。
认识长方形和正方形。
长方形 正方形 相同点 都有四个角,而且每个角都是( )角。
不同点
长方形的每组( )相等,长边叫做( ),短边叫做( )。
正方形( )条边都相等,每条
边的长叫做( )。
7.在下面的方格纸上按要求画图形。
(每小格边长1厘米)
(1)长为6厘米,宽4厘米的长方形。
(2)边长6厘米的正方形。
每日口算41+15=23+37=50-36=82-28=18×2=
30×2=600×2=34×2=23×3=33×3=
答案:
1.长方形正方形圆三角形
2.长方体正方体圆柱球
3.提示:给由四条边组成的图形涂色即可。
4.44
5.直对边长宽4边长
6.
每日口算5660145436
601200686999
作者留言:
非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感谢!祝您天天快乐!。
《平行四边形的认识》导学案平行四边形的认识导学案第一部分:引入目标- 了解平行四边形的定义和性质- 能够确定平行四边形的特征- 掌握标记和表示平行四边形的方法话题简介在几何学中,平行四边形是一种特殊的四边形,具有独特的性质和特征。
通过研究平行四边形的认识,我们可以更好地理解和应用几何学中的概念和原理。
第二部分:概念解释平行四边形的定义平行四边形是指有两对对边相互平行的四边形。
换句话说,平行四边形的对边两两平行,且对边长度相等。
平行四边形的性质平行四边形具有以下性质:1. 对边两两平行;2. 对角线彼此平分;3. 相邻角互补,即相邻内角的和为180度;4. 同位角相等,即位于同一边界的两个内角相等。
第三部分:特征判断判断平行四边形的特征确定一个四边形是否为平行四边形时,可以根据以下特征进行判断:1. 观察其对边是否平行;2. 测量对边长度是否相等;3. 判断相邻角是否互补;4. 检查同位角是否相等。
第四部分:标记和表示方法标记方法为了方便表示和讨论平行四边形,我们可以使用以下标记方法:- 一般用大写字母ABCD表示四边形的顶点;- 使用小写字母a、b、c、d表示四边形的边长;- 使用小写字母m、n表示对角线。
表示方法平行四边形可以用如下表示方法呈现:ABCD 或 ABCD第五部分:练题1. 下图中的四边形是否为平行四边形?为什么?请在此插入图片并提供答案2. 给定ABCD为平行四边形,若AD=6cm,BC=8cm,AC=10cm,请问BD的长度是多少?请提供你的答案和解题步骤结束语通过本导学案的学习,我们希望你能够清楚地理解平行四边形的定义和性质,并能够熟练运用判断和表示平行四边形的方法。
如果你还有任何问题,请随时向老师提问。
祝愉快学习!。
第十九章四边形平行四边形及其性质(1)主备人:初审人:终审人:【导学目标】1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.【导学重点】平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.【导学难点】运用平行四边形的性质进行有关的论证和计算.【学法指导】类比延伸、自主探究.【课前准备】查资料理解平行四边形.【导学流程】一、呈现目标、明确任务1.平行四边形的定义.2.平行四边形性质1 平行四边形的对边相等.3.平行四边形性质2 平行四边形的对角相等.二、检查预习、自主学习1.平行四边形的定义:的四边形叫做平行四边形.通过观察或者度量填写下列空格2.平行四边形的性质1:边的性质:AB‖;BC‖,AB= ;BC=.即:平行四边形对边.3.平行四边形的性质2: 角的性质:∠A= ,∠B= .即:平行四边形对角.三、教师引导例1 如图,小明用一根36厘米长的绳子围成一个平行四边形场地,其中AB边长为8厘米,其它三边长各是多少?这是平行四边形性质的实际应用,题目比较简单,目的就是让学生能运用平行四边形的性质进行有关的计算,可以让学生来解答.四、问题导学、展示交流如图,在平行四边形ABCD中,AE=CF.求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.五、点拨升华、当堂达标1.填空:(1)在□ABCD中,∠A= ,则∠B= ,∠C= ,∠D= .(2)如果□ABCD中,∠A—∠B=240,则∠A= ,∠B= ,∠C= ,∠D= .(3)如果□ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.2.如图,在□ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.六、布置预习预习下一节,完成练习2题.【教后反思】平行四边形及其性质(2)主备人:初审人:终审人:【导学目标】1.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.2.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.3.培养学生的推理论证能力和逻辑思维能力.【导学重点】平行四边形对角线互相平分的性质,以及性质的应用.【导学难点】综合运用平行四边形的性质进行有关的论证和计算.【学法指导】类比延伸、自主探究.【课前准备】查资料理解平行四边形的性质.【导学流程】一、呈现目标、明确任务1.平行四边形的性质.2.平行四边形的性质的应用.二、检查预习、自主学习1. 的四边形叫做平行四边形.平行四边形对边平行且;平行四边形对角.2.展示预习成果,小组内进行交流.三、动手操作学生在纸上画两个全等的□ABCD 和□EFGH ,并连接对角线AC 、BD 和EG 、HF ,设它们分别交于点O .把这两个平行四边形落在一起,在点O 处钉一个图钉,将 □ABCD 绕点O 旋转 ,观察它还和□EFGH 重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.四、问题导学、展示交流 例2 在□ABCD 中,AB =10,AD =8,AC ⊥BC ,求BC ,CD ,AC ,OA 的长以及□ABCD 的面积. 讨论上面的问题.五、点拨升华、当堂达标1.已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE =CF ,BE =DF .证明:在 □ABCD 中,∵AB ∥CD ,∴∠1=∠2.∠3=∠4.又∵OA =OC (平行四边形的对角线互相平分), ∴△AOE ≌△COF (ASA ).∴OE =OF ,AE =CF (全等三角形对应边相等). ∵四边形ABCD 是平行四边形, ∴AB =CD (平行四边形对边相等). ∴AB —AE =CD —CF . 即 BE =FD . 2.完成练习1题. 六、布置预习预习《配套练习》“平行四边形(1)(2)”中的选择填空题. 【教后反思】平行四边形的判定(1)主备人: 初审人: 终审人:【导学目标】1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题. 【导学重点】平行四边形的判定方法及应用.【导学难点】平行四边形的判定定理与性质定理的灵活应用. 【学法指导】问题导学、自主学习.【课前准备】如何判定一个四边形是平行四边形. 【导学流程】一、呈现目标、明确任务平行四边形判定方法1 两组对边分别相等的四边形是平行四边形. 平行四边形判定方法2 对角线互相平分的四边形是平行四边形. 二、检查预习、自主学习1.根据定义,什么样的四边形是平行四边形?2.根据判定,什么样的四边形是平行四边形?3.口头交流预习成果. 三、教师引导小明的父亲手中有一些木条,他想通过适当的操作,钉制一个平行四边形框架,你能帮他想出一些办法来吗?1.你能适当选择手中的硬纸板条搭建一个平行四边形吗? (1)用两长两短的四根;(2)用一长一短的两根先问做一个框架,图(1). 2.你怎样验证你搭建的四边形一定是平行四边形?图(2).四、问题导学、展示交流判定定理一:两组对边分别相等的四边形是平行四边形. 判定定理二:对角线互相平分的四边形是平行四边形. 五、点拨升华、当堂达标1.例3 已知:如图□ABCD 的对角线AC 、BD 交于点O ,E 、F 是AC 上的两点,并且AE =CF .求证:四边形BFDE 是平行四边形. 提示:可证明三角形全等. 2.完成练习2题.3.在□ABCD 中,对角线AC 与BD 交于O 点,已知点E 、F分别是DBAO、OC的中点,求证:四边形BFDE是平行四边形.4.如图,在□ABCD中,点E、F是对角线AC上的两点,且AE=CF,求证:四边形BFDE是平行四边形.六、布置预习预习下一节,弄懂两个定理,完成练习2题.【教后反思】平行四边形的判定(2)主备人:初审人:终审人:【导学目标】1.掌握用一组对边平行且相等来判定平行四边形的方法.2.会综合运用平行四边形的五种判定方法和性质来证明问题.【导学重点】平行四边形各种判定方法及其应用.【导学难点】平行四边形的判定定理与性质定理的综合应用.【学法指导】问题导学、自主学习.【课前准备】明确平行四边形的判定方法.【导学流程】一、呈现目标、明确任务1.(定义法)两组对边分别平行的四边形叫做平行四边形;√2.两组对边分别相等的四边形是平行四边形;√3.两组对角分别相等的四边形是平行四边形;√4.对角线互相平分的四边形是平行四边形.√5.一组对边平行且相等的四边形是平行四边形.二、检查预习、自主学习判定定理:一组对边平行且相等的四边形是平行四边形用几何语言表示:∵_________//____________________=____________∴四边形ABCD是____________.三、自主探究1.取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?2.已知:如图,□ABCD中,E、F分别是AD、BC的中点,求证:BE=DF.四、点拨升华、当堂达标1.在四边形ABCD 中,E 、F 、G 、H 分别是 AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.2.完成习题19.1中1—4题. 五、布置预习预习习题19.1中1—5题,书面完成5题. 【教后反思】平行四边形的判定(3)主备人: 初审人: 终审人:【导学目标】1.学习三角形的中位线定理.2.学习平行线间的距离. 【导学重点】三角形的中位线定理.【导学难点】三角形的中位线定理定理的综合应用. 【学法指导】问题导学、自主学习. 【课前准备】明确平行四边形的判定方法. 【导学流程】一、呈现目标、明确任务1.三角形的中位线平行于三角形的一边,且等于这边的一半.2.平行线间的距离.二、检查预习、自主学习①三角形中位线:连结三角形两边中点的线段叫做三角形中位线.②三角形中位线定理:三角形中位线______于三角形第三边,且等于它的_____. 三、自主探究1.例4 如课本P88页图,点D 、E 分别为△ABC 边AB 、AC 的中点,求证:DE ∥BC 且DE =21BC .提示:通过三角形全等,把要证明的内容转化到一个平行平行四边FF形中,利用平行四边形的性质使问题得到解决.用两种方法证明,图形如右图.2.阅读P89页课文,理解平行线间的距离与证明过程,并讨论、证明:夹在两条平行线间的平行线段相等.四、点拨升华、当堂达标1.将任意一个三角形分成四个全等的三角形,你是如何切割的?(答案如图)图中有几个平行四边形?你是如何判断的?(1)想一想:①一个三角形的中位线共有几条?②三角形的中位线与中线有什么区别?(2)三角形的中位线与第三边有怎样的关系?2.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.(可以用多种方法证明.)3.完成习题19.1中7,8题.7题,重点根据平行关系找所有的平行四边形,再找线段之间的关系.8题,重点展示运用了什么定理.五、布置预习预习习题19.1中的剩余题目,书面完成6题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.能灵活运用平行四边形的五种判定方法.2.体会平行四边形在生活中的应用.【导学重点】做练习.【导学难点】平行四边形的五种判定方法的灵活运用.【学法指导】小组讨论.【课前准备】平行四边形的判定方法.【导学流程】一、呈现目标、明确任务能灵活运用平行四边形的五种判定方法.二、检查预习、自主学习展示预习成果.重点说说每题的思路. 三、教师引导例:如图,在□ABCD 中,已知∠BAE =∠FCD . 求证:(1)∠FAE =∠FCE ,∠AFC =∠AEC .(2)四边形AECF 为平行四边形. 四、问题导学、展示交流讨论完成习题19.1中6,9,10,13题. 6题,重点证明四边形EBFD 是平行四边形. 9题,要先判定四边形ABCD 是平行四边形. 五、点拨升华、当堂达标 口头证明第11题,或让学生讲解. 六、布置预习1.讨论14题.2.预习矩形,完成练习1,2题. 【教后反思】矩形(1)主备人: 初审人: 终审人:【导学目标】1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 【导学重点】矩形的性质. 【导学难点】矩形的性质的灵活应用. 【学法指导】类比延伸、自主学习. 【课前准备】找些矩形的物体,认识矩形. 【导学流程】一、呈现目标、明确任务1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系. 2.会初步运用矩形的概念和性质来解决有关问题. 二、检查预习、自主学习 1. 平行四边形的特征 如图,在□ABCD 中,①∵四边形ABCD 是平行四边形 ∴ AB ∥ ,AD ∥ AB = , AD =②∵四边形ABCD 是平行四边形∴∠A=∠,∠B=∠③∵四边形ABCD是平行四边形∴AO= = ,BO= = .三、教师引导什么是矩形?举一些例子.四、互动探究1.探究在平行四边形的活动框架上,用橡皮筋做出两条对角线,通过∠α的变化,改变这个平行四边形的的形状,两条对角线的长度怎样变化?当∠α变为直角时,平行四边形成为一个矩形,这时它的其他内角是什么样的角?对角线的长度有什么关系?2.阅读P95页课文,理解定理:直角三角形斜边上的中线等于斜边的一半.五、点拨升华、当堂达标1.已知:矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.2.已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.3.完成练习3题.4.完成习题19.2中1,2题.六、布置预习预习下一节,弄懂两个判定,完成练习2题.【教后反思】矩形(2)主备人:初审人:终审人:【导学目标】1.理解并掌握矩形的判定方法.2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力.【导学重点】矩形的判定.【导学难点】矩形的判定及性质的综合应用.【学法指导】类比延伸、自主探究.【课前准备】尝试判定矩形.【导学流程】一、呈现目标、明确任务 1.掌握矩形的判定方法.2.能运用矩形的判定方法解决有关问题. 二、检查预习、自主学习1.矩形的判定,课本中讲到了哪几种?2.证明:对角线相等的平行四边形是矩形. 三、教师引导1.下列各句判定矩形的说法是否正确?为什么? (1)有一个角是直角的四边形是矩形; (2)有四个角是直角的四边形是矩形; (3)四个角都相等的四边形是矩形; (4)对角线相等的四边形是矩形;(5)对角线相等且互相垂直的四边形是矩形; (6)对角线互相平分且相等的四边形是矩形;(7)对角线相等,且有一个角是直角的四边形是矩形; (8)一组邻边垂直,一组对边平行且相等的四边形是矩形; (9)两组对边分别平行,且对角线相等的四边形是矩形. 2.完成练习2题.四、问题导学、展示交流如图,O 是矩形ABCD 的对角线AC 与BD 的交点,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 上的一点,且AE =BF =CG =DH .求证:四边形EFGH 是矩形. 五、点拨升华、当堂达标1.完成习题19.2中3,4题.2.如图,四边形ABCD 是平行四边形,AC ,BD 相交于点O ,且∠1=∠2,它是一个矩形吗?为什么? 六、布置预习预习《配套练习》“特殊的平行四边形(1)(2)”中选择填空题.【教后反思】菱形(1)主备人: 初审人: 终审人:【导学目标】1.掌握菱形概念,知道菱形与平行四边形的关系.2.理解并掌握菱形的定义及性质1、2;会用这些性质进行有关的论证和计算. 3.通过运用菱形知识解决具体问题,提高分析能力和观察能力. 【导学重点】DCBA菱形的性质1、2.【导学难点】菱形的性质及菱形知识的综合应用.【学法指导】类比、延伸.【课前准备】搜集实物理解菱形.【导学流程】一、呈现目标、明确任务1.了解菱形与平行四边形的关系.2.初步认识菱形的特征.二、检查预习、自主学习1.什么是菱形?2.根据探究结果,说说菱形有哪些性质.三、教师引导讨论:知道菱形的两条对角线的长,能求出它的面积吗?试试看.四、问题导学、展示交流讨论课本P98页例2(题略).这是一道用菱形知识与直角三角形知识来求菱形面积的实际应用问题.此题目,除用以巩固菱形性质外,还可以引导学生用不同的方法来计算菱形的面积,以促进学生熟练、灵活地运用知识.五、点拨升华、当堂达标1.完成练习2题.2.完成习题19.2中5,6题.3.如图,在菱形ABCD中,∠BAD=2∠B,试说明△ABC是等边三角形.六、布置预习1.预习下一节,弄懂菱形的判定,完成练习1题.2. 完成《配套练习》“特殊的平行四边形(3)”中选择填空题.【教后反思】菱形(2)主备人:初审人:终审人:【导学目标】1.理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;2.在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.AB 【导学重点】菱形的两个判定方法. 【导学难点】判定方法的证明方法及运用. 【学法指导】类比延伸 自主探索. 【课前准备】查阅资料理解菱形的判定方法. 【导学流程】一、呈现目标、明确任务 1.菱形的判定. 2.解决问题.二、检查预习、自主学习 全班展示练习1的预习成果.三、互动探究1.用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?2.怎样画一个菱形呢?四、问题导学、展示交流菱形判定方法1 对角线互相垂直的平行四边形是菱形.注意此方法包括两个条件:(1)是一个平行四边形,(2)两条对角线互相垂直.通过教材P99下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:菱形判定方法2 四边都相等的四边形是菱形.五、点拨升华、当堂达标1.已知:如图□ABCD 的对角线AC 的垂直平分线与边AD 、BC 分别交于E 、F . 求证:四边形AFCE 是菱形.2.如图,在□ABCD 中,对角线AC 平分∠DAB ,这个四边形是菱形吗?简述理由.3.如下图,O 是矩形ABCD 对角线的交点,DE //AC ,CE //BD ,试说明四边形OCED 是菱形.3.如上页图,△ABC 的平分线AD被EF 垂直平分,且E 、F 分别在AB 、AC 上,四边形AEDF 是菱形吗?为什么?EDA A4.如图,AE//BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD,求证:四边形ABCD是菱形.六、布置预习预习下一节,弄懂正方形的所有判定定理,完成《配套练习》“特殊的平行四边形(4)”中选择填空题.正方形主备人:初审人:终审人:【导学目标】1.掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算.2.理解正方形与平行四边形、矩形、菱形的联系和区别,通过正方形与平行四边形、矩形、菱形的联系的教学对学生进行辩证唯物主义教育,提高学生的逻辑思维能力.【导学重点】正方形的定义及正方形与平行四边形、矩形、菱形的联系.【导学难点】正方形与矩形、菱形的关系及正方形性质与判定的灵活运用.【学法指导】类比延伸.【课前准备】查资料理解正方形,找实物帮助理解.【导学流程】一、呈现目标、明确任务了解正方形与平行四边形的关系;认识正方形的特征.二、检查预习、自主学习1、正方形的定义:矩形是的平行四边形,菱形是平行四边形,而有一个角是直角,且有一组邻边相等的是正方形.2、正方形的性质:(在旁边空白处画一个正方形,并能过观察或度量归纳正方形的特征)(1)边:.(2)角:.(3)对角线:.三、教师引导做一做并讨论:用一张长方形的纸片(如图所示)折出一个正方形.如果一一块木板呢?四、问题导学、展示交流①对角线相等的菱形是正方形吗?为什么?②对角线互相垂直的矩形是正方形吗?为什么?③对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?④能说“四条边都相等的四边形是正方形”吗?为什么?⑤说“四个角相等的四边形是正方形”对吗?五、点拨升华、当堂达标1.例4 求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.2.已知:正方形ABCD中,对角线的交点为O,E是OB上的一点,DG⊥AE于G,DG 交OA于F.求证:OE=OF.3.如图,以等边△ABC的边AC为一边,向外作正方形ACDE,试说明∠DBE=30°.4. △ABC中,∠ACB=90°,CD平分∠ACB,DE⊥B C,DF⊥AC,垂足分别为E、F.求证:四边形CFDE是正方形.六、布置预习预习习题19.2中剩余题目,书面完成13题.【教后反思】练习课主备人:初审人:终审人:【导学目标】1.熟练掌握平行四边形、矩形、菱形、正方形的性质.2.熟练掌握平行四边形、矩形、菱形、正方形的判定. 【导学重点】做练习.【导学难点】灵活运用特殊平行四边形的性质和判定解决问题.【学法指导】类比、联想.【课前准备】特殊平行四边形的性质和判定.【导学流程】一、呈现目标、明确任务运用特殊平行四边形的性质和判定解决问题.二、检查预习、自主学习展示预习成果,可由学生讲解.三、教师引导判断下列命题是真命题还是假命题?假命题请举出反例.(1)四条边相等且四个角也相等的四边形是正方形;E(2)四个角相等且对角线互相垂直的四边形是正方形;(3)对角线互相垂直平分的四边形是正方形;(4)对角线互相垂直且相等的四边形是正方形;四、问题导学、展示交流在△ABC中,∠C=90°,∠A、∠B的平分线交于点D,DE⊥BC于点E,DF⊥AC于点F.求证:四边形CFDE是正方形.五、点拨升华、当堂达标讨论习题19.2中8—12题.8题,可以考虑四角,为此可以考虑剪掉的形状和剩余的外围形状.9题,先按比例求角的大小.10题,可以考虑所有边长,也可以同时考虑边和角.六、布置预习1.小组讨论剩余题目.2.预习梯形,弄懂性质,完成练习1题.【教后反思】梯形(1)主备人:初审人:终审人:【导学目标】1.探索并掌握梯形的有关概念和基本性质,探索、了解并掌握等腰梯形的性质.2.能够运用梯形的有关概念和性质进行有关问题的论证和计算,进一步培养学生的分析问题能力和计算能力.3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想.【导学重点】等腰梯形的性质及其应用.【导学难点】解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线). 【学法指导】类比延伸.【课前准备】查资料理解梯形.【导学流程】一、呈现目标、明确任务能够运用梯形的有关概念和性质进行有关问题的论证和计算.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题.二、检查预习、自主学习1.梯形: 的四边形叫做梯形. 3.等腰梯形:两腰______的梯形是等腰梯形. 3.直角梯形:有一个角是_______的梯形是直角梯形. 三、教师引导右图中,有你熟悉的图形吗?它们有什么共同的特点? 一组对边平行而另一组对边不平行的四边形叫做梯形. 这里,梯形与平行四边形的区别和联系;上、下底的概念是由底的长短来定义的,而并不是指位置来说的.四、问题导学、展示交流1.等腰梯形是轴对称图形吗?对称轴在哪里?有那些相等的线段?2. 梯形ABCD 中,AB =DC ,则梯形ABCD 的四个内角之间存在什么关系?借助右图说明理则由.3.例1课本P107页,题略.4.如图,梯形ABCD 中,AD ∥BC ,∠B=70°,∠C=40°,AD =6cm ,BC =15cm .求CD 的长.可按照右图添加辅助线. 五、点拨升华、当堂达标1.完成练习2题.2.完成《配套练习》“梯形(1)”中选择填空题. 六、布置预习预习本节剩余内容,弄懂梯形的判定,完成练习3题.梯形(2)主备人: 初审人: 终审人:【导学目标】1.掌握“同一底上两底角相等的梯形是等腰梯形”这个判定方法及其证明. 2.能够运用等腰梯形的性质和判定方法进行有关的论证和计算.3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题. 【导学重点】找实物,查资料理掌握等腰梯形的判定方法并能运用. 【导学难点】添加辅助线,把梯形的问题转化成平行四边形或三角形问题. 【学法指导】等腰梯形判定方法的运用. 【课前准备】类比延伸解梯形.CEF【导学流程】一、呈现目标、明确任务梯形的判定.二、检查预习、自主学习1.等腰梯形是的对称轴有___条.2.已知:梯形ABCD中,AB=DC,则梯形ABCD的四个内角之间存在什么关系?请说明理由.3.在图中画出等腰梯形的对角线AC与BD,请问AC与BD之间存在什么关系?你能说明理由吗?4.展示预习成果.三、教师引导前面所学的特殊四边形的判定基本上是性质的逆命题.等腰梯形同一底上两个角相等的逆命题是什么?命题:同一底上的两个角相等的梯形是等腰梯形.这个命题是否成立?怎样证明?四、问题导学、展示交流自学课本P108页的例2.五、点拨升华、当堂达标1.证明:对角线相等的梯形是等腰梯形.已知:如图,梯形ABCD中,对角线AC=BD.求证:梯形ABCD是等腰梯形.2.完成习题19.3中1—4题.六、布置预习1.预习习题19.3中剩余题目,书面完成2题.2.完成《配套练习》“梯形(2)”中选择填空题.【教后反思】练习课主备人:初审人:终审人:【导学目标】复习梯形的性质和判定.【导学重点】做练习.【导学难点】灵活运用所学知识解决问题.【学法指导】类比、推理.【课前准备】梯形的性质和判定. 【导学流程】一、呈现目标、明确任务 复习梯形的性质和判定.二、检查预习、自主学习展示预习成果,重点说说解题思路. 三、问题导学、展示交流 1.如图,在梯形ABCD 中,若△AOB ,△COD 是等腰三角形,则梯形ABCD (填“是”或“不是”)等腰梯形,理由是: . 2.如图,△ABC 中,AB =AC ,DE ∥BC .则四边形DBCE ,(填“是”或“不是”)等腰梯形,理由是: .3.如图,在梯形ABCD 中,AD ∥BC ,AD =AB ,BC =BD ,∠A =120°,则 ∠ABC =∠C =∠ADC = .4.如图,在梯形ABCD 中,BC ∥AD ,DE ∥AB ,DE =DC ,∠A =100°,试求梯形其他三个内角的度数,请问此时ABCD 为等腰梯形吗?说说你的理由.四、点拨升华、当堂达标讨论习题19.3中5—8题. 五、布置预习1.讨论剩余题目,重点完成9题.2.预习P117页“中点四边形”,任选一图形进行证明. 【教后反思】中点四边形及梯形的中位线主备人: 初审人: 终审人:【导学目标】1.在画图了解中点四边形的特征,掌握决定中点四边形形状的主要因素.2.理解梯形中位线概念,掌握梯形中位线性质并能解决有关问题. 【导学重点】理解梯形中位线概念,掌握梯形中位线性质并能解决有关问题. 【导学难点】在画图了解中点四边形的特征,掌握决定中点四边形形状的主要因素. 【学法指导】BC。
7长方形和正方形
【单元目标】
1.使学生认识四边形的特征,进一步掌握长方形和正方形的特征,能辨认出四边形、长方形和正方形,会在方格纸上画出长方形、正方形。
2.使学生知道周长的含义,掌握不规则图形的周长的测量方法。
探索并掌握长方形、正方形的周长计算公式,会计算长方形和正方形的周长,并能用长方形、正方形的周长公式解决实际生活中的数学问题。
3.通过多种活动,使学生逐步形成空间观念,感受数学与生活的联系。
【重点难点】
1.四边形的特征。
2.会计算长方形、正方形的周长,并能解决实际生活中相关的数学问题。
【教学指导】
1.关注学生的生活经验,提供丰富的感性材料。
促进学生空间概念的发展是小学数学几何教学的重要任务。
学生的生活世界和所接触的事物大都和空间与图形密切相关。
学生的生活经验是发展空间概念的宝贵资源。
要把学生生活息息相关的题材作为教学的素材,提供丰富的感性材料,注重学生的生活经验,将视野拓宽到生活的空间,观察生活,从现实世界中发现有关空间与图形的问题。
2.重视数学实践活动,突出几何探索过程。
空间观念是在活动的过程中逐步建立起来的,回忆生活实践、观察实物、动手操作、想象、情境描述是培养和发展学生空间观念的途径,是学生理解抽象数学的重要手段。
教学中应采用多种形式的活动方式,如量一量、折一折、比一比、画一画、摆一摆、拼一拼等,让学生有充足的时间和空间从事数学活动;通过观察、操作、有条理地思考和推理、交流等活动,经历抽象出几何图形,探索其图形性质及其变化规律的过程,从中获得鲜明、生动和形象的认识,形成表象,发展空间观念。
3.重视培养学生应用所学知识解决实际数学问题的能力。
在学习了长方形、正方形的周长公式后,教材立即安排了相应的解决问题的例题。
并且在练习十九中出现了较多运用长方形和正方形周长公式解决实际数学问题的题目,因此在教学中,要鼓励学生充分思考,提高解决问题的能力。
【课时安排】
建议共分5课时:
第1课时认识四边形………………………………………1课时
第2课时长方形和正方形的特征…………………………1课时
第3课时周长………………………………………………1课时
第4课时长方形和正方形的周长…………………………1课时
第5课时解决问题…………………………………………1课时
第1课时四边形
1.认识四边形
【教学内容】
教材第79页的内容。
【教学目标】
1.直观感知四边形,能区分和辨认四边形,理解和掌握四边形的特点。
2.通过找一找、圈一圈、说一说、画一画等活动,培养学生的观察、比较和抽象概括能力。
3.通过生活中的事物,感受生活中的四边形无处不在,激发学生的学习兴趣。
【重点难点】
认识四边形,理解和掌握四边形的特点。
【教学准备】
各种形状的纸,剪刀,直尺,钉子板。
【情景导入】
同学们,你们喜欢学校生活吗?今天这节课,老师带领同学们再一次参观一下我们美丽的校园。
课件展示:美丽的校园。
【进行新课】
一、探究新知:
1.感知四边形。
(1)在我们美丽的校园里,你发现了哪些图形?小组交流。
全班汇报,学生说,课件展示。
长方形:球场、通道、窗户;
正方形:地砖;
平行四边形:推拉门、护栏、羽毛球网;
三角形:花坛;
椭圆形:跑道。
(2)同学们观察得非常仔细,知道的图形真不少,那在我们的校园里你们看一看,什么样的图形最多?
(长方形、正方形、平行四边形)
看一看,它们都有什么共同特征?
(有四条直边,四个角)
(3)揭示课题:
我们把这样的图形叫四边形。
板书:认识四边形
二、讲授新课:
1.找一找。
出示例1图,让学生找出自己认为是四边形的图形。
2.圈一圈。
把找到的四边形圈出来。
(1)学生独立圈,指名一学生到讲台操作电脑完成例1。
(2)集体订正。
3.分一分:把例1中的图形分成“四边形”和“其他图形”两类。
4.分组合作学习,归纳四边形的共同点。
(四条直的边、四个角。
重点词:直的)
5.说一说,举例生活中哪些物体的表面的形状是四边形。
【课堂作业】
1.完成课本第79页“做一做”的第2题。
小组合作,在钉子板上围出不同的四边形。
2.按要求画图。
画一笔,变成两个四边形。
3.动手操作:剪一剪。
(1)把一个三角形,剪一刀,得到一个四边形。
(2)把这两个三角形,拼成一个四边形。
【课堂小结】
提问:本节课你有什么收获?你还有什么疑问吗?说出来大家帮忙解决。
小结:要判断一个图形是不是四边形,一要看它是不是封闭图形,二要看它是否有四条直的边和四个角。
【课后作业】
完成教材第81页练习十七第1、3题。
其中第3题课后两人合作完成。
7.长方形和正方形
第1课时认识四边形
认识四边形
四条直的边、四个角组成的封闭图形。
“活动是认识的基础,智慧从动手开始”,在活动中体验、在快乐中收获是这节课的一大特色。
“四边形”这个内容是一节可视性和操作性都很强的课,通过对教参和教材进行了深入的分析,根据《新课标》“以学生的发展为本”的思想,精心设计学生亲自实践的活动,让学生在想一想、圈一圈、找一找、画一画、分一分等一系列教学活动中认识四边形、感受四边形,从而获得新知。