DS证据理论
- 格式:ppt
- 大小:2.58 MB
- 文档页数:69
火灾的发生是一个伴有光、烟、温升、辐射和气体浓度变化的综合现象,需要利用各种火灾传感器检测和捕捉这些信息,我们可以根据具体的情况,选择两种或两种以上火灾传感器组来检测火灾状况。
本火灾预警报警系统采用了两级传感器信息融合,一级是局部(即象素级)融合,采用经典的自适应加权融合估计算法,克服了单个传感器的不确定性和局限性,获得被测对象的一致性解释与描述。
二级是在全局(即决策层)进行融合,采用证据理论。
Dempster-shafer(D-S)证据理论是概率论的推广,它允许人们对不确定性问题进行建模,并进行推理,能够更加客观的反映事物的不确定性。
在具体设计时,本文分三个模块进行处理,D-S 合成模块、BPA 模块、局部决策模块。
系统的结构示意图如图2-8所示。
图2-8 系统结构简图1.局部融合算法在局部融算法中采用自适应加权数据融合算法,不但可以优化传感器的数据,还能够有效剔除环境干扰信号,它的中心思想是根据各个传感器数据误差的大小,分配不同的权数,精度高的数据由于误差小,分配的权数较大,反之较小。
设有n 个传感器来检测某一火灾特征,它们的方差分别为n 22221...,σσσ,各传感器的测量值分别为n x x x ...,21,相互独立, 假定各传感器的加权因予别为n w w w ...,21,那么加权因子引入后,系统的传感器数据融合值为: ∑==ni i i x w x1ˆ (2-23) 式中11=∑=ni i w总均方差为:()[]()()()∑∑====--+-=-=ni nji j i jijii x x xx w w E x x w E xx E 1,1,12222ˆˆ2ˆˆσ (2-24)因为n x x x ...,21彼此相互独立,且是x 的无偏估计,所以:()()0ˆˆ=--j i x x xx E ()n j i j i ...2,1,,=≠ (2-25)则有:()∑∑==--=ni ni i i i w xx w 112222ˆσσ (2-26)上式中的σ是各加权因子i w 的多元二次函数,它的最小值的求取就是在加权因子n w w w ...,21满足归一化约束条件下多元函数极值的求取。
D-S证据理论,也称为Dempster-Shafer证据理论,是一种处理不确定信息的方法。
D-S证据理论的主要特点是满足比贝叶斯概率论更弱的条件,并具有直接表达“不确定”和“不知道”的能力。
在D-S证据理论中,由互不相容的基本命题(假定)组成的完备集合称为识别框架,表示对某一问题的所有可能答案。
该框架的子集称为命题,分配给各命题的信任程度称为基本概率分配(BPA,也称m函数),m(A)为基本可信数,反映着对A的信度大小。
信任函数Bel(A)表示对命题A的信任程度,似然函数Pl(A)表示对命题A非假的信任程度。
D-S方法的推理结构是自上而下的,分三级:第一级为目标合成,第二级为推断,第三级为更新。
多证据判决信息融合基础信息融合的本质是系统的全面协调优化[5]:将不同来源、不同模式、不同媒质、不同时间、不同表示方法,特别是不同层次的信息加以有机地结合,寻求一种更为合理的准则来组合信息系统在时间和空间上的冗余和互补信息,以获得对被评估问题的一致性解释和全面的描述,从而使该系统获得比它的各个组成部分或其简单的加和更优越的性能。
现有的信息融合数学模型主要采用嵌入约束模型、证据组合模型和人工神经网络模型等。
证据理论的基本原理证据理论采用信度的“半可加性”原则,较好地对不确定性推理问题中主、客观性之间的矛盾进行了折衷处理。
而且,证据理论下先验概率的获得比主观Bayes方法要容易得多,已经成为构造具有更强的不确定性处理能力专家系统的一种有效手段。
以下给出证据理论的一些基本定义和定理首先定义框架信任测度似然测度定理2 (Dempster-Shafer证据合成公式)设m1和m2是Q上的两个mass函数,对于m(F)=0及在证据理论中,不同专家的经验和知识可以通过式(4)来有效融合;而某个诊断结论成立的可信度可以通过信任区间[Bel,Pl]来表示。
提高目标检测概率--多传感器信息融合已成为信息处理技术领域的研究热点问题近年来,随着基于多传感器系统的军事作战平台的形成和发展,多传感器信息融合已成为信息处理技术领域的研究热点问题。
对于多传感器的分布式检测,人们已经做了大量的研究。
而在双色红外成像系统中,如何充分利用双色红外传感器获得的图像信息来提高目标的检测概率,是实现远距离探测和抗干扰能力的关键。
其中,实现双色红外成像系统中远距离弱目标检测的一种有效途径,就是通过对目标在两个不同红外波段的成像信息进行融合处理。
这里所涉及到的图像信息融合,根据信息表征层次的不同,可以分为像素级融合、特征级融合和决策级融合。
像素级融合,是直接对各传感器图像的像素点灰度信息进行综合的过程。
特征级融合是对图像进行特征提取后,对各传感器图像的特征信息进行综合处理的过程。
《基于DS证据理论的多传感器数据融合算法研究与应用》一、引言随着传感器技术的快速发展,多传感器数据融合技术已成为现代信息处理领域的重要研究方向。
其中,基于DS(Dempster-Shafer)证据理论的数据融合算法因其独特的处理方式和广泛的应用场景而备受关注。
本文将重点研究基于DS证据理论的多传感器数据融合算法,探讨其原理、应用及未来发展趋势。
二、DS证据理论概述DS证据理论是一种基于概率论和集合论的推理方法,用于处理不确定性和不完全性信息。
该理论通过将每个命题的信任度分配给一个或多个基本事件集(mass function),来描述对命题的信任程度。
在多传感器数据融合中,DS证据理论可以有效地融合来自不同传感器的数据信息,提高数据的可靠性和准确性。
三、基于DS证据理论的多传感器数据融合算法1. 算法原理基于DS证据理论的多传感器数据融合算法主要包括以下步骤:首先,对来自不同传感器的数据进行预处理,提取出有用的信息;然后,利用DS证据理论将不同传感器的数据进行融合,形成综合的决策结果;最后,根据决策结果进行后续处理,如目标跟踪、态势评估等。
2. 算法特点(1)多源信息融合:基于DS证据理论的多传感器数据融合算法可以有效地融合来自不同传感器的数据信息,提高了数据的可靠性和准确性。
(2)不确定性处理:DS证据理论能够处理不确定性和不完全性信息,提高了数据融合的鲁棒性。
(3)灵活性高:该算法可以根据不同的应用场景和需求进行调整和优化,具有较强的灵活性和可扩展性。
四、应用场景基于DS证据理论的多传感器数据融合算法在多个领域得到了广泛应用,如智能交通、智能安防、无人驾驶等。
在智能交通领域,该算法可以用于车辆检测、道路识别、交通信号灯识别等任务;在智能安防领域,该算法可以用于人脸识别、目标跟踪、异常行为检测等任务;在无人驾驶领域,该算法可以用于环境感知、路径规划、决策控制等任务。
五、实验与分析为了验证基于DS证据理论的多传感器数据融合算法的有效性,我们进行了多组实验。
证据理论的应用举例1 D-S 证据理论1.1关于D-S 证据理论的概念D-S 理论假定有一个用大写希腊字母 Θ 表示的环境(environment ),该环境是一个具有互斥和可穷举元素的集合:Θ = { θ1 , θ2 , ⋯ , θn }术语环境在集合论中又被称之为论域(the universe of discourse )。
在D-S 理论中,习惯上把证据的信任度类似于物理对象的质量去考虑,即证据的质量(Mass )支持了一个信任。
关于质量这一术语也被称为基本概率赋值(BPA , the Basic Probability Assignment )或简称为基本赋值(Basic Assignment )。
为了避免与概率论相混淆,我们将不使用这些术语,而是简单的使用质量(Mass ) 一词。
1.2 D-S 证据理论与概率论的区别D-S 理论和概率论的基本区别是关于无知的处理。
即使在无知的情况下,概率论也必须分布一个等量的概率值。
假如你没有先验知识,那么你必须假定每一种可能性的概率值都是P, NP 1=其中,N 是可能性的总数。
事实上,这赋值为P 是在无可奈何的情况下作出的。
但是,概率论也有一种冠冕堂皇的说法,即所谓的中立原理(the principle of indifference )。
当仅仅有两种可能性存在的时候,比方说“有石油”和“没有石油”,分别用H 和⌝H 表示,那么出现应用中立原理的极端情况。
在与此相类似的情况中,即使在没有一点知识的条件下,那么也必须是P = 50 % ,因为概率论要求P(H)+P(⌝H) = 1,就是说,要么赞成H ,要么反对H ,对H 无知是不被允许的。
表1-1为证据理论与概率论的区别。
表1-1 证据理论与概率论的区别D-S理论不要求必须对无知假设H和反驳假设H赋以信任值,而是仅仅将Mass分配给你希望对其分配信任的环境的子集。
任一未被分配给具体子集的‘信任’被看成‘未表达意见’,并将其分配给环境 ,反驳一个假设的‘信任’,实际上,是对该假设的‘不信任’,但不是对该假设‘未表达意见’。
ds证据理论
ds证据理论是一种证明方法,它旨在建立一个有效的、可靠的、有效的评估过程,以便根据可用的证据来确定事实。
它是一种基于统计学和科学原理的形式化理论,用于收集、评估、储存和分析信息,以便识别和检验事实,并为做出正确决策提供指导。
DS证据理论的元素包括:数据、技术、过程、数据库和工具,以及多种可用于收集、储存和分析信息的技术。
它包括:采用合理的技术,以有效的方式收集和存储数据;从数据中提取适当的细节;使用合理的工具和技术来分析数据,以帮助支持或证明某一论点;使用合理的技术来识别不可靠的数据;将所有结果总结起来,以便更好地识别事实。
《基于DS证据理论的多传感器数据融合算法研究与应用》篇一一、引言随着传感器技术的快速发展,多传感器数据融合技术已成为现代信息处理领域的重要研究方向。
多传感器数据融合技术能够有效地整合来自不同传感器的信息,提高系统的准确性和可靠性。
DS(Dempster-Shafer)证据理论作为一种重要的信息融合方法,为多传感器数据融合提供了有效的理论支持。
本文将基于DS证据理论,对多传感器数据融合算法进行研究,并探讨其在实际应用中的效果。
二、DS证据理论概述DS证据理论是一种利用多个证据来推理出假设的方法。
该理论具有将各种证据组合在一起并推导出共同结论的优点。
DS证据理论的主要原理是通过对不同的数据信息进行赋值,并根据一定的组合规则来得到每个假设的信任度,进而得出最终结论。
该理论在多传感器数据融合中具有广泛的应用前景。
三、多传感器数据融合算法研究(一)算法原理基于DS证据理论的多传感器数据融合算法主要包括以下几个步骤:首先,从不同的传感器中获取数据信息;其次,根据DS证据理论对每个传感器数据进行赋值;然后,根据一定的组合规则计算每个假设的信任度;最后,得出结论。
(二)算法实现在实现过程中,需要选择合适的传感器,并确保传感器之间的数据传输和同步。
同时,还需要对数据进行预处理和噪声消除等操作。
此外,为了满足实时性要求,还需要对算法进行优化和加速处理。
(三)算法优势基于DS证据理论的多传感器数据融合算法具有以下优势:首先,能够有效地整合来自不同传感器的信息,提高系统的准确性和可靠性;其次,能够处理具有不确定性和模糊性的信息;最后,能够适应不同的环境和场景需求。
四、应用实例分析(一)应用场景基于DS证据理论的多传感器数据融合算法在许多领域都有广泛的应用,如智能交通、智能安防、无人驾驶等。
以智能交通为例,该算法可以用于车辆检测、交通流量统计、交通事件识别等方面。
(二)应用效果以某城市交通监控系统为例,采用基于DS证据理论的多传感器数据融合算法后,能够有效地提高交通监控的准确性和实时性。
DS证据理论分析
证据权重表示一项证据对概率假设的支持程度,通常用一个介于0和1之间的数值表示。
当证据权重为1时,表示证据对概率假设的支持非常强,而当权重为0时,表示证据对概率假设没有任何支持。
信任函数则表示不同证据之间的组合方式,它是将证据权重映射到概率分配上的函数,通常采用的是Dempster-Shafer(DS)证据理论的规则。
DS证据理论的应用范围非常广泛,涵盖了多个领域。
例如,在法律领域,DS证据理论可以用于判断被告是否有罪,通过对不同证据的分析和组合,可以推断被告有罪的概率。
在医学诊断中,DS证据理论可以用于评估患者是否患有其中一种疾病,通过对患者的不同症状和检测结果的分析和组合,可以推断患者患病的可能性。
DS证据理论的分析过程可以分为三个主要步骤:观察证据、计算证据权重和组合证据。
观察证据是指从现实生活中收集和获取各种证据。
计算证据权重是指通过数学公式或计算方法,将证据的权重从原始数据转化为DS证据权重。
组合证据是指将不同证据的权重进行组合,得出最终的概率假设。
总结来说,DS证据理论是一种通过考虑证据权重和信任函数来推断概率假设真实度的方法。
该理论的应用广泛,可以用于法律、医学等多个领域。
在应用该理论进行分析时,需要考虑证据的可靠性和不确定性,以及对证据的观察、计算权重和组合证据三个主要步骤的操作。
ds证据理论
DS证据理论是一种用于数据挖掘和机器学习应用的理论。
它建立在统计概率理论和数学统计学的基础上,用于从大量数据中发现隐藏的规律和特征。
它的概念很简单,即从大量的数据中提取出有用的信息,并基于这些信息建立有用的模型。
DS证据理论的思想是,通过分析大量数据,发现不同的见解,有助于更好地了解和预测特定问题。
例如,可以使用DS证据理论来发现哪些消费者更有可能购买某一产品,以及产品的价格等等。
此外,它还可以用于发现病毒传播的规律、分析股市走势、计算机安全以及政策分析等方面。
DS证据理论的基本思想是使用统计概率理论和数学统计学来构建模型,并应用到大量数据中。
它的目标是从数据中推断出模型,并用来改善预测精度和提高预测精度。
DS证据理论的优势在于它可以从大量的数据中发现隐含的规律,为实际问题提供更准确的解决方案。
总之,DS证据理论是一种用于发现数据隐含规律的理论,它的优势在于可以提供准确的解决方案,为实际问题提供更准确的解决方案。
DS证据理论的应用已经广泛渗透到数据挖掘、机器学习、病毒传播、股市走势、计算机安全和政策分析等领域。