随机变量方差的概念及性质
- 格式:ppt
- 大小:1.75 MB
- 文档页数:48
高斯随机变量的均值和方差高斯随机变量的均值和方差概述:高斯随机变量是一种常见的概率分布,也被称为正态分布。
它在各个科学领域中都有广泛的应用,具有很强的实用价值。
均值和方差是高斯随机变量的两个重要统计特征,对于了解它的分布特性和应用具有重要意义。
一、高斯随机变量的定义和性质高斯随机变量的定义是指数学上服从正态分布的随机变量。
它的概率密度函数可以表示为一个钟形曲线,呈现出对称性和峰值集中的特点。
正态分布的概率密度函数可由均值和方差唯一确定。
1. 对称性:高斯随机变量的概率密度函数关于均值对称,即曲线在均值处达到峰值。
2. 峰值集中:均值是高斯随机变量的分布特征之一,它确定了曲线的中心位置。
方差则衡量了数据相对于均值的离散程度,决定了曲线的宽窄。
二、高斯随机变量的均值均值是一个概率分布的集中趋势的度量标准,对于高斯分布来说,均值是分布的中心位置。
1. 数学期望:高斯随机变量的均值也被称为数学期望,表示了随机变量的平均值。
对于高斯分布,其数学期望即为分布的均值。
2. 均值的性质:高斯随机变量的均值具有线性性质,即对于两个独立的高斯随机变量X和Y,它们的线性组合aX + bY的均值就是a和b的加权平均值。
三、高斯随机变量的方差方差是用来衡量数据的离散程度,对于高斯分布来说,方差决定了数据的分布宽度。
1. 方差的定义:高斯随机变量的方差是其概率分布关于均值的平均偏离程度的度量。
方差的数学定义为随机变量与均值的差的平方的期望。
2. 方差的性质:高斯随机变量的方差有以下几个性质:(1)方差非负,即方差的值大于等于0。
(2)方差为0表示所有数据都是相同的,即没有离散度。
(3)方差具有线性性质,对于两个独立的高斯随机变量X和Y,它们的线性组合aX + bY的方差为a^2Var(X) + b^2Var(Y)。
结论:高斯随机变量的均值和方差是衡量它分布特性的重要统计量。
均值决定了分布的中心位置,方差则表征了对中心位置的离散程度。
§16.1 随机变量的均值与方差1.所示,则称n n 2211为离散型随机变量X 的均值或数学期望,记为E(X)或μ,即E(X)=n n p x p x p x +++ 2211,其中i x 是随机变量X 的可能取值,i p 是概率,i p ≥0;n i ,,2,1 =,121=+++n p p p性质:①E(C)=C ;②E(aX)=aE(X);③E(aX+b)=aE(X)+b ;④超几何分布X ~H(n,M,N)的数学期望为NnM X E =)(,二项分布X ~B(n ,p)的数学期望为np X E =)(。
2.X 的概率分布如表所示,则称n n p x p x p x 22211)()()(μ-++-+- 为离散型随机变量X 的方差,记为V(X)或2σ,即V(X)= n n p x p x p x 2222121)()()(μμμ-++-+- (其中)(X E =μ,i p ≥0;n i ,,2,1 =,121=+++n p p p ),方差也可用公式212)(μ-=∑=i ni i p x X V ,即22)()()(X E X E X V -=,V(X)的算术平方根称为X 的标准差,即)(X V =σ。
性质:①0)(=C V ;②)()(2X V a b aX V =+;③超几何分布X ~H(n,M,N)的方差为)1())(()(2---=N N n N M N nM X V ,二项分布X ~B(n ,p)的方差为)1()(p np X V -=。
注:随机变量的方差和标准差都反映了随机变量的取值偏离于均值的平均程度。
方差或标准差越小,随机变量偏离于均值的平均程度越小。
三、典型例题例1:有10张卡片,其中8张标有数字2,有2张标有数字5,从中随即地抽取3张卡片,设3 张卡片上的数字之和为随机变量ξ,求E(ξ)、V(ξ)例2:假定某射手每次射击命中目标的概率为32,且只有3发子弹。
方差概念及计算公式-CAL-FENGHAI.-(YICAI)-Company One1方差概念及计算公式一.方差的概念与计算公式例1两人的5次测验成绩如下:X: 50,100,100,60,50 E(X )=72;Y: 73, 70, 75,72,70 E(Y )=72。
平均成绩相同,但X不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):直接计算公式分离散型和连续型,具体为:这里是一个数。
推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”,即,其中分别为离散型和连续型计算公式。
称为标准差或均方差,方差描述波动程度。
二.方差的性质1.设C为常数,则D(C) = 0(常数无波动);2.D(CX )=C2D(X ) (常数平方提取);证:特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值)3.若X、Y相互独立,则证:记则前面两项恰为D(X )和D(Y ),第三项展开后为当X、Y 相互独立时,,故第三项为零。
特别地独立前提的逐项求和,可推广到有限项。
三.常用分布的方差1.两点分布2.二项分布X ~ B( n, p )引入随机变量X i(第i次试验中A出现的次数,服从两点分布),3.泊松分布(推导略)4.均匀分布另一计算过程为5.指数分布(推导略)6.正态分布(推导略)~正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。
例2求上节例2的方差。
解根据上节例2给出的分布律,计算得到求均方差。
均方差的公式如下:(xi为第i个元素)。
S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。
连续型随机变量的方差计算公式1. 前言在概率论和统计学中,方差是用来衡量一个随机变量在其平均值附近的离散程度的一个重要指标。
连续型随机变量的方差计算方法与离散型随机变量略有不同,本文将详细介绍连续型随机变量的方差的计算方法。
2. 连续型随机变量的方差的定义连续型随机变量X的方差定义为:$$ Var(X)=E\left((X-E(X))^2\right) $$其中E表示期望,即:$$ E(X)=\int_{-\infty}^{\infty}x f(x)dx $$其中f(x)是X的概率密度函数。
方差实际上是随机变量和其期望的差的平方的期望。
3. 连续型随机变量方差计算的步骤计算连续型随机变量方差的一般步骤如下:3.1 计算期望首先需要计算随机变量的期望E(X),即:$$ E(X)=\int_{-\infty}^{\infty}x f(x)dx $$3.2 常规计算然后计算(X-E(X))^2,即将X的每个值减去期望,然后平方:$$(X-E(X))^2$$3.3 期望计算再把(X-E(X))^2乘以概率密度函数f(x),然后对x从负无穷到正无穷进行积分,即可得到方差,即:$$ Var(X)=E\left((X-E(X))^2\right)=\int_{-\infty}^{\infty}(x-E(X))^2 f(x)dx $$4. 连续型随机变量方差相关公式4.1 方差的性质连续型随机变量的方差具有以下性质:- 对于任意常数c,有Var(cX)=c^2Var(X)。
- 对于任意随机变量X和Y,Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y),其中Cov(X,Y)为X和Y的协方差。
4.2 使用方差的性质计算方差可以利用方差的性质来简化计算:- 如果X是一个连续型随机变量,那么Var(aX+b)=a^2Var(X),其中a和b都是常数。
- 如果X和Y是正交的随机变量(即Cov(X,Y)=0),那么Var(X+Y)=Var(X)+Var(Y)。
1.期望:若离散型随机变量ξ,当ξ=x i的概率为P(ξ=x i)=P i(i=1,2,…,n,…),则称Eξ=∑x i p i为ξ的数学期望,反映了ξ的平均值.期望是算术平均值概念的推广,是概率意义下的平均.Eξ由ξ的分布列唯一确定.2.方差:称Dξ=∑(x i-Eξ)2p i为随机变量ξ的均方差,简称方差.D叫标准差,反映了ξ的离散程度.3.性质:(1)E(aξ+b)=aEξ+b,D(aξ+b)=a2Dξ(a、b为常数).(2)二项分布的期望与方差:若ξ~B(n,p),则Eξ=np,Dξ=npq(q=1-p).Dξ表示ξ对Eξ的平均偏离程度,Dξ越大表示平均偏离程度越大,说明ξ的取值越分散.1.(2013•广东)已知离散型随机变量X的分布列为X 1 2 3P则X的数学期望E(X)=()A.B. 2 C.D. 32.(2010•宁夏)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X,则X的数学期望为()A. 100 B. 200 C. 300 D. 4003.(2007•四川)某商场买来一车苹果,从中随机抽取了10个苹果,其重量(单位:克)分别为:150,152,153,149,148,146,151,150,152,147,由此估计这车苹果单个重量的期望值是()A.150.2克B.149.8克C.149.4克D.147.8克4.(2014•浙江二模)李先生居住在城镇的A处,准备开车到单位B处上班,途中(不绕行)共要经过6个交叉路口,假设每个交叉路口发生堵车事件的概率均为,则李先生在一次上班途中会遇到堵车次数ξ的期望值Eξ是()A.B. 1 C.6×()6D. 6×()6 5.从装有颜色外完全相同的3个白球和m个黑球的布袋中随机摸取一球,有放回的摸取5次,设摸得白球数为X,已知E(X)=3,则D(X)=()A.B.C.D.6.有10件产品,其中3件是次品,从中任取两件,若ξ表示取到次品的个数,则Eξ等于()A.B.C.D. 17.某射手射击击中目标的概率为0.8,从开始射击到击中目标所需的射击次数为ξ,则Eξ等于()A.B.C.D.58.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ_________(结果用最简分数表示).9.设离散型随机变量ξ可能取的值为1,2,3,4.P(ξ=k)=ak+b(k=1,2,3,4),又ξ的数学期望Eξ=3,则a+b= _________.10.同时抛掷两枚相同的均匀硬币,随机变量ξ=1表示结果中有正面向上,ξ=0表示结果中没有正面向上,则Eξ=_________.11.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个球,则其中含红球个数的数学期望是_________.12.(2014•温州一模)现有三个小球全部随机放入三个盒子中,设随机变量ξ为三个盒子中含球最多的盒子里的球数,则ξ的数学期望Eξ为_________.13.从1,2,3,…,n﹣1,n这n个数中任取两个数,设这两个数之积的数学期望为Eξ,则Eξ=_________.14.(2013•闸北区二模)一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是;从袋中任意摸出2个球,至少得到1个白球的概率是.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=_________.15.某班从4名男生、2名女生中选出3人参加志愿者服务,若选出的男生人数为ξ,则ξ的方差Dξ=_________.16.(2013•嘉兴一模)一盒中有6个小球,其中4个白球,2个黑球•从盒中一次任取3个球,若为黑球则放回盒中,若为白球则涂黑后再放回盒中.此时盒中黑球个数X的均值E(X)=_________.17.(2013•虹口区二模)从集合的所有非空子集中,等可能地取出一个,记取出的非空子集中元素个数为ξ,则ξ的数学期望Eξ=_________.18.(2012•台州一模)把2对孪生兄弟共4人随机排成一排,记随机变量ξ为这一排中孪生兄弟相邻的对数,则随机变量ξ的期望Eξ=_________.19.(2012•杭州二模)(理)设整数m是从不等式x2﹣2x﹣8≤0的整数解的集合S中随机抽取的一个元素,记随机变量ξ=m2,则ξ的数学期望Eξ=_________.20.(2011•温州二模)甲、乙两个同学每人有两本书,把四本书混放在一起,每人随机从中拿回两本,记甲同学拿到自己书的本数为ξ,则Eξ=_________.21.一个人随机的将编号为1,2,3,4的四个小球放入编号为1,2,3,4的四个盒子,每个盒子放一个小球,球的编号与盒子的编号相同时叫做放对了,否则叫做放错了.设放对的个数记为ξ,则ξ的期望Eξ=_________.22.设口袋中有黑球、白球共9个球,从中任取2个球,若取到白球个数的数学期望为,则口袋中白球的个数为_________.23.(2011•嘉定区三模)某班从5名班干部(其中男生3人,女生2人)中选3人参加学校学生会的干部竞选.设所选3人中女生人数为ξ,则随机变量ξ的方差Dξ=_________.24.(2012•重庆)甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为,乙每次投篮投中的概率为,且各次投篮互不影响.(Ⅰ)求甲获胜的概率;(Ⅱ)求投篮结束时甲的投篮次数ξ的分布列与期望.25.(2012•四川)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.26.(2012•山东)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.27.甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为与p,且乙投球2次均未命中的概率为.(Ⅰ)求乙投球的命中率p;(Ⅱ)若甲投球1次,乙投球2次,两人共命中的次数记为ξ,求ξ的分布列和数学期望.28.甲、乙俩人各进行3次射击,甲每次击中目标的概率为,乙每次击中目标的概率为.(Ⅰ)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望Eξ;(Ⅱ)求乙至多击中目标2次的概率;(Ⅲ)求甲恰好比乙多击中目标2次的概率.29.一接待中心有A、B、C、D四部热线电话,已知某一时刻电话A、B占线的概率均为0.5,电话C、D占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线.试求随机变量ξ的概率分布和它的期望.30.(2014•淄博三模)一个袋子装有大小形状完全相同的9个球,其中5个红球编号分别为1,2,3,4,5,4个白球编号分剐为1,2,3,4,从袋中任意取出3个球.(Ⅰ)求取出的3个球编号都不相同的概率;(Ⅱ)记X为取出的3个球中编号的最小值,求X的分布列与数学期望.。